

Amsterdam University College

Logic, Information flow and Argumentation

Homework exercises, Week 8, part a (due Friday 30 March).

1. Consider the following two models M and N, with the arrow representing an abstract relation R:

For each model, decide whether the following sentences are true:

- (a) $\forall x R x x$
- (b) $\exists x \forall y \neg Rxy$
- (c) $\exists x \exists y \exists z (Rxy \land Rxz \land \neg(y=z))$
- (d) $\forall x \forall y \forall z ((Rxy \land Rxz) \rightarrow y = z)$
- (e) $\forall x \forall y (Rxy \rightarrow Ryx)$
- 2. For each of the following pairs of models M and N, find a formula ϕ that is true in one model but false in the other.

 \bigcirc

N: ullet

(d)
$$M: \bullet \bigcirc$$
 $N: \bullet \bigcirc$

(e)
$$M: \bullet$$
 $N: \bullet$

- 3. For each of the following sentences, construct one model (in the same style as above) that make the sentence true, and another that makes it false.
 - (a) $\forall x R x x$
 - (b) $\forall x \forall y (Rxy \to Ryx)$
 - (c) $\exists y \forall x \neg Rxy$
 - (d) $\exists x \exists y (x = y \land Rxy)$
 - (e) $\exists x \exists y (\neg(x = y) \land \forall z (z = x \lor z = y))$
 - (f) $\exists x \exists y (\neg(x=y) \land \forall z (z=x \lor z=y) \land \neg Rxx \land Rxy \land \neg Ryx \land Ryy)$