

Logic, Information flow and Argumentation

Homework exercises, Week 4, part a (due Friday 2 March).

- 1. By means of natural deduction, prove the following (conjunction only):
 - (a) from premise $p \wedge q$ derive conclusion p
 - (b) from premise $(p \wedge q) \wedge r$ derive conclusion r
 - (c) from premise $(p \land q) \land r$ derive conclusion p
 - (d) from premises p and q derive conclusion $p \wedge q$
 - (e) from premise $p \wedge q$ derive conclusion $q \wedge p$
 - (f) from premises p and $q \wedge r$ derive conclusion $p \wedge q$
- 2. By means of natural deduction, prove the following (adding disjunction):
 - (a) from premise r derive conclusion $p \lor r$
 - (b) from premise q derive conclusion $(r \land p) \lor q$
 - (c) from premise $p \wedge q$ derive $q \vee r$
 - (d) from premise $p \wedge (r \wedge q)$ derive conclusion $r \vee (p \wedge q)$
 - (e) from premises $(p \lor q) \land r$ and $r \lor q$ derive $p \lor q$
 - (f) from premise $(p \land q) \lor p$ derive conclusion p
 - (g) from premise $p \lor q$ derive conclusion $q \lor p$
 - (h) from premise $(p \land q) \lor (r \land q)$ derive conclusion q
 - (i) from premise $(p \land q) \lor (r \land q)$ derive conclusion $q \lor (s \land t)$
- 3. By means of natural deduction, prove the following (adding implication):
 - (a) derive $(p \land q) \rightarrow q$ (N.B. no premises given!)
 - (b) derive $(p \land q) \rightarrow (r \lor q)$
 - (c) derive $(p \lor q) \to (q \lor p)$
 - (d) from premises $p \wedge q$ and $q \rightarrow r$ derive conclusion r
 - (e) from premises r and $(p \lor r) \to q$ derive conclusion q

- (f) from premises $p \wedge r$ and s derive $(p \lor r) \to s$
- (g) from premises $p \wedge q$ and s derive $(q \vee r) \rightarrow s$
- (h) from premises $p \lor (r \land s)$ and s derive $(p \lor s) \to s$
- (i) from premises r and $r \to s$ derive s
- (j) from premises $r \wedge s$ and $s \to t$ derive t
- (k) from premises $p \to q$ and p derive $q \lor r$
- (l) from premises $(p \wedge q) \vee (r \wedge q)$ and $q \to s$ derive s
- (m) from premises $(p \lor q) \to r$ and $r \land q$ derive r
- 4. By means of natural deduction, prove the following (adding negation):
 - (a) derive $\neg(p \land \neg p)$ (N.B. no premises given!)
 - (b) derive $p \to p$
 - (c) derive $p \to (p \lor q)$
 - (d) from premise $\neg p$ derive $\neg (p \land q)$
 - (e) from premises $p \wedge q$ and $\neg (p \wedge q)$ derive $\neg r$
 - (f) from premises $p \to q$ and $\neg q$ derive $\neg p$