
Logic in Action

–Draft, March 12, 2010–

Johan van Benthem, Hans van Ditmarsch, Jan van Eijck, Jan Jaspars

0-2

Contents

1 What is Logic? 1-1
1.1 Reasoning in Daily Life . 1-1
1.2 Logic as the Study of Informational Practices 1-3
1.3 The Origins of Logic . 1-4
1.4 Inference Patterns, Validity, and Invalidity 1-6
1.5 Uses of Inference . 1-10
1.6 Richer Informational Practices . 1-12
1.7 Logical Systems and the Foundations of Mathematics 1-13
1.8 Logic and Other Disciplines . 1-15
1.9 Logic and the Facts . 1-17
1.10 Our View of Logic . 1-19
1.11 Overview of the Course . 1-20

Classical Systems 2-1

2 Propositional Logic 2-1
2.1 Motivation — Classification, Consequence and Update 2-1
2.2 Notation and the Language of Propositional Logic 2-3
2.3 Semantic Situations, Truth Tables, Binary Arithmetic 2-8
2.4 Valid Consequence and Consistency . 2-12
2.5 Proof . 2-15
2.6 Information Update . 2-20
2.7 Expressive Power . 2-22
2.8 Outlook — Logic, Mathematics, Computation 2-23
2.9 Outlook — Logic and Practice . 2-26
2.10 Outlook — Logic and Cognition . 2-28

3 Syllogistic Reasoning 3-1
3.1 Motivation — Reasoning About Predicates and Classes 3-1
3.2 The Language of Syllogistics . 3-4
3.3 Sets and Operations on Sets . 3-4
3.4 Syllogistic Situations . 3-9

0-3

0-4 CONTENTS

3.5 Validity Checking for Syllogistic Forms 3-11
3.6 A Refutation Method for Syllogistic Validity 3-16
3.7 Outlook — The Complexity of Syllogistic Reasoning 3-19
3.8 Outlook — Knowledge Representation 3-22
3.9 Outlook — The Syllogistic and Actual Reasoning 3-25

4 Talking about the World with Predicate Logic 4-1
4.1 Learning the Language . 4-1
4.2 Monadic Predicate Logic . 4-6
4.3 Binary Predicates and Quantifier Combinations 4-8
4.4 Concrete Semantics: Formulas and Pictures 4-14
4.5 Predicate Logic and Equality . 4-22
4.6 Outlook — Predicate Logic and Natural Language 4-26
4.7 Outlook — Predicate Logic and Philosophy 4-26
4.8 Outlook — Predicate Logic and Cognition 4-26

5 Predicate Logic: Syntax and Semantics 5-1
5.1 Domains of Discourse and Interpreting a Language 5-1
5.2 Syntax of Predicate Logic . 5-4
5.3 Semantics of Predicate Logic . 5-9
5.4 Valid Laws and Valid Consequence . 5-15
5.5 Proof . 5-17
5.6 Outlook — Logical Theories . 5-18
5.7 Outlook — Predicate Logic in Programming 5-21
5.8 Outlook — Decidable Parts of Predicate Logic 5-24

Knowledge, Action, Interaction 6-1

6 Knowledge and Information Flow 6-1
6.1 Motivation — Logic and Information Processing 6-1
6.2 Motivation — Modelling the Uncertainty of Agents 6-2
6.3 Language of Epistemic Logic . 6-7
6.4 Semantics of Epistemic Logic – Possible Worlds Semantics 6-8
6.5 Valid Consequence . 6-11
6.6 Proof . 6-14
6.7 Information Update . 6-15
6.8 Expressive Power . 6-20
6.9 Outlook — Common Knowledge . 6-21
6.10 Outlook — Public Announcement Logic 6-24

CONTENTS 0-5

7 Logic and Action 7-1
7.1 Motivation — Actions in General . 7-1
7.2 Motivation — Composition, Choice, Repetition, Converse 7-4
7.3 Motivation — Operations on Relations 7-5
7.4 Language — Combining Propositional Logic and Actions: PDL 7-7
7.5 Semantics of propositional dynamic logic 7-8
7.6 Axiomatisation . 7-10
7.7 Expressive power — abbreviations defining programming constructs . . . 7-11
7.8 Expressive power — Epistemic PDL . 7-11
7.9 Outlook . 7-14

7.9.1 Programs and Computation . 7-14
7.9.2 Hoare Correctness Reasoning 7-15
7.9.3 Equivalence of programs and bisimulation 7-18

8 Logic, Games and Interaction 8-1
8.1 Motivation — the game of logic, and the logic of games 8-1
8.2 Game of logic — Evaluation games . 8-2
8.3 Game of logic — Bisimulation games 8-4

8.3.1 Logic — Bisimulation . 8-5
8.4 Logical game — Knowledge games . 8-7
8.5 Games — Winning strategies . 8-9
8.6 Games — Zermelo’s theorem and backward induction 8-11
8.7 Games — Equilibrium strategies . 8-16

8.7.1 Preferences in games . 8-16
8.7.2 Strategic equilibrium . 8-18

8.8 Logical game — Equilibria in knowledge games 8-20
8.9 Outlook — The limits of rationality . 8-23

Methods 9-1

9 Validity Testing 9-1
9.1 Tableaus for propositional logic . 9-2

9.1.1 Reduction rules . 9-5
9.2 Tableaus for predicate logic . 9-9

9.2.1 Rules for quantifiers . 9-13
9.2.2 Alternative rules for finding finite counter-models 9-17
9.2.3 Invalid inferences without finite counter-examples 9-19
9.2.4 Tableaus versus natural reasoning 9-20

9.3 Tableaus for epistemic logic . 9-21

0-6 CONTENTS

10 Proofs 10-1
10.1 Natural deduction for propositional logic 10-2

10.1.1 Proof by refutation . 10-5
10.1.2 Introduction and elimination rules 10-7
10.1.3 Rules for conjunction and disjunction 10-9

10.2 Natural deduction for predicate logic . 10-13
10.2.1 Rules for identity . 10-18

10.3 Natural deduction for natural numbers 10-18
10.3.1 The rule of induction . 10-20

10.4 Outlook . 10-23
10.4.1 Completeness and incompleteness 10-23
10.4.2 Natural deduction, tableaus and sequents 10-23
10.4.3 Intuitionistic logic . 10-23
10.4.4 Automated deduction . 10-23

11 Computation 11-1
11.1 A Bit of History . 11-1
11.2 Processing Propositional Formulas . 11-2
11.3 Resolution . 11-7
11.4 Automating Predicate Logic . 11-11
11.5 Conjunctive Normal Form for Predicate Logic 11-14
11.6 Substitutions . 11-16
11.7 Unification . 11-18
11.8 Resolution with Unification . 11-22
11.9 Prolog . 11-24

Outlook 12-1

12 Logic and Reality 12-1

13 Logic and Science 13-1
13.1 Formal Derivations in a Logical Theory 13-1
13.2 Undecidability . 13-3

14 Logic and Philosophy 14-1
14.1 The Meaning of Meaning . 14-1
14.2 Philosophical Distinctions . 14-1
14.3 Knowledge, Justification, Belief . 14-1
14.4 Ontology . 14-2
14.5 Paradoxes . 14-2

CONTENTS 0-7

Implementations 15-1

15 Introduction to Functional Programming 15-1
15.1 Functions and Programs . 15-1
15.2 Using the Book Code . 15-2
15.3 First Experiments . 15-3
15.4 Recursion . 15-6
15.5 List Types and List Comprehension . 15-8
15.6 map and filter . 15-9
15.7 Strings and Texts . 15-11
15.8 Further Reading . 15-15

16 More About Functional Programming 16-1
16.1 Type Polymorphism . 16-1
16.2 Function Composition . 16-2
16.3 Generalized ‘and’ and ‘or’, and Quantification 16-3
16.4 Type Classes . 16-3
16.5 Identifiers in Haskell . 16-5
16.6 User-defined Data Types . 16-6

17 Propositional Logic Implemented 17-1
17.1 A Data Type for Propositional Formulas 17-1
17.2 Evaluation and Propositional Consequence 17-2
17.3 Propositional Logic in Update Form . 17-4

18 Model Checking for Predicate Logic 18-1
18.1 Variables, Predicates, Formulas . 18-1

19 Public Announcement Logic Implemented 19-1
19.1 Agents, Propositions, Epistemic Models 19-1
19.2 S5 Models . 19-3
19.3 Blissful Ignorance . 19-5
19.4 General Knowledge and Common Knowledge 19-7
19.5 Formulas and Evaluation . 19-8
19.6 Generated Submodels . 19-13
19.7 The Muddy Children Example . 19-14

Appendices A-1

A Sets, Relations and Functions A-1
A.1 Sets and Set Notation . A-1
A.2 Relations . A-3
A.3 Back and Forth Between Sets and Pictures A-5

0-8 CONTENTS

A.4 Relational Properties . A-6
A.5 Functions . A-9
A.6 Recursion and Induction . A-11

B Solutions to the Exercises B-1

Chapter 1

What is Logic?

This chapter is a light introduction to the scope and content of this course. It raises many
issues in a light manner, and these will then be developed more formally later on.

1.1 Reasoning in Daily Life
Logic can be seen in action all around us:

In a restaurant, your Father has ordered Fish, your Mother ordered Vegetarian,
and you ordered Meat. Out of the kitchen comes some new person carrying
the three plates. What will happen?

We all know this. The waiter first asks a question, say “Who has the meat?”, and puts that
plate. Then he asks a second question “Who has the fish?”, and puts that plate. And then,
without asking further, he puts the remaining plate. What has happened here?

Starting at the end, when the waiter puts the third glass without asking, you see a
major logical act ‘in broad daylight’: the waiter draws a conclusion. The information
in the two answers received allows the waiter to infer automatically where the third dish
must go. We represent this in an inference schema with some self-explanatory notation:

F or V or M, not M, not F =⇒ V (1.1)

This formal view has many benefits: one schema stands for a wide range of inferences.
The latter often come to the surface especially vividly in puzzles, where we exercise

our logical abilities just for the fun of it. Think of successive stages in the solution of a
3×3 Sudoku puzzle, produced by applying the two basic rules that each of the 9 positions
must have a digit, but no digit occurs twice on a row or column:

(1.2)

1-1

1-2 CHAPTER 1. WHAT IS LOGIC?

Each successive diagram displays a bit more explicit information about the solution,
which is already implicitly determined by the initial placement of the two digits 1, 2.
And the driving mechanism for these steps is exactly our Restaurant inference.

But much more information flows in the Restaurant. Before the final inference, the
waiter first actively sought enough facts by another typical information-producing act,
viz. asking a question. And the answers to his two questions are crucial, too.

The essence of this second process is a form of computation on information states.
During a conversation, information states of people — singly, and in groups — change
over time, triggered by communicative events. The Restaurant scenario starts with an
initial information state consisting of six options, all the ways in which three plates can
be distributed over three people (MFV,MV F, ...). The answer to the first question then
reduces this to two (the remaining orders FV , V F), and the answer to the second question
reduces this to one, zooming in on just the actual situation (for convenience, assume it is
MFV). This may be pictured as a diagram (‘video’) of successive updates:

MFV MVF

FMV FVM

VMF VFM

MFV MVF MFV

6

2
1

second answerfirst answer

(1.3)

But there is still more to the scenario, and the essence of information flow. Questions
are typically ‘social’ actions involving more than one person, and indeed, much of our
daily reasoning has to do with others, just as basic physics is about interaction between
many objects, not just lonely planets. This social aspect of reasoning about, and often also
together with, others is high-lighted by another type of restaurant puzzle, that recently
circulated on the internet. It is a bit contrived, but it contains some interesting points:

Three guests are sitting at a table. The waitress asks: “Does everyone want
coffee”. The first guest says: “I don’t know”. The second guest now says:
“I don’t know”. Then the third guest says: “No, not everyone wants coffee”.
The waitress comes back and gives the right people their coffees. How?

Please try to see for yourself how the waitress solves this. Later on in this course, we will
give you all the skills needed to deal systematically with examples like this.

While few restaurants will have conversations like the above, knowledge about others
is actually quite realistic. When I ask you a normal question, I convey the information
that I do not know the answer, and even, that I think that you may know the answer. Such
repetitions express mutual expectations about what others know, and it is these, philoso-
phers, economists, and psychologists tell us, that keep human interaction in place. It is
our ability to reason in the presence of other reasoning agents that has made us historically
so successful in debate, organization, and way back when: planning a mammoth hunt!

1.2. LOGIC AS THE STUDY OF INFORMATIONAL PRACTICES 1-3

1.2 Logic as the Study of Informational Practices
Putting these observations together, you get the task for logic in this course. We need to
study informational processes of inference and information update — and while we can
start dealing with these for single agents, our theories must also work interactively when
many agents exchange information, say, in a conversation or a debate. As we proceed,
you will see many further aspects of this program, and you will learn about mathematical
models for it, some quite recent, some already very old.

Reasoning as a specialized skill But first we want to remove a possible misunderstand-
ing. While reasoning in daily life and solving practical tasks is important, many logical
phenomena become more pronounced when we look at specialized areas, where our skills
have been honed to a greater degree. Hunters with their basic needs satisfied become sci-
entists.

To see the power of pure inference unleashed, think of mathematical proofs. Already
in Greek Antiquity (and in parallel, in other cultures), logical inference provided a search-
light toward surprising new mathematical facts. In our later chapter on Proof, we will give
examples, including the famous Pythagorean proof that

√
2 is not a rational number.The

Holy Writ of this tradition are Euclid’s Elements from around 300 BC with its formal
set-up of axioms, definitions, and theorems for geometry.

(1.4)

Indeed, mathematical methods have deeply influenced the development of logic. They
did so in two ways. First, mathematical proof is about the purest form of inference that
exists, so it is an excellent ‘laboratory’ for studying inference. But also, mathematics is
about the clearest way that we have for modeling phenomena and studying their proper-
ties, and logical systems of any kind, even when dealing with daily life, use mathematical
techniques.

Combinations of inference with other information sources drive the natural sciences,
where experiments provide information that is just as crucial as mathematical proof. Ob-
servations about Nature made by scientists involves the same sort of information update

1-4 CHAPTER 1. WHAT IS LOGIC?

as in our Restaurant example. Seeing new facts removes uncertainty. And the art is to
find the right mixtures of new evidence and deduction from what we have seen already.

The same skill actually occurs in other specialized practices. Conan Doyle’s famous
detective Sherlock Holmes is constantly thinking about what follows from what he has
seen already, but he also uses his powers of deduction to pinpoint occasions where he
needs new evidence. In a famous story, the dog did not bark at night-time (and so, the
intruder must have been known to the dog), but this conclusion also directs attention
toward making further observations, needed to see which of the various familiar persons
committed the crime.

(1.5)

From crime it is only one step to lawyers and courts. Legal reasoning is another major
tradition where logic is much in evidence, and we will return to this later. Many further
specialized practices are driven by reasoning: think of philosophy, or theology. But you
will have got the point by now.

After this brief introduction, let us briefly go back in history, to see where it all started.
After that, we give a first survey of some basic logical notions.

1.3 The Origins of Logic

Logic as a systematic discipline dates back two and a half millennia: younger than Math-
ematics or the Law, but much older than most current academic disciplines, social institu-
tions, or for that matter, religions. Aristotle and the Stoic philosophers formulated explicit

1.3. THE ORIGINS OF LOGIC 1-5

systems of reasoning in Greek Antiquity around 300 BC.

Aristotle appearing on two Greek postal stamps The early Stoic Zeno of Citium

(1.6)

Independent traditions arose around that time in China and in India, which produced
famous figures like the Buddhist logician Dignaga, or Gangesa, and this long tradition
lives on in some philosophical schools today. Through translations of Aristotle, logic also
reached the Islamic world. The work of the Persian logician Avicenna around 1000 AD
was still taught in madrassa’s by 1900. All these traditions have their special concerns
and features, and there is a growing interest these days in bringing them closer together.
We mention this point because the cross-cultural nature of logic is a social asset beyond
its scientific agenda.

Mo Zi, founder of Mohism Dignaga, Indian Buddhist Logician Avicenna, Persian Logician

(1.7)

Still, with all due respect for this historical past that is slowly coming to light, it seems fair
to say that logic made a truly major leap in the nineteenth century, and the modern logic
that you will see in this course derives its basic mind-set largely from the resulting golden
age of Boole, Frege, Gödel, and others: a bunch of European university professors, some

1-6 CHAPTER 1. WHAT IS LOGIC?

quite colourful, some much less so.

George Boole on the cover of Gottlob Frege with on the right
the ‘Laws of Thought’ (1847), the first page of his ‘Begriffsschrift’ (1879),

the book that created propositional logic, with the system of first-order predicate logic
the theme of the next chapter. that can analyze much of mathematics.

(1.8)

Even so, it remains an intriguing and unsolved historical question just how and why logic
arose — and we will have more to say on this below. The standard story is that great
thinkers like Aristotle suddenly realized that there is structure to the human reasoning
that we see all around us. Some patterns are valid and reliable, while others are not. But it
has also been suggested that an interest in logic arose out of philosophical, mathematical,
juridical, or even political practice. Some ‘moves’ worked, others did not – and people
became curious to see the general reasons why.

1.4 Inference Patterns, Validity, and Invalidity

Of the many informational processes mentioned earlier, we will now concentrate on in-
ference. We will briefly mention other information sources later on in this chapter, and
they will get ample attention as this course proceeds.

For a start, consider the following statement from your doctor:

If you take my medication, you will get better.

But you are not taking my medication.

So, you will not get better.

(1.9)

Here the word ‘so’ (or ‘therefore’, ‘thus’, etc.) suggests the drawing of a conclusion
from two pieces of information: traditionally called the ‘premises’. We call this an act of
inference. Now, as it happens, this particular inference is not compelling. The conclusion
might be false even though the two premises are true. You might get better by taking that
greatest medicine of all (but so hard to swallow for modern people): just wait. Relying

1.4. INFERENCE PATTERNS, VALIDITY, AND INVALIDITY 1-7

on a pattern like this might even be pretty dangerous in some scenarios:

If I resist, the enemy will kill me.

But I am not resisting.

So, the enemy will not kill me.

(1.10)

Now contrast this with another pattern:

If you take my medication, you will get better.

But you are not getting better.

So, you have not taken my medication.

(1.11)

This is valid (listen to your mind — or your heart). There is no way that the two stated
premises can be true while the conclusion is false. It is time for a definition. Broadly
speaking,

we call an inference valid if there is ‘transmission of truth’: in every situation
where all the premises are true, the conclusion is also true.

Stated differently but equivalently, an inference is valid if it has no ‘counter-examples’:
that is, situations where the premises are all true while the conclusion is false. This is a
crucial notion to understand, so we dwell on it a bit longer.

What validity really tells us While this definition makes intuitive sense, it is good to
realize that it may be weaker than it looks a first sight. For instance, a valid inference with
two premises

P1, P2, so C (1.12)

allows many combinations of truth and falsity. If any premise is false, nothing follows
about the conclusion. In particular, in the second doctor example, the rule may hold (the
first premise is true), but you are getting better (false second premise), and you did take
the medication (false conclusion). Of all eight true-false combinations for three sentences,
validity rules out 1 (true-true-false)! The most you can say for sure thanks to the validity
can be stated in one of two ways:

(a) if all premises are true, then the conclusion is true

(b) if the conclusion is false, then at least one premise is false
(1.13)

The first version is how people often think of logic: adding more things that you have
to acccept given what you have accepted already. But there is an equally important use
of logic in refuting assertions, perhaps made by your opponents. You show that some
false consequence follows, and then cast doubt on the original assertion. The second

1-8 CHAPTER 1. WHAT IS LOGIC?

formulation says exactly how this works. Logical inferences also help us see what things
are false — or maybe more satisfyingly, refute someone else. But note the subtlety: a false
concluion does not mean that all premises were false, just that at least one is. Detecting
this bad apple in a basket may still take further effort.

To help you understand both aspects of validity, consider the tree below: representing
a ‘complex argument’ consisting of individual inferences with capital letters for sentences,
premises above the bar, and the conclusion below it. Each inference in the tree is valid:

A C

D

B

A

E

E

F

A

B

G

(1.14)

You are told reliably that sentence A is true and G is false. For which further sentences
that occur in the tree can you now determine their truth and falsity? (The answer is that
A, B, are true, C, D, E , G are false, while we cannot tell whether F is true or false.)

Inference patterns The next step in the birth of logic was the insight that the validity
and invalidity here have to do with abstract patterns, the shapes of the inferences, rather
than their specific content. (It is still being debated whether this insight occurred explicitly
outside of the Greek tradition.) Clearly, the valid second argument would also be valid in
the following concrete form, far removed from doctors and medicine:

If the enemy cuts the dikes, Holland will be inundated.

Holland is not inundated.

So, the enemy has not cut the dikes.

(1.15)

This form has variable parts (we have replaced some sentences by others), but there are
also constant parts, whose meaning must stay the same, if the inference is to be valid. For
instance, if we also replace the negative word ‘not’ by the positive word ‘indeed’, then we
get the clearly invalid inference:

If the enemy cuts the dikes, Holland will be inundated.

Holland is indeed inundated.

So, the enemy has indeed cut the dikes.

(1.16)

For counter-examples: the inundation may be due to faulty water management, rain, etc.

To bring out the relevant shared form of inferences, we need a notation for both fixed
and variable parts. We do this by using variable letters for expressions that can be re-
placed by others in their linguistic category, plus special notation (either words, or later

1.4. INFERENCE PATTERNS, VALIDITY, AND INVALIDITY 1-9

on mostly symbols) for key expressions that determine the inference, often called the
logical constants. In this format, our first invalid inference looks like this:

if P then C, not P, so: not C (1.17)

And its valid cousin looked like this:

if P then C, not C, so: not P (1.18)

The virtues of abstract notation are clear. We see the essence that drives the inference.
We can see relations between different reasoning patterns. And also, each abstract pattern
finitely encodes infinitely many instances that arise by substituting concrete sentences for
P and C, so we can see analogies between many different situations.

Logical form and abstraction stages In our definition of validity, we talked about ‘dif-
ferent situations’ in which the given sentences might be true or false. One way of thinking
about this comes from the great Czech logician, mathematician and philosopher of reli-
gion Bernard Bolzano (Wissenschaftslehre, 1837),

(1.19)

who looked at the ‘situations’ as all possible instances that arise by substituting concrete
expressions for variable parts. Or in the opposite direction, we can see logical form as
arising through a process of successive abstraction: the more parts of an inference we
make ‘variable’, the harder it is to remain valid. At final stages, we have a maximally
general skeleton of logical key-words like ‘not’, ‘if then’ (you will see many others later
in this course), plus variable parts (indicated by the letters).

This concrete process of successive abstraction can also work for other expressions.
Here is an example to loosen up your ideas about the logical structure in the natural
language that we all use. Consider the following ubiquitous inference: what makes it
tick?

John is taller than Paul, Paul is taller than Mary. So, John is taller than Mary. (1.20)

1-10 CHAPTER 1. WHAT IS LOGIC?

If we fix the meaning of all these expressions, the only different ‘situations’ are varying
contexts of people with these names. In all of these, truth of the premises implies that of
the conclusion. This suggests a first abstraction step, replacing people by variables:

a is taller than b, b is taller than c. So, a is taller than c. (1.21)

But thinking about it, we can abstract out even more, and still have a valid inference:

a is P -er than b, b is P -er than c. So, a is P -er than c. (1.22)

This is still valid for any adjective P , by the meaning of the comparative ‘-er than’. Nat-
ural language is full of function words that can play a role in reasoning: comparatives,
prepositions, and so on. If you doubt this, just use Google to find a frequency list for
English expressions. You will see how logical expressions and function words are high
up on the list.

Actually, many logicians like to say that this last comparative inference is invalid —
but what they mean then is something different. Replace the whole predicate ‘is taller
than’ in one step by a variable predicate Q:

aQb, bQc. So , aQc. (1.23)
This still more general form is indeed no longer valid. For a counter-example, fill in for
Q ‘is the mother of’.

1.5 Uses of Inference
We have already seen how logical patterns direct our actions in daily life. The TV has
gone dark. If it goes dark, this is due to the apparatus or the remote (or both). But the
remote is working, so it must be the apparatus, and we must start repairs there. This
pattern involves another logical key-word, the inclusive disjunction ‘or’:

A or R, not R. So: A. (1.24)

In pure form, we saw this at work in the earlier scenario of solving Sudoku puzzles. It
is an interesting fact that people seem to enjoy exercising their logical abilities per sé. In
fact, Holland has a great popular magazine with logic puzzles of many sorts:

(1.25)

1.5. USES OF INFERENCE 1-11

Logic also helps create new Sudoku puzzles. Start with any complete nine-digit diagram.
Then remove any digit that follows from others by a valid inference. Keep doing this until
no longer possible. You have now generated a minimal puzzle, and since your steps are
hidden, it may take readers quite a while to figure out the unique solution.

Back to practical abilities, cognitive scientists have suggested that the primary use of
logic may have been in planning. Clearly, thinking about constraints and consequences of
tasks beforehand is an immense evolutionary advantage. Here is a simple illustration.

Planning a party How can we send invitations given the following constraints?

(i) John comes if Mary or Ann comes.

(ii) Ann comes if Mary does not come.

(iii) If Ann comes, John does not.

(1.26)

In the next chapter, you will learn simple techniques for solving this: for now, just try!

Legal reasoning We also said that daily skills can be optimized for special purposes.
As we said already, inference is crucial to legal reasoning, and so is the earlier-mentioned
multi-agent feature that different actors are involved: defendant, lawyer, prosecutor, judge.
In this richer courtroom setting, both of the above-noted technical aspects of validity play
together.

The prosecutor has to prove that the defendant is guilty (G) on the basis of the avail-
able admissible evidence (E), i.e., she has to prove the implication ‘if E then G’. But
the usual ‘presumption of innocence’ means that the lawyer has another logical task: viz.
making it plausible that G does not follow from E. This does not require her to demon-
strate that her client is innocent: she just needs to paint one scenario consistent with the
evidence E where G fails, whether it is the actual one or not.

Other logical key-words: quantifiers There are many more logical key-words driving
patterns of inference than the ones we have seen so far. Expressions like ‘not’, ‘and’,
‘or’, ‘if then’ are sentence forming constructions that classify situations as a whole. But
other expressions tell us more about the internal structure of these situations, in terms of
objects and their properties and relations. Historically, the most important example are
quantifiers, expressions of quantity such as ‘all’, ‘some’ or ‘no’.

Aristotle’s syllogisms listed the basic inference patterns with quantifiers, such as

All humans are animals, no animals are mortal. So, no humans are mortal. (1.27)

This is a valid inference. But the following is not valid:

Not all humans are animals, no animals are mortal. So, some humans are mortal.
(1.28)

1-12 CHAPTER 1. WHAT IS LOGIC?

Syllogistic forms were long considered the essence of logical reasoning, and their format
has been very influential until the 19th century. Today, they are still popular test cases for
psychological experiments about human reasoning.

Quantifiers are essential to understanding both ordinary and scientific discourse. If
you unpack standard mathematical assertions, you will find any amount of stacked quan-
tifiers. For instance, think of saying that 7 is a prime number. This involves:

All of 7’s divisors are either equal to 1 or to 7, (1.29)
where x divides y if for some z: x · z = y.

Other examples with many quantifiers occur in Euclid’s geometry and spatial reasoning
in general.

We will devote even two chapters to the logic of the quantifiers ‘all’, ‘some’, given its
central importance. Actually, natural language has many further quantifier expressions,
such as ‘three’, ‘most’, ‘few’, ‘almost all’, or ‘enough’. This broad repertoire raises
many issues of its own about the expressive and communicative function of logic, but we
sidestep these here.

Many further logical key-words will emerge further on in this course, including ex-
pressions for reasoning about knowledge and action.

Aside: using logic to understand logic We have to start somewhere. The very defini-
tion of validity that we gave in the above involved quantifiers over situations, and indeed,
some valid reasoning about the quantifiers ‘all’, ‘some’ as well as propositional operators
was involved in our subsequent discussion. We leave a discussion of this circularity (is
it?) to you.

1.6 Richer Informational Practices
We are ready to leave our first exploration of inference. But it may be of interest to point
out that the syllogism is just one format. E.g., one recurrent ‘syllogism’ in the Indian
logic tradition runs as follows (simplified a bit):

I am standing at the foot of the mountain, and cannot inspect directly what is
going on there. But I can make observations in my current situation. A useful
inference might then work as follows: “I see smoke right here. Seeing smoke
here indicates fire on the mountain. So, there is fire on the mountain top.”

Compare this with the Aristotelean syllogism, which is about one fixed situation. But
here, logical inference typically crosses between situations. Given suitable informa-
tion channels between situations, observations about one give information about another.
Likewise, Chinese examples often involved transfer by analogy from one situation to an-
other. Similar themes have only made Western mainstream logic in recent decades.

1.7. LOGICAL SYSTEMS AND THE FOUNDATIONS OF MATHEMATICS 1-13

Connected with this, on the Indian view, inference is sometimes a sort of last resort,
when other informational processes have failed. If I can see for myself what is happening
in the relevant situation, that suffices. If I can ask some reliable person who knows, then
that suffices as well. But if no direct or indirect observation is possible, we must resort to
inference.

Again, we see the logical entanglement of different informational processes. Inference
is important, but so is observation, and communication. Later on in this course, we will
turn to the study of this wider set of issues, with the techniques that were first developed
in the study of inference plus some further ideas from the study of computation.

For now, we just note another historical analogy. Interestingly, similar ideas occur in
ancient Chinese logic. In particular, the Mohists had this wonderfully compact statement,
that summarizes the perspective of this course:

(1.30)

or in English: “Knowledge arises through: questions, demonstration, and experience.”

1.7 Logical Systems and the Foundations of Mathematics

Next, let us look at another crucial feature of logic, that makes it a true scientific endeavour
in a systematic sense. To many people taking a logic course, there is a startling case of
‘self-reflection’: turning human reasoning to itself as a subject of investigation. But things
go even one step further. Logicians study reasoning practices by developing mathematical
models for them – but then, they also make these systems themselves into a new object of
investigation.

Logical systems Indeed, Aristotle already formulated explicit logical systems of infer-
ence in his Syllogistics, giving all valid rules for syllogistic quantifier patterns. Interest-
ingly, Aristotle also started the study of grammar, language looking at language — and
earlier than him, the famous Sanskrit grammarian Panini had used mathematical systems
there, creating a system that is still highly sophisticated by modern standards:

(1.31)

1-14 CHAPTER 1. WHAT IS LOGIC?

This mathematical system building tradition has flourished over time, largely (but not
exclusively) in the West. In the nineteenth century, George Boole gave a complete analysis
of propositional logic for reasoning with sentential operators like ‘not’, ‘and’, ‘or’, that
has become famous as the ‘Boolean algebra’ that underlies the switching circuits of your
computer. Here is what such a system looks like, with variables for propositions that can
be true (1) or false (0), and operations − for ‘not’, · for ‘and’, and + for ‘or’ in the sense
of binary arithmetic (at this stage, don’t even try to read all this in detail! We will discuss
a few nice principles from this list in class, with their intuitive meaning):

x+ (y + z) = (x+ y) + z x · (y · z) = (x · y) · z
x+ y = y + x x · y = y · x
x+ x = x x · x = x

x+ (y · z) = (x+ y) · (x+ z) x · (y + z) = (x · y) + (x · z)

x+ (x · y) = x x · (x+ y) = x

−(x+ y) = −x · −y −(x · y) = −x+−y
x+ 0 = x x · 0 = 0

x+ 1 = 1 x · 1 = x

x+−x = 1 x · −x = 0

−− x = x

(1.32)

All valid principles of propositional reasoning can be derived from this calculus, by purely
algebraic manipulations. We will explain such properties later on in this course.

Subsequently, Frege gave formal systems for reasoning with quantifiers in ways that
go far beyond Aristotle’s Syllogistic. Over time, systems in this line have proved strong
enough to formalize most of mathematics, including its foundational set theory.

Foundations of mathematics Through this process of scrutiny, mathematical and logi-
cal theories themselves become objects of investigation. And then, some startling discov-
eries were made. For instance, here is the so-called Russell Paradox from the foundations
of set theory.

Some sets contain themselves as a member (e.g., the set of all non-teaspoons).
Others do not (for instance, the set of all teaspoons is not itself a teaspoon.)
Now consider the set R = {x | x 6∈ x} of all sets that do not have themselves
as members. It is easy to see that R ∈ R if and only if R 6∈ R: and that is a
contradiction.

Behind this reasoning lies a law of quantifier reasoning that we just write for you here:

¬∃x ∀y(Rxy ↔ ¬Ryy) (1.33)

1.8. LOGIC AND OTHER DISCIPLINES 1-15

This sort of quantifier reasoning will be taken up again in several later chapters.
This systems strand in the development of logic led to the so-called foundations of

mathematics, which investigates formal properties of mathematical theories, and power
and limits of proofs. A famous name here is Kurt Gödel, probably the greatest figure in
the history of logic. His incompleteness theorems are fundamental insights into the scope
and reliability of mathematics, that got him on the TIME 2001 list of most influential
intellectuals of the twentieth century. But in Amsterdam, we also cite our own L.E.J.
Brouwer, the father of ‘intuitionistic logic’, an important program in the foundations of
mathematics and computation. These mathematical theoretical aspects of logic belong
more properly to an advanced course, but we will give you some feeling for this theme
further on in this book.

Kurt Gödel Brouwer on a Dutch post stamp

(1.34)

1.8 Logic and Other Disciplines
Looking at the list of topics discussed above, you have seen switches from language and
conversation to mathematics and computation. Indeed, in a modern university, logic lies
at a cross-roads of many academic disciplines. This course will make you acqainted with
a number of important important systems for doing logic, but it will also draw many
connections between logic and related disciplines. We have already given you a taste of
what logic has to do with mathematics. Mathematics supplies logic with its techniques,
but conversely, logic can also be used to analyze the foundations of mathematics. Now
we look at a few more important alliances.

Logic, language and philosophy Perhaps the oldest connection of logic is with phi-
losophy. Logic has to do with the nature of assertions, meaning, and knowledge, and
philosophers have been interested in these topics from the birth of philosophy. Logic can
serve as a tool for analyzing philosophical arguments, but it is also used to create philo-
sophical systems. Logical forms and calculating with these is a role model for conceptual
abstraction. It has even been claimed that logical patterns of the sort sketched here are
close to being a ‘universal language of thought’.

1-16 CHAPTER 1. WHAT IS LOGIC?

But it will also be clear that logic has much to do with linguistics, since logical patterns
arise from abstraction out of the grammar of ordinary language, and indeed, logic and
linguistics share a long history from Antiquity through the Middle Ages.

Logic and computation Another long-standing historical theme interleaves logic and
computation. Since the Middle Ages, people have been fascinated by machines that would
automate reasoning, and around 1700, Leibniz

Gottfried Wilhelm von Leibniz The first binary addition mechanism as
described by Leibniz in a paper called
‘Mechanica Dyadica’ (around 1700)

(1.35)

realized that logical inference may be viewed as a sort of computation, though not with
ordinary but with binary numbers. A straight line runs from here to modern computers
and computer science, and the seminal work of Turing and others. This is explained really
nicely in the book Denkende Machines (Amsterdam University Press):

A
m

ste
rd

a
m

 U
n

ive
rsity

 P
re

ss

Denkende machines
Computers, rekenen,
redeneren

Jan van Eijck, Jan Jaspers,
Jan Ketting, Marc Pauly

Exact
in

context
O

E

Thinking Machines Alan Turing A so-called Turing machine
which sorts any sequence of a’s and b’s

in alphabetic order.

(1.36)

Logic and games While mathematics, philosophy, linguistics, and computer science
are old neighbours of logic, new interfaces keep emerging. We end with one directed
toward the social and behavioural sciences. As we have said before, logic had its origins
in a tradition of conversation, debate, and perhaps legal procedure. This brings us back
to our earlier theme that much logical behaviour is interactive, crucially involving other
persons.

1.9. LOGIC AND THE FACTS 1-17

Argumentation itself is a key example. There are different parties playing different
roles, and reacting to each other over time. This clearly has the structure of a game. In
such a game logical operations like ‘or’, ‘and’ and ‘not’ function as a sort of ‘switches’,
not just in a Boolean computer, but also in discussion. When I defend that ‘A or B’, then
you can hold me to this, and I have to choose eventually which of the two I will defend.
Thus, a disjunction offers a choice to its defender — and likewise, a conjunction ‘A and
B’ offers a choice to the attacker: since the defender is committed to both parts. Interest-
ing interactions also arise by means of the third item of Boolean algebra: logical negation.
This triggers a role switch: defending ‘not A’ is attacking ‘A’, and vice versa. Indeed,
being able to ‘put yourself in another person’s place’ has been called the quintessential
human cognitive achievement.

In this way, logic comes to describe the structure of rational interaction between con-
versation partners. Traditions of vigorous regimented logical debating games flourished
in the Middle Ages, and they still do in some parts of the world:

Karma Guncho, ten monasteries battle each other
on Buddhist philosophy using logical analysis.

(1.37)

In this game setting, we may call an inference valid if the defender of the conclusion
has a ‘winning strategy’: that is, a rule for playing which will always lead her to win the
game against any defender of the premises, whatever that person brings up over time.

But if logic has much to do with games, then it also has links with economic game
theory, and not surprisingly, this is another flourishing interface today. We will develop
this topic in greater depth in a separate chapter, but now you know why.

1.9 Logic and the Facts
These are all topics for academic theory. But what about the facts? Logic has traditionally
been considered a normative subject that sets ideal standards. We describe when infer-
ences are valid or not. And more generally, we describe what information flows in prin-
ciple through inference, observation, questions, and other informational acts. But there
is also the issue of what people actually do in practice. This is the domain of cognitive
psychology, and cognitive science in general, now that we can also look inside people’s
brains as they engage in informational activities. There are many interesting prima fa-
cie discrepancies here that have been much studied. In later chapters, we will discuss a

1-18 CHAPTER 1. WHAT IS LOGIC?

few famous psychological experiments, so that you can make up your own mind on the
distance between logical theory and human practice

We will address a number of these comparisons throughout this course. the moment,
we just note that, after years of distance, logicians and (neuro-)psychologists are finding
common ground these days, because systematic differences between logical theory and
human practice are often interesting challenges that call for explanation.

Nowadays, a growing number of logicians has become interested in the boder-line
between theory and practice: just like professional ethicists may be interested in the fas-
cinating twilight area of temptation and sin. Some recent textbooks even integrate logical
theory with an explanation why it is sometimes so easy to sin against logical theory —
and how this can be remedied:

From the back cover: “Logic Made Easy
is indeed one of those rare books that will

actually make you a more logical human being.”

(1.38)

And what about practice? Forget basic theory, forget interdisciplinary connections in-
side Academia. Can logic also help us become better, more effective reasoners and prob-
lem solvers in the world outside? From Antiquity onward, there has been the accompa-
nying topic of rhetoric, including rules for successful presentation and debate. In modern
times, there has been the emergence of argumentation theory, with an array of methods
for analyzing arguments, based on informal schemes of argumentation, and matching pro-
cedures. We will pay some attention to practical skills in the course, and at the end, we
will also include some links with argumentation theory and ‘informal logic’. But to our
mind, the frequent opposition of formal and informal logic is fruitless: the two naturally
fit together. And while we are at it, let us dispose quickly of a popular misconception
about logic, namely, that its ‘formality’ is an obstacle to true live substance and creativ-
ity. To the contrary, formal methods are an invaluable way of enhancing creativity, in the
tension between content and form, just as in the arts.

1.10. OUR VIEW OF LOGIC 1-19

1.10 Our View of Logic
This course presents logic as a theory of key informational tasks performed by cognitive
actors that reason, learn, act, and interact with others in an intelligent manner. This agenda
may seem broad. But the unity of logic will show in the recurrence of the same methods
across our chapters. By the end, you will hopefully have developed a sense of what it
means to look at information flow ‘from a logical point of view’.

All this puts logic at interfaces with many other disciplines, as we have seen, from
the humanities to mathematics, informatics, and the social sciences. We will pursue some
of these interfaces in this course, while also keeping this broader picture alive through a
number of extra dimensions in our text, including history, empirical aspects, and uses in
practice.

Finally, you will excuse us for occasional ad-hoc excursions in this course. We end
with one here. Recall our intercultural theme: ‘Is logic universal’? Deep differences in
styles of thinking have been claimed in the recent literature between Western and Asian
cultures.

(1.39)

But it is easy to overstate differences. For instance, when people read contradictions
in Indian texts, they thought that these authors claimed that contradictions could be true,
about the polar opposite of views in the West. But as Frits Staal convincingly showed in a
famous study of Indian mysticism, reciting contradictions was a sort of procedural mantra
to switch off rational thinking, precisely because they make no rational sense.

That contradictions may still hurt in unusual circumstances is shown by an experiment
that the Dutch logician Henk Barendregt used to perform in lecture halls:

Hypnotize a volunteer. Now tell him that there is a transparant screen between
you and him, that can be manipulated as follows. If you raise your hand, the
screen becomes opaque, while dropping the hand makes it transparant again.
Now raise your hand. Then drop it a bit later. The volunteer then gets uneasy
in his trance, since he ‘feels’ a real contradiction: he has seen you drop your
hand, so the screen is transparant again, but equally well, he cannot have seen
you drop your hand, as the screen was opaque.

1-20 CHAPTER 1. WHAT IS LOGIC?

1.11 Overview of the Course
You have now had a grand opening with many logical themes. The reality of this course
is that you need to learn basic technique, just as one cannot become a great musician
without basic practice.

This course starts with introductions to three important systems of reasoning: propo-
sitional logic (Chapter 2), syllogistics (Chapter 3), and predicate logic (Chapters 4 and 5).
Together, these describe situations consisting of objects with a great variety of structure,
and in doing so, they cover many basic patterns that are used from natural language to the
depths of mathematics.

Next, we move on to the newer challenges in our general agenda of information flow.
The first is agents’ having information and interacting through questions, answers, and
other forms of communication. This social aspect is crucial if you think about how we
use language, or how we behave in scientific investigation. We will model observation
and reasoning in a multi-agent setting, introducing the logic of knowledge in Chapter 6.
To model the dynamic aspect of all this, we turn to the basic logic of action in Chapter 7.

The next group of chapters then develop three logical methods more in detail. Chapter
9 is about precise ways of testing logical validity, that give you a sense of how a significant
logical calculus really works. Chapter 10 goes into mathematical proof and its structures.
Chapter 11 gives more details on the many relations between logic and computation. And
Chapter 8 takes up a more recent theme generalizing proof and computation, the use of
games as a model of interaction.

Finally, Chapters 12 and ?? are gateways to further topics and literature on the two
main faces of logic in this course: its connections to practice, and its role as a fundamental
theory of information.

In all of these chapters you will find links to topics in philosophy, mathematics, lin-
guistics, cognition and computation, and you will discover that logic is a natural ‘match-
maker’ between these disciplines.

Classical Systems

1-21

Chapter 2

Propositional Logic

Overview The most basic logical inferences are about combinations of sentences that
describe situations, and what properties these situations have or lack. You could call
this reasoning about ‘classification’, and it is the basis of all reasoning abilities. In this
chapter you will be introduced to propositional logic, the logical system behind the rea-
soning with ‘not’, ‘and’, ‘or’, ‘if, then’ and other basic sentence-combining operators.
You will get acquainted with the notions of formula, logical connective, truth, valid con-
sequence, information update, formal proof, and expressive power, while we also present
some backgrounds in computation and cognition.

2.1 Motivation — Classification, Consequence and Up-
date

Classification The main ideas of propositional logic go back to Antiquity, but its mod-
ern version starts in the nineteenth century, with the work of the British mathematician
George Boole (1815–1864). Many of our earlier examples were about combinations of
propositions (assertions expressed by whole sentences), indicated by letters p, q, etcetera.
A finite number of such propositions generates a finite set of possibilities, depending on
which are true and which are false. For instance, with just p, q there are four true/false
combinations, that we can write as

pq, pq, pq, pq (2.1)

where p represents that p is true and p that p is false. Thus, we are interested in a basic
logic of this sort of classification. (Note that p is not meant as a logical proposition here,
so that it is different from the negation not-p that occurs in inferences that we will use
below. The distinction will only become clear later.)

Drawing consequences Now consider some earlier valid and invalid arguments that
were introduced in Chapter 1. For instance,

2-1

2-2 CHAPTER 2. PROPOSITIONAL LOGIC

(a) the argument “from if-p-then-q and not-p to not-q” was invalid,

whereas

(b) the argument “from if-p-then-q, not-q to not-p” was valid.

Our earlier explanation of validity for a logical consequence in Chapter 1 can now be
sharpened up. In this setting, it essentially says the following:

each of the above four combinations that makes the premises true must also
make the conclusion true.

You can check whether this holds by considering all cases in the relevant list that satisfy
the premises. For instance, in the first case mentioned above,

(a) not-p is true at pq and pq. if-p-then-q holds also in these two situations,
since the condition p is not true. So, the first of the two situations, pq, sup-
port the two premises but the conclusion not-q is false in this situation. The
argument is therefore invalid!

For the second case we get

(b) not-q is true at pq and pq. if-p-then-q only holds in the second, so pq is
the only situation in which all the premises hold. In this situation not-p also
holds, and therefore, the argument is valid.

Updating information Propositional logic describes valid (and invalid) inference pat-
terns, but it also has other important uses. In particular, it describes the information flow
in earlier examples, that may arise from observation, or just being told facts.

With the set of all combinations present, we have no information about the actual
situation. But we may get additional information, ruling out options. To see how, consider
a simplified version of the earlier party scenario, with just two possible invitees Mary and
John. We write p and q, respectively, for “Mary comes to the party” and “John comes to
the party”. Suppose that we were first told that at least one of the invitees comes to the
party: p-or-q. Out of four possible situations this new information rules out just one, viz.
pq. Next, the we learn not-p. This rules out two more options, and we are left with only
the actual situation pq. Here is a ‘video-clip’ of the successive information states, that get
‘updated’ by new information:

MFV MVF

FMV FVM

VMF VFM

MFV MVF MFV

6

2
1

second answerfirst answer

pq

pq

pq

pq

pq pq

pq

pq

p or q

pq

q
pq

not p
(2.2)

2.2. NOTATION AND THE LANGUAGE OF PROPOSITIONAL LOGIC 2-3

Incidentally, you can now also see why the conclusion q is a valid inference. Adding the
information that q does not change the final information state, nothing is ruled out:

MFV MVF

FMV FVM

VMF VFM

MFV MVF MFV

6

2
1

second answerfirst answer

pq

pq

pq

pq

pq pq

pq

pq

p!q ¬p

pq

q
pq (2.3)

Exercise 2.1 Consider the case where there are three facts that you are interested in. You wake
up, you open your eyes, and you ask yourself three things: “Have I overslept?”, “Is it raining?”,
“Are there traffic jams on the road to work?”. To find out about the first question, you have to
check your alarm clock, to find out about the second you have to look out of the window, and to
find out about the third you have to listen to the traffic info on the radio. We can represent these
possible facts with three basic propositions, p, q and r, with p expressing “I have overslept”, q
expressing “It is raining”, and r expressing “There are traffic jams.” Suppose you know nothing
yet about the truth of your three facts. What is the space of possibilities?

Exercise 2.2 (Continued from previous exercise.) Now you check your alarm clock, and find out
that you have not overslept. What happens to your space of possibilities?

Toward a system Once we have a system in place for these tasks, we can do many
further things. For instance, instead of asking whether a given inference is valid, we can
also just look at given premises, and ask what would be a most informative conclusion.
Here is a case that you can think about (it is used as a basic inference step to program
computers that perform reasoning automatically):

Exercise 2.3 You are given the information that p-or-q and (not-p)-or-r. What is the strongest
valid conclusion you can draw?

A precise system for the above tasks can also be automated, and indeed, propositional
logic is historically important also for its links with computation and computers. Comput-
ers become essential with complex reasoning tasks, that require many steps of inference
or update of the above simple kinds, and logical systems are close to automated deduction.
But as we shall see later in an outlook section, there is even a sense in which propositional
logic is the language of computation, and it is tied up with deep open problems about the
nature of computational complexity.

But the start of our story is not in computation, but in natural language. We will
identify the basic expressions that we need, and then sharpen them up in a precise notation.

2.2 Notation and the Language of Propositional Logic
Reasoning about situations involves complex sentences with the ‘logical connectives’ of
natural language, such as ‘not’, ‘and’, ‘or’ and ‘if .. then’. These are not the only ex-
pressions that drive logical reasoning, but they do form the most basic level. We could

2-4 CHAPTER 2. PROPOSITIONAL LOGIC

stay close to natural language itself to define our system (traditional logicians often did),
but it has become clear over time that working with well-chosen notation makes things
much clearer, and easier to manipulate. So, just like mathematicians, logicians use formal
notations to improve understanding and facilitate computation, and this symbolic practice
goes back to Greek Antiquity.

From natural language to logical notation As we have seen in Chapter 1, logical
forms lie behind the valid inferences that we see around us in natural language. So we
need a good notation to make them come out. For a start, we will use special symbols for
the key logical operator words:

Symbol In natural language Technical name

¬ not negation

∧ and conjunction

∨ or disjunction

→ if ... then implication

↔ if and only if equivalence

(2.4)

Other notations occur in the literature, too: e.g., & for ∧, and ≡ for↔. We write small
letters for basic propositions p, q, etcetera. For arbitrary propositions, which may contain
connectives as given in the table (2.4), we write small Greek letters ϕ, ψ, χ etc.

Inclusive and exclusive disjunction The symbol ∨ is for inclusive disjunction, as in
‘in order to pass the exam question 3 or question 4 must have been answered correctly’.
Clearly, you don’t want to be penalized if both are correct! This is different from the
exclusive disjunction (most often written as ⊕), as in ‘you can go to the movies or to the
swimming pool’. It seems very hard to do both at the same time. When we use the word
‘disjunction’ without further addition we mean the inclusive disjunction.

Now we can write logical forms for given assertions, as ‘formulas’ with these symbols.
Consider a card layer describing the hand of her opponent:

Sentence “He has an Ace if he does not have a Knight or a Spade”

Logical formula ¬(k ∨ s)→ a

It is useful to see this process of formalization as something that is performed in separate
steps, for example, as follows. In cases where you are in doubt about the formalization
of a phrase in natural language, you can always decide to ‘slow down’ to such a stepwise
analysis, to find out where the crucial formalization decision is made.

2.2. NOTATION AND THE LANGUAGE OF PROPOSITIONAL LOGIC 2-5

He has an Ace if he does not have a Knight or a Spade,
if (he does not have a Knight or a Spade), then (he has an Ace),
(he does not have a Knight or a Spade)→ (he has an Ace),
not (he has a Knight or a Spade)→ (he has an Ace),
¬ (he has a Knight or a Spade)→ (he has an Ace),
¬ ((he has a Knight) or (he has a Spade))→ (he has an Ace),
¬ ((he has a Knight) ∨ (he has a Spade))→ (he has an Ace),
¬(k ∨ s)→ a

In practice, one often also sees mixed notations where parts of sentences are kept in-
tact, with just logical keywords in formal notation. This is like mathematical expressions
that mix symbols with natural language. While this can be very useful (the notation en-
riches the natural language, and may then be easier to absorb in cognitive practice), you
will learn more here by looking at the extreme case where the whole sentence is replaced
by a logical form.

Ambiguity The above process taking natural language to logical forms is not a routine
matter. There can be quite some slack, with genuine issues of interpretation. In partic-
ular, natural language sentences can be ambiguous, having different interpretations. For
instance, another possible logical form for the card player’s assertion is the formula

(¬k ∨ s)→ a (2.5)

Check for yourself that this says something different from the above. One virtue of logical
notation is that we see such differences at a glance: in this case, by the placement of the
brackets, auxiliary devices that do not occur as such in natural language (though it has
been claimed that some actual forms of expression do have ‘bracketing functions’).

Sometimes, the logical form of what is stated is even controversial. According to some
people, ‘You will get a slap (s), unless you stop whining (¬w)’ expresses the implication
w → s. According to others, it expresses the equivalence w ↔ s. Especially, negations
in natural language may quickly get hard to grasp. Here is a famous test question in a
psychological experiment that many people have difficulty with. What does the stacking
of (how many are there?) negations mean in the sentence

“Nothing is too trivial to be ignored?”

Formal language and syntactic trees Logicians think of the preceding notations, not
just as a device that can be inserted to make natural language more precise, but as some-
thing on its own, namely, an artificial or formal language.

You can think of formulas in such a language as being constructed, starting from basic
propositions, often indicated by letters p, q, etcetera, and then applying logical operations,
with brackets added to secure unambiguous readability.

Example 2.4 The formula ((¬p ∨ q) → r) is created stepwise from proposition letters
p, q, r by applying the following construction rules successively:

2-6 CHAPTER 2. PROPOSITIONAL LOGIC

(a) from p, create ¬p,

(b) from ¬p and q, create (¬p ∨ q)
(c) from (¬p ∨ q) and r, create ((¬p ∨ q)→ r)

This construction may be visualized in trees that are completely unambiguous. Here
are trees for the preceding example plus a variant that we already discussed above. Math-
ematically, bracket notation and tree notation are equivalent — but their cognitive appeal
differs, and trees are widely popular in mathematics, linguistics, and elsewhere:

((¬p ∨ q)→ r

(¬p ∨ q)

¬p

p

q

r

(¬(p ∨ q)→ r)

¬(p ∨ q)

(p ∨ q)

p q

r

This example has prepared us for the formal presentation of the language of proposi-
tional logic. There are two ways to go about this, they amount to the same: an inductive
definition. (See the appendix on sets.) This is one way:

Every proposition letter (p, q, r, ...) is a formula. If ϕ is a formula, then ¬ϕ
is also a formula. If ϕ1 and ϕ2 are formulas, then (ϕ1 ∧ ϕ2), (ϕ1 ∨ ϕ2),
(ϕ1 → ϕ2) and (ϕ1 ↔ ϕ2) are also formulas. Nothing else is a formula.

We can now clearly recognize that the way we have constructed the formula in the exam-
ple above is exactly according to this pattern. That is merely a particular instance of the
above definition. The definition is formulated in more abstract terms, using the formula
variables ϕ1 and ϕ2. An even more abstract specification, but one that amounts to exactly
the same inductive definition, is the so-called BNF specification of the language of propo-
sitional logic. BNF stands for ‘Backus Naur Form’, after the two computer scientists John
Backus and Peter Naur.

Definition 2.5 (Language of propositional logic) Let P be a set of proposition letters
and let p ∈ P .

ϕ ::= p | ¬ϕ | (ϕ ∧ ϕ) | (ϕ ∨ ϕ) | (ϕ→ ϕ) | (ϕ↔ ϕ)

We should read such a definition as follows. In the definition we define objects of the type
‘formula in propositional logic’, in short: formulas. The definition starts by stating that
every atomic proposition is of that type, i.e., is a formula. Then it says that if an object

2.2. NOTATION AND THE LANGUAGE OF PROPOSITIONAL LOGIC 2-7

is of type ϕ, then ¬ϕ is also of type ϕ. Note that it does not say that ¬ϕ is the same
formula ϕ! It merely says that both can be called ‘formula’. This definition then helps us
to construct concrete formulas step by step, as in the previous example.

Backus Naur form is an example of linguistic specification. (In fact, BNF is a com-
puter science re-invention of a way to specify languages that was proposed in 1956 by the
linguist Noam Chomsky.)

In practice we often do not write the parentheses, and we only keep them if their
removal would make the expression ambiguous, as in p∨q∧r. This can mean ((p∨q)∧r)
but also (p ∨ (q ∧ r)) and that makes quite a difference. The latter is already true if only
p is true, but the former requires r to be true.

Exercise 2.6 Write in propositional logic:

• I will only go to school if I get a cookie now.

• John and Mary are running.

• A foreign national is entitled to social security if he has legal employment or if he has had
such less than three years ago, unless he is currently also employed abroad.

Exercise 2.7 Which of the following are formulas in propositional logic:

• p→ ¬q

• ¬¬ ∧ q ∨ p

• p¬q

Exercise 2.8 Construct trees for the following formulas:

• (p ∧ q)→ ¬q

• q ∧ r ∧ s ∧ t (draw all possible trees).

From the fact that several trees are possible for q ∧ r ∧ s ∧ t, we see that this expression can be
read in more than one way. Is this ambiguity harmful or not? Why (not)?

A crucial notion: pure syntax Formulas and trees are pure symbolic forms, living
at the level of syntax, as yet without concrete meaning. Historically, identifying this
separate level of form has been a major abstraction step, that only became fully clear in
19th century mathematics. Most uses of natural language sentences and actual reasoning
come with meanings attached, unless very late at parties. Pure syntax has become the
basis for many connections between logic, mathematics, and computer science, where
symbolic processes play an important role.

2-8 CHAPTER 2. PROPOSITIONAL LOGIC

Logic, language, computation, and thought The above pictures may remind you of
parse trees in grammars for natural languages. Indeed, translations between logical forms
and linguistic forms are a key topic at the interface of logic and linguistics, which has also
started working extensively with mathematical forms in the 20th century. Connections be-
tween logical languages and natural language have become important in Computational
Linguistics and Artificial Intelligence, for instance when interfacing humans with com-
puters and symbolic computer languages. In fact, you can view our syntax trees in two
ways, corresponding to two major tasks in these areas. ‘Top down’ they analyze complex
expressions into progressively simpler ones: a process of parsing given sentences. But
‘bottom up’ they construct new sentences, a task called language generation.

But also philosophically, the relation between natural and artificial languages has been
long under debate. The more abstract level of logical form has been considered more
‘universal’ as a sort of ‘language of thought’. You can even cast the relation as a case
of replacement of messy ambiguous natural language forms by clean logical forms for
reasoning and perhaps other purposes — which is what the founding fathers of modern
logic had in mind, who claimed that natural languages are ‘systematically misleading’.
But less radically, and perhaps more realistic from an empirical cognitive viewpoint, you
can also see the relation as a way of creating hybrids of existing and newly designed
forms of expression. Compare the way the language of mathematicians consists of natural
language plus a growing fund of notations, or the way in which computer science extends
our natural repertoire of expression and communication.

2.3 Semantic Situations, Truth Tables, Binary Arithmetic
Differences in formal syntax often correspond to differences in meaning: the above two
trees are an example. To explain this in more detail, we now need a semantics that, for
a start, relates syntactic objects like formulas to truth and falsity in semantic situations.
Thus, formulas acquire meaning in specific settings, and differences in meaning between
formulas are often signalled by differences in truth in some situation.

Truth values and valuations for atoms As we said already, each set of proposition
letters p, q, r, . . . generates a set of different situations, different ways the actual world
might be, or different states that it could be in (all these interpretations make sense in
applications). Three proposition letters generate 23 = 8 situations:

{pqr, pqr, pqr, pqr, pqr, pqr, pqr, pqr} (2.6)

Here proposition letters stand for ‘atomic propositions’, while logical operations form
‘molecules’. Of course his is just a manner of speaking, since what counts as ‘atomic’
in a given application is usually just our decision ‘not to look any further inside’ the
proposition. A convenient mathematical view of situations is as functions from atomic
propositions to truth values 1 (‘true’) and 0 (‘false’). For instance, the above situation
pqr corresponds to the function sending p to 1, q to 0, and r to 1. An alternative notation

2.3. SEMANTIC SITUATIONS, TRUTH TABLES, BINARY ARITHMETIC 2-9

for truth values is t and f , but we use numbers for their suggestive analogy with binary
arithmetic (the heart of computers). We call these functions V valuations; V (ϕ) = 1 says
that the formula ϕ is true in the situation (represented by) V , and V (ϕ) = 0 says that
the formula ϕ is false in the situation V . For V (ϕ) = 1 we also write V |= ϕ and for
V (ϕ) = 0 we also write V 6|= ϕ. One can read V |= ϕ as “V makes true ϕ”, or as “V
satisfies ϕ” or “V is a model of ϕ”. The notation using |= will reappear in later chapters.

Boolean operations on truth values Any complex sentence constructed from the rel-
evant atomic proposition letters is either true or false in each situation. To see how this
works, we first need an account for the meaning of the logical operations. This is achieved
by assigning them Boolean operations on the numbers 0, 1, in a way that respects (as far
as reasonable) their intuitive usage. For instance, if V (ϕ) = 0, then V (¬ϕ) = 1, and
vice versa; and if V (ϕ) = 1, then V (¬ϕ) = 0, and vice versa. Such relations are easier
formatted in a table.

Definition 2.9 (Semantics of propositional logic) A valuation V is a function from propo-
sition letters to truth values 0 and 1. The value or meaning of complex sentences is com-
puted from the value of basic propositions according to the following truth tables.

ϕ ¬ϕ

0 1

1 0

ϕ ψ ϕ ∧ ψ ϕ ∨ ψ ϕ→ ψ ϕ↔ ψ

0 0 0 0 1 1

0 1 0 1 1 0

1 0 0 1 0 0

1 1 1 1 1 1

(2.7)

Bold-face numbers give the truth values for all relevant combinations of argument values:
four in the case of connectives with two arguments, two in the case of the connective with
one argument, the negation.

Explanation The tables for negation, conjunction, disjunction, and equivalence are usu-
ally seen as unproblematic. The table for implication has generated perennial debate,
since it does not match the word ‘implies’ in natural language very well. E.g., does hav-
ing a false antecedent (condition) ϕ and a true consequent ψ really make the implication
if-ϕ-then-ψ true? But we are just doing the best we can in our simple two-valued setting.
Thus, you will certainly accept the following assertion as true: ‘All numbers greater than
13 are greater than 12’. Put differently, ‘if a number n is greater than 13 (p), then n is
greater than 12 (q)’. But now, just fill in different numbers n, and you get all combina-
tions in the truth table. For instance, n = 14 motivates the truth-value 1 for p → q at pq,
n = 13 motivates 1 for p→ q at pq, and n = 12 motivates 1 for p→ q at pq.

2-10 CHAPTER 2. PROPOSITIONAL LOGIC

Computing truth tables for complex formulas How exactly can we compute truth
values for complex formulas? This is done using our tables by following the construction
stages of syntax trees. Here is how this works. Take the valuation V with V (p) = V (q) =
1, V (r) = 0 and consider two earlier formulas:

((¬p ∨ q)→ r 0

(¬p ∨ q) 1

¬p 0

p 1

q 1

r 0

(¬(p ∨ q)→ r) 1

¬(p ∨ q) 0

(p ∨ q) 1

p 1 q 1

r 0

Incidentally, this difference in truth value explains our earlier point that these two
variant formulas are different readings of the earlier natural language sentence.

Computing in this manner for all valuations, we can systematically tabulate the truth
value behaviour of complex propositional formulas in all relevant situations:

p q r ((¬p ∨ q)→ r) (¬(p ∨ q)→ r)

0 0 0 0 0

0 0 1 1 1

0 1 0 0 1

0 1 1 1 1

1 0 0 1 1

1 0 1 1 1

1 1 0 0 1

1 1 1 1 1

(2.8)

Paying attention to the proper placement of brackets in formulas, you can compute truth-
tables step by step for all situations. As an example we take the second formula from (2.8).
First, start with summing up the situations and copy the truth-values under the proposition

2.3. SEMANTIC SITUATIONS, TRUTH TABLES, BINARY ARITHMETIC 2-11

letters as has been done in the following table.

p q r (¬ (p ∨ q) → r)

0 0 0 · 0 · 0 · 0

0 0 1 · 0 · 0 · 1

0 1 0 · 0 · 1 · 0

0 1 1 · 0 · 1 · 1

1 0 0 · 1 · 0 · 0

1 0 1 · 1 · 1 · 1

1 1 0 · 1 · 0 · 0

1 1 1 · 1 · 1 · 1

(2.9)

Then start filling in the truth-values for the first possible operator. Here it is the disjunc-
tion: it can be computed because the values of its arguments are given (you can also see
this from the construction tree). (p ∨ q) gets value 0 if and only if both p and q have the
value 0. The intermediate result is given in the first table in (2.10). The next steps are the
negation and then the conjunction. This gives the following results:

(¬ (p ∨ q) → r)

· 0 0 0 · 0

· 0 0 0 · 1

· 0 1 1 · 0

· 0 1 1 · 1

· 1 1 0 · 0

· 1 1 1 · 1

· 1 1 0 · 0

· 1 1 1 · 1

(¬ (p ∨ q) → r)

1 0 0 0 · 0

1 0 0 0 · 1

0 0 1 1 · 0

0 0 1 1 · 1

0 1 1 0 · 0

0 1 1 1 · 1

0 1 1 0 · 0

0 1 1 1 · 1

(¬ (p ∨ q) → r)

1 0 0 0 0 0

1 0 0 0 1 1

0 0 1 1 1 0

0 0 1 1 1 1

0 1 1 0 1 0

0 1 1 1 1 1

0 1 1 0 1 0

0 1 1 1 1 1

(2.10)
One does not have to draw three separate tables. All the work can be done in a single

table. We just meant to indicate the right order of filling in truth-values.

Exercise 2.10 Construct truth tables for the following formulas:

• (p→ q) ∨ (q → p),

• ((p ∨ ¬q) ∧ r)↔ (¬(p ∧ r) ∨ q).

Exercise 2.11 Using truth tables, investigate all formulas that can be readings of

¬p→ q ∨ r

(by inserting brackets in appropriate places), and show that they are not equivalent.

2-12 CHAPTER 2. PROPOSITIONAL LOGIC

If, Only If, If and Only If Here is a useful list of different ways to express implications:

If p then q p→ q
p if q q → p

p only if q p→ q

The third item on this list may come as a surprise. To see that the third item is correct,
reflect on how one can check whether “We will help you only if you help us” is false.
This can can happen only if “We help you” is true, but “You help us” is false.

These uses of ‘if’ and ‘only if’ explain the use of the common abbreviation ‘if and
only if’ for an equivalence. “We will help you if and only if you help us” states that “you
help you” implies “we help you”, and vice versa. A common abbreviation for ’if and only
of’ that we will use occasionally is iff.

2.4 Valid Consequence and Consistency
We now define the general notion of valid consequence for propositional logic. It runs
over all possible valuations, and as we will see in a moment, we can use truth tables to
check given inferences for validity. (In what follows, k can be any number. If it is k = 0,
then there are no premises.)

Definition 2.12 (Valid consequence) The inference from a finite set of premises

ϕ1, . . . , ϕk

to a conclusion ψ is a valid consequence, something for which we write

ϕ1, . . . , ϕk |= ψ,

if each valuation V with V (ϕ1) = . . . = V (ϕk) = 1 also has V (ψ) = 1.

Definition 2.13 (Logical equivalence) If ϕ |= ψ and ψ |= ϕ we say that ϕ and ψ are
logically equivalent.

Here it is useful to recall a warning that was already stated in Chapter 1. Do not
confuse valid consequence with truth of formulas in a given situation: validity quantifies
over truth in many situations, but it has no specific claim about truth or falsity of the
premises and conclusions. Indeed, validity rules out surprisingly little in this respect: of
all the possible truth/false combinations that might occur for premises and conclusion, it
only rules out one case: viz. that all ϕi get value 1, while χ gets value 0.

Another point from Chapter 1 that is worth repeating here is the use of valid infer-
ence, not to establish truth, but to achieve a refutation: when the conclusion of a valid
consequence is false, at least one of the premises must be false. But logic does not tell us
in general which one: some further investigation may be required to find the culprit(s). It

2.4. VALID CONSEQUENCE AND CONSISTENCY 2-13

has been claimed by philosophers that this refutational use of logic may be the most im-
portant one, since it is the basis of learning, where we constantly have to give up current
beliefs when they contradict new facts.

Here is a simple example of how truth tables can check for validity:

Example 2.14 (Modus Tollens) The simplest case of refutation depends on the rule of
nodus tollens:

ϕ→ ψ,¬ψ |= ¬ϕ.

Below is given the complete truth table demonstrating its validity:

ϕ ψ ϕ→ ψ ¬ψ ¬ϕ

1 1 1 0 0

1 0 0 1 0

0 1 1 0 1

0 0 1 1 1 !!

(2.11)

Of the four possible relevant situations here, only one satisfies both premises (the valu-
ation on the fourth line), and we can check that there, indeed, the conclusion is true as
well. Thus, the inference is valid.

By contrast, when an inference is invalid, there is at least one valuation (i.e., a line in
the truth table) where its premises are all true, and the conclusion false. Such situations
are called counter-examples. The preceding table also gives us a counter-example for the
earlier invalid consequence

from ϕ→ ψ,¬ϕ to ¬ψ

namely, the valuation on the third line where ϕ→ ψ and ¬ϕ are true but ¬ψ is false.

Please note that invalidity does not say that all valuations making the premises true
make the conclusion false. The latter would express a valid consequence again, this time,
the ‘refutation’ of ψ:

ϕ1, . . . , ϕk |= ¬ψ (2.12)

Consistency Finally, here is another important logical notion that gives another per-
spective on the same issues:

Definition 2.15 (Consistent) A set of formulas X (say, ϕ1, . . . , ϕk) is consistent if there
is a valuation that makes all formulas in X true.

2-14 CHAPTER 2. PROPOSITIONAL LOGIC

Instead of ‘not consistent’ we also say inconsistent, which says that there is no valuation
where all formulas in the set are true simultaneously.

Consistency is not the same as truth: it does not say that all formulas in X are actually
true, but that they could be true in some situation. This suffices for many purposes. In
conversation, we often cannot check directly if what people tell us is true, but we may
believe them as long as what they say is consistent. Also, as we noted in Chapter 1, a
lawyer does not have to prove that her client is innocent, she just has to show that it is
consistent with the given evidence that he is innocent.

We can test for consistency in a truth table again, looking for a line making all relevant
formulas true. This is like our earlier computations, and indeed, validity and consistency
are related. For instance, it follows directly from our definitions that

ϕ |= ψ if and only if {ϕ,¬ψ} is not consistent. (2.13)

Tautologies Now we look briefly at the ‘laws’ of our system:

Definition 2.16 (Tautology) A formula ψ that gets the value 1 in every valuation is called
a tautology. The notation for tautologies is |= ψ.

Many tautologies are well-known as general laws of propositional logic. They can be used
to infer quick conclusions or simplify given assertions. Here are some useful tautologies:

Double Negation ¬¬ϕ↔ ϕ

De Morgan laws ¬(ϕ ∨ ψ)↔ (¬ϕ ∧ ¬ψ)
¬(ϕ ∧ ψ)↔ (¬ϕ ∨ ¬ψ)

Distribution laws (ϕ ∧ (ψ ∨ χ))↔ ((ϕ ∧ ψ) ∨ (ϕ ∧ χ))
(ϕ ∨ (ψ ∧ χ))↔ ((ϕ ∨ ψ) ∧ (ϕ ∨ χ))

(2.14)

Check for yourself that they all get values 1 on all lines of their truth tables.

Tautologies are a special zero-premise case of valid consequences, but via a little trick,
they encode all of them. It is easy to see that:

ϕ1, . . . , ϕk |= ψ if and only if (ϕ1 ∧ . . . ∧ ϕk)→ ψ is a tautology (2.15)

Exercise 2.17

Show using a truth table that: (a) the inference from p → (q ∧ r), ¬q to ¬p is valid and (b) the
inference from p→ (q ∨ r), ¬q to ¬p is not valid.

Exercise 2.18 Using a truth table, determine if the two formulas

¬p→ (q ∨ r),¬q

together logically imply

(1) p ∧ r.

2.5. PROOF 2-15

(2) p ∨ r.

Display the complete truth table, and use it to justify your answers to (a) and (b).

Exercise 2.19 Check if the following are valid consequences:

(1) ¬(q ∧ r), q |= ¬r

(2) ¬p ∨ ¬q ∨ r, q ∨ r, p |= r.

Exercise 2.20 Give truth tables for the following formulas:

(1) (p ∨ q) ∨ ¬(p ∨ (q ∧ r))

(2) ¬((¬p ∨ ¬(q ∧ r)) ∨ (p ∧ r))

(3) (p→ (q → r))→ ((p→ q)→ (p→ r))

(4) (p↔ (q → r))↔ ((p↔ q)→ r)

(5) ((p↔ q) ∧ (¬q → r))↔ (¬(p↔ r)→ q)

Exercise 2.21 Which of the following pairs are logically equivalent? Confirm your answer using
truth tables:

(1) ϕ→ ψ and ψ → ϕ

(2) ϕ→ ψ and ¬ψ → ¬ϕ

(3) ¬(ϕ→ ψ) and ϕ ∨ ¬ψ

(4) ¬(ϕ→ ψ) and ϕ ∧ ¬ψ

(5) ¬(ϕ↔ ψ) and ¬ϕ↔ ¬ψ

(6) ¬(ϕ↔ ψ) and ¬ϕ↔ ψ

(7) (ϕ ∧ ψ)↔ (ϕ ∧ ψ) and ¬ϕ ∧ ¬ψ

2.5 Proof
Proof: symbolic inference So far we tested inferences for validity with truth tables,
staying close to the semantic meaning of the formulas. But a lot of inference happens
automatically, by manipulating symbols. People usually do not reason via truth tables.
They rather combine many simple proof steps that they already know, without going back
to their motivation. Likewise, mathematicians often do formal calculation and proof via
symbolic rules (think of your school algebra), and of course, computers have to do proof
steps purely symbolically (as long as they have not yet learnt to think, like us, about what
their actions might mean).

2-16 CHAPTER 2. PROPOSITIONAL LOGIC

Logic has many formal calculi that can do proofs, and later on, we will devote a whole
chapter to this topic. But in this chapter, we give you a first taste of what it means to do
proof steps in a formal calculus. There is a certain pleasure and surprise to symbolic
calculation that has to be experienced.

Below, we present an axiomatic system organized a bit like the famous geometry
book of Euclid’s Elements, where chains of many proof steps, each one simple by itself,
can lead to very surprising theorems. This is only one method used in logic, others in-
clude natural deduction (used a lot in logical Proof Theory) and resolution (used in many
automated theorem provers).

History: Axiomatic Proof in Euclid’s Elements
A common source for axiomatic proof are the Elements of Euclid (see Chap-
ter 1). Euclid was a 4th century B.C.E. Alexandrian mathematician. His
textbook gave axiomatic proofs for many well-known theorems of the plane
geometry of points and lines, later known as Euclidean geometry. Below is
a page from one of the oldest papyrus manuscripts of the Elements, from
75-125 A.D. It reads “If a straight line be cut into equal and unequal seg-
ments, the rectangle contained by the unequal segments of the whole together
with the square on the straight line between the points of section is equal to
the square on the half.” For more information, see http://www.math.
ubc.ca/˜cass/Euclid/papyrus/papyrus.html. An example of
an axiom in Euclidean geometry is “Let the following be postulated: to draw
a straight line from any point to any point,” or in modern terms: “any two
points are connected by a straight line.”

Euclid gave axioms and rules for geometry, and only a few principles for the under-
lying logical reasoning. (The latter include principles like ‘Adding equals to equals gives
equals’, that were called ‘Common Notions’.) But now we define a modern axiomatic
symbol game for logic:

2.5. PROOF 2-17

Definition 2.22 (Axiomatization) A proof is a finite sequence of formulas, where each
formula is either an axiom, or follows from previous formulas in the proof by a deduction
rule. A formula is a theorem if it occurs in a proof, typically as the last formula in the
sequence. A set of axioms and rules defines an axiomatization for a given logic.
The following is an axiomatization for propositional logic. The axioms are given in
schematic form, with the formula variables that we have already seen. It means that
we can put any specific formula in the place of these variables:

(1) (ϕ→ (ψ → ϕ))

(2) ((ϕ→ (ψ → χ))→ ((ϕ→ ψ)→ (ϕ→ χ)))

(3) ((¬ϕ→ ¬ψ)→ (ψ → ϕ))

and there is only one deduction rule, the Modus Ponens that we have already encountered:

• from ϕ and (ϕ→ ψ), infer ψ.

This axiomatization originates with the Polish logician Jan Łukasiewicz. In this sys-
tem for propositional logic we may only use implication and negation symbols, and no
other logical connectives, such as conjunctions. In the section on expressivity it will be
become clear why this is sufficient.

Example 2.23 As an example of an axiomatic proof, we show that p → p is a theorem.
This seems a self-evident tautology semantically, but now, the art is to derive it using
only the rules of our game! In what follows we use well-chosen concrete instantiations
of axiom schemas. For instance, the first line uses Axiom Schema 1 with the atomic
proposition p for the variable ϕ and q → p for the variable ψ. And so on:

1. p→ ((q → p)→ p) Axiom (1)
2. (p→ ((q → p)→ p))→ ((p→ (q → p))→ (p→ p)) Axiom (2)
3. (p→ (q → p))→ (p→ p) Modus Ponens, from steps 1, 2
4. p→ (q → p) Axiom (1)
5. p→ p Modus Ponens, from steps 3, 4

History: Jan Łukasiewicz
Jan Łukasiewicz (1878 - 1956) was a Polish philosopher and mathematician
from the town currently known as Lviv in the Ukraine. (The town was Aus-
trian at the time of his birth, and Polish for long stretches of its history.) The
above axiomatization is one of several due to him. He is also known for re-
sults in multi-valued logic, where there are more than two truth values (e.g.,
true, false and unknown – the sort of thing used in ‘fuzzy logic’, that drives
elevators and washing machines). Łukasiewicz also invented ‘Polish nota-
tion’ for logic, where all operators come first and we do not need parentheses
to disambiguate. E.g., Polish notation for ((p ∨ q) ∧ r) is ∧ ∨ p q r.

2-18 CHAPTER 2. PROPOSITIONAL LOGIC

Jan Łukasiewicz

In this course, we do not ask you to find such proofs for yourself. But it is actually
an exciting skill to many students, precisely because of its purely symbolic nature. You
can taste its flavour by also allowing proofs that have certain assumptions, in addition to
instances of axiom schemas. For instance, try to use Modus Ponens and suitable axioms
to derive the solution to our earlier Party Puzzle from Chapter 1:

(i) If Ann comes, John does not: a → ¬j, (ii) Ann comes if Mary does
not come: ¬m → a, (c) John comes if Mary or Ann comes: here we note
the equivalent conjunction John comes if Mary comes and John comes if
Ann comes to produce two formulas that fall inside our language: a → j,
m→ j. Now try to give a proof just using the above principle for the solution,
deriving successively that ¬a, m, j. Have fun!

Of course, there are many ways of solving this, but here we just want you to feel the
spirit of a proof game with a fixed repertoire of rules.

Axiomatic proof may be good for mathematics, but it is not widespread in practice.
Still, it is interesting to note that, when our great politician Johan de Witt wanted to
explain the principles of life insurance to the Dutch nation in 1671, for the first time in
mathematical history, his Waerdye was not a moralizing glossy brochure, but an axiomatic
introduction to probability:

Johan de Witt Title Page of Waerdye

2.5. PROOF 2-19

Digression: other proof formats, and Löb’s Paradox There are many other logical
proof formats, that do more justice to reasoning practice. In particular, what is typical
for proof in conversation or debate, is dynamic ‘book-keeping’ for assertions that have
been made under different assumptions, or for case distinctions, that play a role as the
reasoning progresses. We will not pursue this topic here, but we end with one example. It
shows how careful book-keeping is crucial to the derivation of a famous paradox.

If you have had enough of formal proof, or for some strange reason, you dislike para-
doxes, feel free to skip to the next section.

Short proofs may encode striking arguments. The following variant of the Liar Para-
dox, invented in 1955 by Martin Löb, proves the surprising assertion that

Every assertion ψ is true!

To show this, first consider the (‘self-referent’) auxiliary assertion

ϕ: if this assertion (i.e., ϕ) is true, then so is ψ.

By basic properties of truth, we then see at once that

ϕ↔ (ϕ→ ψ) (2.16)

But then consider this proof (with equivalence read as conjunction of two implications):

Next formula Justification of step Assumptions in force

(i) Suppose that ϕ (2.16), (i)

(ii) Then ϕ→ ψ (i) + (2.16) (2.16), (i)

(iii) Then ψ (i) + (ii) (2.16), (i)

(iv) ϕ→ ψ summarizes sub-proof (i)-(iii) (2.16)

(v) So: ϕ (iv) + (2.16) (2.16)

(vi) And also: ψ !! (iv) + (v) (2.16)

Thus, we have proved without any assumption, except the definition of ϕ.

System properties: soundness and completeness If all theorems of an axiomatic sys-
tem are valid, the system is called sound , and conversely, if all valid formulas are provable
theorems, the logic is called complete. Soundness seems an obvious requirement, as you
want to rely totally on your proof procedure. The above system is sound, as you can see
by noting that all axioms are tautologies, while Modus Ponens always takes tautologies
to tautologies.

Completeness is a different matter, and can be harder to obtain for a given system.
(Does Euclid’s system of axioms suffice for proving all truths of geometry? The answer
took centuries of investigation and reformulation of the system.) The above proof system
is indeed complete, and so are the proof systems that we will present in later chapters.

2-20 CHAPTER 2. PROPOSITIONAL LOGIC

But showing that completeness holds can be hard. The completeness of predicate logic,
that we will discuss in later chapters, was one of the first deep results in modern logic,
discovered only by Gödel in his 1929 dissertation.

2.6 Information Update
With all this in place, we can now also define our earlier notions of information structure
and information growth:

The information content of a formula ϕ is the set MOD(ϕ) of its models,
that is, the valuations that assign the formula ϕ the truth-value 1.

You can think of this as the range of possible situations that ϕ still leaves open.

Information update by elimination of possibilities Here is the dynamics that changes
such information states:

An update with new information ψ reduces the current set of models X to the
overlap or intersection of X and MOD(ψ). The valuations in X that assign
the value 0 to ψ are eliminated.

Thus, propositional logic gives an account of basic cognitive dynamics, where informa-
tion states shrink as new information comes in: growth of knowledge is loss of uncer-
tainty.

We have seen earlier how this worked with simple inferences like

‘from p ∨ q,¬p to q’,

if we assume that the premises update an initial information state of minimal information
(maximal uncertainty: all valuations still present).

As a second example, we return to our earlier question

What is best concluded from p ∨ q,¬p ∨ r?

Here are the update stages:

initial state {pqr, pqr, pqr, pqr, pqr, pqr, pqr, pqr}
update with p ∨ q {pqr, pqr, pqr, pqr, pqr, pqr}
update with ¬p ∨ r {pqr, pqr, pqr, pqr}

(2.17)

We can conclude whatever is true in all of the remaining four states. One valid conclusion
is the inclusive disjunction q∨r, and this is indeed the one used in the so-called resolution
rule of many automated reasoning systems. But actually, the two premises are stronger

2.6. INFORMATION UPDATE 2-21

than the inference q ∨ r. The situation pqr is not among the ones that are left after the
updates in (2.17), but q ∨ r is obviously true in this situation. One way of really getting
all content of the premises is the valid conjunction:

(p ∨ q) ∧ (¬p ∨ r) (2.18)

In practice, we usually want a more convenient description of such a complex formula,
and later on we will look at some principles of Boolean Algebra that can help do this.

Planning Other information scenarios arise in planning problems. You want to throw a
party, respecting people’s incompatibilities. You know that:

(a) John comes if Mary or Ann comes.

(b) Ann comes if Mary does not come.

(c) If Ann comes, John does not.

Can you invite people under these constraints? You can use valid inference (see below),
but a sure way is computing information updates from an initial state of no information:

{ma,ma,ma,ma,ma,ma,ma,ma} (2.19)

Now the three given premises update this initial information state, by removing options
incompatible with them. In successive steps, (a), (b), (c) give the following reductions:

(a) (m ∨ a)→ {ma,ma,ma,ma,ma}
(b) ¬m→ a {ma,ma,ma}
(c) a→ ¬ {ma}

(2.20)

Incidentally, this is a unique solution for the stated constraints – but this need not at all be
the case in general: there could be none, or more than one option remaining, too.

Games as information processing Our update process describes the information flow
in games like Master Mind, where players have to guess the correct position of some
hidden coloured pegs. In each round, she can make a guess, that gets evaluated by black
marks for colours in correct positions, and white marks for colours that do occur, but
placed in wrong positions.

For instance, let there be four possible colours red, white, blue, orange, and three
positions, with a hidden correct sequence red-white-blue. Here is a table for a possible
run of the game, indicating the information game in successive answers:

guess answer possibilities remaining

START 24

red, orange, white •◦ 6

white, orange, blue •◦ 2

blue, orange, red ◦◦ 1

2-22 CHAPTER 2. PROPOSITIONAL LOGIC

You will find it useful to do the updates, and see why the given numbers are correct.

Master Mind is not really interactive (a machine could provide the answers to your
guesses), though interactive variants are used right now in psychological experiments
about reasoning with different agents. Information update with different agents, and more
realistic games will be studied in Chapters 5, 10. Elimination of possibilities is still im-
portant there, so what you learnt here has a broad thrust.

2.7 Expressive Power
A logical language is not just an auxiliary tool for studying inferences and updates. It is
also a language that can be used for the common things we have languages for: stating
truths (and lies) about situations, communicating important facts to others, and so on. In
this light, a very fundamental issue about a logical language is its expressive power. What
can we say with it?

For a start, propositional logic may look very poor. We can combine sentences, but
we cannot look ‘inside’ them: ”Horatio Nelson died at Trafalgar” is just p. But the real
issue how well it does within its own compass. And then we find a pleasant surprise:

Propositional logic is quite expressive! In total, there are sixteen possible Boolean
operations with two arguments (count options in the truth table) many more than we had
in our language. Some of these correspond to serious expressions in natural language. In
particular, the exclusive disjunction ϕ ⊕ ψ corresponds to the natural language phrasing
‘either-ϕ-or-ψ’. It has the following truth table, compare it to the one for disjunction ∨:

ϕ ψ ϕ⊕ ψ ϕ ∨ ψ

0 0 0 0

0 1 1 1

1 0 1 1

1 1 0 1

Now note that we could get the same truth table by defining exclusive disjunction ϕ ⊕ ψ
in terms of notions that we already had:

(ϕ ∨ ψ) ∧ ¬(ϕ ∧ ψ) or, alternatively ¬(ϕ↔ ψ) (2.21)

More generally, it is not hard to prove that

All sixteen possible binary propositional operations are definable
in terms of just the three operations ¬,∧ and ∨.

As an illustration,

2.8. OUTLOOK — LOGIC, MATHEMATICS, COMPUTATION 2-23

the implication ϕ→ ψ has the same truth table as ¬ϕ∨ψ and as ¬(ϕ∧¬ψ).

In fact, even ¬,∧ alone suffice for defining all possible operations, and also ¬,∨ alone,
and ¬,→ alone. As you will recall, the latter fact was used in the axiomatization of
propositional logic in the section on proof.

Exercise 2.24 Define all connectives in terms of ¬ and ∧.

Exercise 2.25 Define all connectives in terms of ¬ and→.

Indeed, there is even one single operation that can define all propositional operations,
the Sheffer stroke

ϕ | ψ,

defined as ¬ϕ ∨ ¬ψ.

Now you know how expressive our language is on its own turf: it can express anything
we want to say about combination of two-valued propositions.

This is just one of many interesting features of our language. Here is another, that we
state without giving details. Every propositional logical formula, no matter how complex,
is equivalent to a conjunction of disjunctions of proposition letters or their negations.
This is called the ‘conjunctive normal form’ (there is also a disjunctive normal form). For
instance, the conjunctive normal form for the earlier exclusive disjunction is

(ϕ ∨ ψ) ∧ (¬ϕ ∧ ¬ψ). (2.22)

But of course, as we said, there are also many things that we cannot express in propo-
sitional logic. The following chapters are about more expressive languages, such as pred-
icate logic or epistemic logic. Even so, an important thing to keep in mind is a Balance.
In logic as in science, the art is to stay as simple as possible: ‘Small is Beautiful’. A poor
language may have special properties that make it elegant or useful. Propositional logic
is very successful in bringing out basic reasoning patterns, and moreover, its very poverty
leads to elegant and simple semantics and proof methods. In richer systems, the latter
become more baroque, and sometimes essentially more complex.

This completes the standard part of this chapter. Next comes a sequence of special topics
that will help you see where propositional logic lies in a larger scientific world.

2.8 Outlook — Logic, Mathematics, Computation
Studying logical phenomena via mathematical systems has proved a powerful method
historically. Thinking about our language of logical forms yields general insights into
expressive power, as we have just learnt. But also, thinking about a system of all validities
per se yields new insights that can be used in many settings. Here are some examples:

2-24 CHAPTER 2. PROPOSITIONAL LOGIC

Boolean algebra The system of laws shows many beautiful regularities. For instance,
De Morgan and Distribution laws came in pairs with conjunction and disjunction inter-
changed. This ‘duality’ is general, and it reflects the close analogy between propositional
logic and binary arithmetic mentioned in Chapter 1. In particular, the truth tables are just
laws of binary arithmetic when we read:

∨ as the maximum of two numbers, ∧ as the minimum,
and ¬ as flipping 0 and 1.

Suppressing details, distribution for conjunction over disjunction then matches the arith-
metical distribution law x · (y + z) = (x · y) + (x · z). But binary arithmetic is more
symmetric: it also validates another distribution law x + (y · z) = (x + y) · (x + z) that
does not hold for numbers in general. We will pursue such connections between logic and
computation in more detail in later chapters.

Abstraction and application Logical systems originally arose out of concrete practice.
But conversely, once we have such abstract systems, new concrete interpretations may
be found. Boolean algebra is an example. It describes a whole range of phenomena:
propositional reasoning, binary arithmetic, reasoning with sets (where ¬ is complement,
∧ intersection, and ∨ union), and even electrical switching circuits where conjunction is
serial composition of networks, and disjunction is parallel composition. Thus, one and
the same formula says lots of things!

For instance, consider one single abstract principle, the Boolean law of ‘Absorption’:

ϕ↔ (ϕ ∧ (ϕ ∨ ψ)) (2.23)

This is a tautology for propositional reasoning that helps remove redundancies from dis-
course. Next, in binary arithmetic, it expresses a valid equation

x = x min (x max y) (2.24)

about computing with minima and maxima. In set theory, Absorption is the valid principle

X = X ∩ (X ∪ Y) (2.25)

which says that the intersection (‘overlap’) of the set X and the union of X and Y is the
same as the set X itself.

In a similar way, propositional logic plays a role in the design of logical (electronic)
circuits. A NAND gate is an electronic circuit that behaves like the Sheffer stroke. The
gate has two inputs and an output. If both inputs are 1 (carry a high voltage) then the
output is low (carries a low voltage). For all other input combinations (high and low,
low and high, low and low) the output is high. Since any propositional connective can
be defined with just the Sheffer stroke, any desirable logical circuit can be built from a
combination of NAND gates. Here is how negation is defined with the Sheffer stroke:

ϕ | ϕ.

2.8. OUTLOOK — LOGIC, MATHEMATICS, COMPUTATION 2-25

The same principle can be used to build a NOT gate from a NAND gate:

NOT
input output

NAND
input output

NOT gate NOT gate implemented with NAND gate

Thus we see that boolean algebra underlies real Boolean circuits in computers, with
details that you can find in many sources, also on the internet. A nice historical story of
how this came to be is in the book Denkende Machines that was mentioned earlier.

Soundness and completeness The same general properties that we stated for our proof
system also make sense here. We have already printed a complete set of laws for Boolean
algebra in Chapter 1. It is easy to see that these correspond to valid tautologies, when read
as equivalences between propositional formulas. Thus we have soundness: the calculus
proves only valid principles. Conversely, Boolean algebra is also complete, and any valid
equation can be derived from it by ordinary algebraic manipulations.

Computational complexity Propositional logic is tied up with computation in many
ways, as we have seen in this chapter. In particular, truth tables make testing for logi-
cal validity a simple procedure that can be done mechanically. And indeed, there exist
computer programs for all of the tasks in this chapter. Within the compass of our simple
language, this realizes the historical project of Leibniz’s ‘Calculus Ratiocinator’ around
1700, based on the idea that deduction is also computation. Still, all this is computability
in principle, and things are quite delicate.

A mechanical method with simple steps can still be highly complex when very many
of these steps must be made. Consider truth tables. Computing truth values on a single
line for a given formula goes fast: we write truth values in the construction tree, and the
number of time steps required for this is ‘linear’: of the same order as the number of
symbols in the formula. But now consider the whole table. With n atomic propositions
we need 2n lines, leading to exponential growth in the size of the input. This quickly
outgrows the powers of even the fastest current computers. Therefore, smarter methods
have been investigated, cutting down on the number of steps needed to test for validity —
such as the semantic tableaus that you will see in Chapter 7. But it was always found that,
in the worst case with difficult input formulas, these still require exponential time.

This is no coincidence. The exact computational complexity of validity in proposi-
tional logic is unknown: there may still be a faster method than existing ones that would
work with a polynomial bound on processing time, though most experts doubt this. De-
termining this exact complexity is the essence of the famous

‘P = NP Problem’ ,

2-26 CHAPTER 2. PROPOSITIONAL LOGIC

that occurs on the famous 2000 Millennium List of open problems in mathematics posed
by the Cray Institute.

This problem is urgent since it has been shown that many basic computational tasks
reduce to solving problems of validity and consistency in propositional logic. Thus, on
its two-thousandth anniversary, propositional logic still poses deep problems.

Higher expressive power and undecidability Whether highly complex or not, the
problem of testing for validity in propositional logic is decidable: there exists a me-
chanical method that computes the answer, at least in principle. Thus it may seem that
computers can always do the job of logicians. But things change when we move to log-
ics with higher expressive power, such as the predicate logic of Chapter 4 with quantifiers
‘all’, and ‘some’. It is known from the work of Gödel, Turing, and others in the 1930s that
there is no mechanical method at all for testing validity of predicate-logical inferences:
these major systems pay a price for their greater expressive power: they are undecidable.

2.9 Outlook — Logic and Practice
The art of modelling Propositional logic is a formal system that arose as an abstrac-
tion out of practice. To apply it in new concrete settings, you need additional ‘modelling
skills’. For instance, we have already observed that you need to translate from natural
language sentences to logical forms to get at the essence of an inference. This often takes
practice. The same is true for applying propositional reasoning to the puzzles that we
mentioned above. There is also a whole literature on using propositional logic in legal
reasoning, where again the structure of arguments has to be ‘mined’ from the linguistic
formulations. Likewise, propositional logic has been applied to a wide variety of compu-
tational tasks, from Boolean circuits in your computer to complex train movements at the
shunting yards of the Dutch Railways.

Such applications are not routine, and require creative skills.

Improving practice Training in propositional logic is used to improve practical skills.
This is an old tradition. Legend has it that medieval logic exams checked students’ real-
time skills as follows:

Obligatio Game A finite number of rounds is chosen, the severity of the exam.
The teacher gives the student successive assertions ϕ1, . . . , ϕn that she has to
‘accept’ or ‘reject’ as they are put forward. In the former case, ϕi is added to
the students stock of commitments — in the latter, the negation ¬ϕi is added.
The student passes if she maintains consistency throughout.

Suppose that a student is exposed to the following three statements:

(1) q ∨ ¬(p ∨ r), (2) p→ q, (3) q. (2.26)

2.9. OUTLOOK — LOGIC AND PRACTICE 2-27

Here is one possible run. If you say YES to (1), you must say YES to (2), since it follows
but then you can say either YES or NO to (3), since it is independent. Next, if you say
NO to (1), you can say either YES or NO to (2), but then, in both cases, you must say NO
to (3), as it follows from the negation of (1). The whole picture is:

•

q ∨ ¬(p ∨ r)

p→ q

q
win

¬q
win

¬(p→ q)
lose

¬(q ∨ ¬(p ∨ r))

p→ q

q
lose

¬q
win

¬(p→ q)

q
lose

¬q
win

This may be viewed as a game tree with all possible plays including the winning
branches. (A complete tree would include Teacher’s choices of the next assertion from
some given set — possibly influenced by what Student has answered so far.) Either way,
the tree will show that, as is only fair on exams, the student has a winning strategy for this
game of consistency management. The logical reason is this:

Any consistent set of assertions can always be consistently expanded with at
least one of the propositions ϕ, ¬ϕ.

The winning strategy based on this seems to require consistency checking at each stage,
a hard computational problem. A simpler strategy for the student is this:

choose one model beforehand (say, a valuation making each atom true), and
evaluate each incoming assertion there, giving the obvious answers.

Logic puzzles Propositional logic has generated many puzzles. The next exercise has
one from Raymond Smullyan’s The Lady or the Tiger?, Penguin Books, 1982.

Exercise 2.26 Consider these two room signs:

• A – In this room there is a lady, and in the other one there is a tiger.

• B – In one of these rooms, there is a lady, and in one of them there is a tiger”

One of these signs is true, the other false. Behind which door is the lady?

The recreational aspect of propositional logic is also found in Sudoku Puzzles, while
more sophisticated examples will return with the systems of our next chapters.

2-28 CHAPTER 2. PROPOSITIONAL LOGIC

2.10 Outlook — Logic and Cognition
But how do logical systems relate to our daily practice where we reason and try to make
sense without thinking about it? One interface has occurred a number of times now:

Logic and linguistics Natural languages have a much richer repertoire of meanings
than the formal language of propositional logic. For instance, the expression and also has
frequent non-Boolean readings. “John and Mary quarrelled” does not mean that “John
quarrelled and Mary quarrelled”, and a new semantics is needed for collective predicates
where agents do things together. Likewise, conditional expressions like if ... then do
not behave exactly like the truth-table conditional. In particular, a false antecedent does
not necessarily make them true: “If I were rich, I would be generous” does not follow
from my not being rich. But all this does not mean that logical methods do not apply. The
richer structure of natural language has been an inexhaustible source of new logical theory.
For instance, propositional logic has been generalized to work with more than two truth
values to model vague or indeterminate uses of language, and the study of various sorts
of conditional expression has in fact become a flourishing subdiscipline where logicians
and linguists work together.

Logic and cognitive psychology The relation between logic and psychology has been
somewhat stormier. It has been claimed that everyday reasoning is highly non-logical.
Here is a famous example.

The Wason selection task is a logic puzzle that states the following question:

You are shown a set of four cards placed on a table each of which has a
number on one side and a colored patch on the other side. The visible faces
of the cards show 3, 8, red and brown. Which card(s) should you turn over in
order to test the truth of the proposition that if a card shows an even number
on one face, then its opposite face is red?

The Wason selection task

Here is the correct response according to the logic of this chapter:

turn the cards showing 8 and brown, but no other card.

2.10. OUTLOOK — LOGIC AND COGNITION 2-29

The reason is this: to test the implication even → red, we clearly need to check
the card with the even number 8, but also should not forget the refutation case discussed
several times before: if the card is not red, we need to make sure that it did not have an
even number. Now the realities in the experiment, repeated over many decades:

most people either (a) turn the 8 only, or (b) they turn the 8 and the red card.

Psychologists have suggested many explanations, including a ‘confirmation bias’ (refuta-
tion comes less natural to us) and an ‘association bias’ (red is mentioned so we check it).
This seems to suggest that real reasoning is very different from what logic says.

However, the selection task tends to produce the correct logical response when pre-
sented in more concrete contexts that the experimental subjects are familiar with. For
example, if the rule is ‘If you are drinking alcohol, then you must be over 18’, and the
cards have an age on one side and a beverage on the other, e.g., ‘17’, ‘beer’, ‘22’, ‘coke’,
most people have no difficulty in selecting the correct cards (‘17’ and ‘beer’). Psychol-
ogists have used this as another argument against logic: the two settings have the same
logical form, but very different behaviour results from familiarity effects.

More information on this famous experiment can be found on the webpage http:
//en.wikipedia.org/wiki/Wason_selection_task.

Frankly, all this polemics is not interesting. Clearly, people are not irrational, and if
they ignored logic all the time, extracting the wrong information from the data at their
disposal, it is hard to see how our species could survive. What seems to be the case is
rather an issue of representation of reasoning tasks, and additional principles that play
a role there. Moreover, as we shall see in Chapter 12, the variation in outcomes fits
with a conspicuous trend in modern logic, namely, the study of task-dependent forms
of inference, whose rules may differ from the strict standards set in this chapter. These
include more heuristic ‘default rules’ that are not valid in our strict sense, but that can be
used until some problem arises that requires a revision of what we concluded so far.

But let us give the last word to George Boole, often considered the father of the purely
mathematical approach to (propositional) logic. The title of his great work “The Laws of
Thought” would seem to sit uneasily with a diehard normative mathematical perspective.
But toward the end of the book, Boole remarks that he is serious about the title: the
laws of propositional logic describe essential human thought. but he also acknowledges
that human reasoning often deviates from this canon. What that means is, he says, that
there are further laws of human thought that still need to be discovered. That is what the
modern interface of logic and cognitive science is about.

Further Exercises

Exercise 2.27 Prove that all propositional connectives are definable with the ‘Sheffer stroke’

ϕ | ψ,

defined by ¬ϕ ∨ ¬ψ.

2-30 CHAPTER 2. PROPOSITIONAL LOGIC

Exercise 2.28 In how many ways can you win the following obligatio game?

(1) (p→ q) ∨ (r → q), (2) ¬((p ∧ r)→ q), (3) q.

Exercise 2.29 Consider the following formula:

(p ∧ (q → r))→ ¬(¬p ∨ ((¬q → q) ∧ (r → ¬r))).

The logical symbols in this formula are all the symbols except parentheses and propositional vari-
ables. As you can see, the formula as 11 logical symbols. Answer the following questions:

(1) How many truth value entries does the truth table for this formula have. How does that
number depend on the number of logical symbols?

(2) The truth table for a formula with 3 propositional variables has 23 = 8 rows. How many
entries in the truth table for such a formula do you have to compute (in the worst case) in
order to find out if the formula is valid or not, given that you know that the formula has n
logical symbols?

Summary You have now seen your first logical system, and know how to reason in an
exact mathematical manner with propositions. In particular, you have learnt these skills:

• read and write propositional formulas,

• translate simple natural language sentences into formulas,

• compute truth tables for various purposes,

• test validity of inferences,

• compute updates of information states,

• do some very simple formal proofs.

In addition, you now have a working knowledge of the notions of

syntax, semantics, valuation, truth, valid consequence, tautology, // consis-
tency, axiomatic proof, expressive power, logical system.

Finally, you have acquired some understanding of connections between propositional
logic and mathematical proof, computation, complexity, and some cognitive topics, namely,
natural language and psychological experiments.

Chapter 3

Syllogistic Reasoning

This chapter ‘opens the box’ of propositional logic, and looks inside the statements that
we make when we communicate. Very often, these statements are about objects and their
properties, and we will now show you a first logical system that deals with these. Syl-
logistics has been a standard of logical reasoning since Greek Antiquity. It deals with
quantifiers like ‘All P are Q’ and ‘Some P are Q’, and it can express much of the com-
mon sense reasoning that we do about predicates and their corresponding sets of objects.
You will learn a famous graphical method for dealing with this, the so-called ‘Venn Di-
agrams’, that can tell valid syllogisms from invalid ones. As usual, the chapter ends
with some outlook issues, toward logical systems, computer science (this time, the area
of databases and knowledge representation), and again cognitive phenomena in the real
world of linguistics and psychology.

3.1 Motivation — Reasoning About Predicates and Classes

Aristotle

The Greek philosopher Aristotle (384 BC – 322 BC) proposed a system of reasoning
in his Prior Analytics (350 BC) that was so successful that it has remained a paradigm of
logical reasoning for more than two thousand years: the Syllogistic.

3-1

3-2 CHAPTER 3. SYLLOGISTIC REASONING

Syllogisms A syllogism is a logical argument where a quantified statement of a specific
form (the conclusion) is inferred from two other quantified statements (the premises).

The quantified statements are all of the form “Some/all A are B,” or “Some/all A are
not B,” and each syllogism combines three predicates or properties. Notice that “All A
are not B” can be expressed equivalently in natural language as “No A are B,” and “Some
A are not B” as “Not all A are B.”

A syllogism is called valid if the conclusion follows logically from the premises in the
sense of Chapter 1, whatever we take the real predicates and objects to be: if the premises
are true, the conclusion must be true. The syllogism is invalid otherwise.

Here is an example of a valid syllogism:

All Greeks are humans

All humans are mortal

All Greeks are mortal.

(3.1)

We can express the validity of this pattern using the |= sign introduced in Chapter 2:

All Greeks are humans, All humans are mortal |= All Greeks are mortal. (3.2)

This inference is valid, and, indeed, this validity has nothing to do with the particular
predicates that are used. If the predicates human, Greek and mortal are replaced by dif-
ferent predicates, the result will still be a valid syllogism. In other words, it is the form
that makes a valid syllogism valid, not the content of the predicates that it uses. Replacing
the predicates by symbols makes this clear:

All A are B

All B are C

All A are C.

(3.3)

The classical quantifiers Syllogistic theory focusses on the quantifiers in the so called
Square of Opposition, see Figure (3.1). The quantifiers in the square express relations
between a first and a second predicate, forming the two arguments of the assertion. We
think of these predicates very concretely, as sets of objects taken from some domain of
discourse that satisfy the predicate. Say, ‘boy’ corresponds with the set of all boys in the
relevant situation that we are talking about.

The quantified expressions in the square are related across the diagonals by external
(sentential) negation, and across the horizontal edges by internal (or verb phrase) negation.
It follows that the relation across the vertical edges of the square is that of internal plus
external negation; this is the relation of so-called quantifier duality.

Because Aristotle assumes that the domain of discourse is non-empty, the two quan-
tified expressions on the top edge of the square cannot both be true; these expressions are
called contraries. Similarly, the two quantified expressions on the bottom edge cannot
both be false: they are so-called subcontraries.

3.1. MOTIVATION — REASONING ABOUT PREDICATES AND CLASSES 3-3

All A are B No A are B

Some A are B Not all A are B

Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
QQ

�
�
�

�
�
�

�
�
�

�
��

Figure 3.1: The Square of Opposition

Existential import Aristotle interprets his quantifiers with existential import: All A
are B and No A are B are taken to imply that there are A. Under this assumption, the
quantified expressions at the top edge of the square imply those immediately below them.
The universal affirmative quantifier all implies the individual affirmative some and the
universal negative no implies the individual negative not all. Existential import seems
close to how we use natural language. We seldom discuss ‘empty predicates’ unless in
the realm of phantasy. Still, modern logicians have dropped existential import for reasons
of mathematical elegance, and so will we in this course.

The universal and individual affirmative quantifiers are said to be of types A and I
respectively, from Latin Aff Irmo, the universal and individual negative quantifiers of type
E and O, from Latin NEgO. Aristotle’s theory was extended by logicians in the Middle
Ages whose working language was Latin, whence this Latin mnemonics. Along these
lines, Barbara is the name of the syllogism with two universal affirmative premises and a
universal affirmative conclusion. This is the syllogism (3.1) above.

Here is an example of an invalid syllogism:

All warlords are rich

No students are warlords

No students are rich

(3.4)

Why is this invalid? Because one can picture a situation where the premises are true but
the conclusion is false. Such a counterexample consists of a situation with at least one rich
student who is not a warlord. This situation is consistent with the two premises: simply
make sure that any warlord in the situation is rich. This ‘picturing’ can be made precise,
and we will do so in a moment.

3-4 CHAPTER 3. SYLLOGISTIC REASONING

3.2 The Language of Syllogistics
Syllogistic statements consist of a quantifier, followed by a common noun followed by
a verb: Q N V . This is an extremely general pattern found across human languages.
Sentences S consist of a Noun Phrase NP and a Verb Phrase VP, and the Noun Phrase can
be decomposed into a Determiner Q plus a Common Noun CN:

S

NP

Q CN

VP

Thus we are really at the heart of how we speak. In these terms, a bit more technically,
Aristotle studied the following inferential pattern:

Quantifier1 CN1 VP1

Quantifier2 CN2 VP2

Quantifier3 CN3 VP3

where the quantifiers are All, Some, No and Not all. The common nouns and the verb
phrases both express properties, at least in our perspective here (‘man’ stands for all men,
‘walk’ for all people who walk, etcetera). To express a property means to refer to a class
of things, at least in a first logic course. There is more to predicates than sets of objects
when you look more deeply, but this ‘intensional’ aspect will not occupy us here.

In a syllogistic form, there are two premises and a conclusion. Each statement refers
to two classes. Since the conclusion refers to two classes, there is always one class that
figures in the premises but not in the conclusion. The CN or VP that refers to this class is
called the middle term that links the information in the two premises.

Exercise 3.1 What is the middle term in the syllogistic pattern given in (3.3)?

To put the system of syllogistics in a formal setting we will first make a brief excursion
to the topic of notation for operations on sets.

3.3 Sets and Operations on Sets
The binary relation ∈ is called the element-of relation. If some object a is an element of a
set A then we write a ∈ A and if this is not the case we write a 6∈ A. Note that if a ∈ A,
A is certainly a set, but a itself may also be a set. Example: {1} ∈ {{1}, {2}}.

If we want to collect all the objects together that have a certain property, then we write:

{x | ϕ(x)} (3.5)

3.3. SETS AND OPERATIONS ON SETS 3-5

for the set of those x for which some property described by ϕ holds. Sometimes we
restrict this property to a certain domain or discourse or universe U of individuals. To
make this explicit, we write:

{x ∈ U | ϕ(x)} (3.6)

to denote the set of all those x in U for which ϕ holds. Note that {x ∈ U | ϕ(x)} defines
a subset of U .

To describe a set of elements sharing multiple properties ϕ1, . . . , ϕn we write:

{x | ϕ1(x), . . . , ϕn(x)} (3.7)

Instead of a single variable, we also may have a sequence of variables. For example, we
want to describe a set of pairs that have a certain relation, as in the following example.

A = {(x, y) | x is in the list of presidents of the US , y is married to x} (3.8)

For example, (Bill Clinton,Hillary Clinton) ∈ A but, due to how the 2008 presidential
election turned out, (Hillary Clinton,Bill Clinton) 6∈ A. In this example A is a set of
pairs. Sets of pairs are in fact the standard mathematical representation of binary relations
between objects (see below).

In talking about sets, one often also wants to discuss combinations of properties, and
construct new sets from old sets. The most straightforward operation for this is the inter-
section of two sets:

A ∩B = {x | x ∈ A and x ∈ B} (3.9)

If A and B represent two properties then A ∩ B is the set of those objects that have both
properties. In a picture:

A B

The intersection of the set of ‘red things’ and the set of ‘cars’ is the set of ‘red cars’.
Another important operation is the union that represents the set of objects which have

at least one of two given properties.

A ∪B = {x | x ∈ A or x ∈ B} (3.10)

The ‘or’ in this definition should be read in the inclusive way. Objects which belong two
both sets also belong to the union. Here is a picture:

A B

3-6 CHAPTER 3. SYLLOGISTIC REASONING

A third operation which is often used is the difference of two sets:

A \B = {x | x ∈ A and x 6∈ B} (3.11)

If we think of two properties represented by A and B then A \ B represents those things
that have the property A but not B. In a picture:

A B

The picture representations of the set operations are called Venn diagrams, after the
British mathematician John Venn (1834 - 1923). In a Venn diagram, sets are represented
as circles placed in such a way that each combination of these sets is represented. In the
case of two sets this is done by means of two partially overlapping circles.

Next, there is the complement of a set (relative to some given universe U (the domain
of discourse):

A = {x ∈ U | x 6∈ A} (3.12)

In a picture:

A

Making use of complements we can describe things that do not have a certain property.

The complement operation makes it possible to define set theoretic operations in terms
of each other. For example, the difference of two sets A and B is equal to the intersection
of A and the complement of B:

A \B = A ∩B (3.13)

Complements of complements give the original set back:

A = A (3.14)

Complement also allows us to relate union to intersection, by means of the following
so-called de Morgan equations:

A ∪B = A ∩B
A ∩B = A ∪B

(3.15)

3.3. SETS AND OPERATIONS ON SETS 3-7

A B

BA

A ∩ B

A ∩ B

Figure 3.2: Construction of A ∪B using intersection and complement.

From the second de Morgan equation we can derive a definition of the union of two sets
in terms of intersection and complement:

A ∪B = A ∪B = A ∩B (3.16)

This construction is illustrated with Venn diagrams in Figure 3.2. Also important are
the so-called distributive equations for set operations; they describe how intersection dis-
tributes over union and vice versa:

A ∩ (B ∪ C) = (A ∩B) ∪ (A ∩ C)

A ∪ (B ∩ C) = (A ∪B) ∩ (A ∪ C)
(3.17)

Figure 3.3 demonstrates how the validity of the first of these equations can be computed
by means of Venn-diagrams. Here we need three circles for the three sets A, B and C,
positioned in such a graphical way that every possible combination of these three sets is
represented in the diagrams.

The relation between sets and propositions The equalities between sets may look
familiar to you. In fact, these principles have the same shape as propositional equivalences
that describe the relations between ¬, ∧ and ∨. In fact, the combinatorics of sets using
complement, intersection and union is a Boolean algebra, where complement behaves like
negation, intersection like conjunction and union like disjunction. The zero element of the
algebra is the empty set ∅.

We can even say a bit more. The Venn-diagram constructions as in Figures 3.2 and
3.3 can be viewed as construction trees for set-theoretic expressions, and they can be

3-8 CHAPTER 3. SYLLOGISTIC REASONING

B B A CC A

A B ∪ C

A ∩ (B ∪ C)

A ∩ B A ∩ C

(A ∩ B) ∪ (A ∩ C)

B B A CC A

A B ∪ C

A ∩ (B ∪ C)

A ∩ B A ∩ C

(A ∩ B) ∪ (A ∩ C)

Figure 3.3: One of the distribution laws illustrated by means of Venn diagrams.

abc abc

abc

abc

abc

abc
abc

abc

Figure 3.4: The support for a ∧ (b ∨ c) in a Venn-diagram.

3.4. SYLLOGISTIC SITUATIONS 3-9

reinterpreted as construction trees for formulas of propositional logic. Substitution of
proposition letters for the base sets and replacing the set operations by the corresponding
connectives gives a parsing tree with the corresponding semantics for each subformula
made visible in the tree. A green region corresponds to a valuation which assigns the
truth-value 1 to the given formula, and a white region to valuation which assigns this
formula the value 0. You can see in the left tree given in Figure 3.3 that the valuations
which makes the formula a ∧ (b ∨ c) true are abc, abc and abc (see Figure 3.4).

3.4 Syllogistic Situations

Since all syllogistic forms involve just three predicatesA,B andC, we can draw a general
picture of a syllogistic situation as the following Venn Diagram:

A B

C

The rectangular box stands for a set of objects that form the domain of discourse, with
three possible properties A, B and C. Note that there are 8 regions in all, quite properly,
since that is the number of all possible combinations. An individual without any of these
properties has to be outside of the three circles, like this:

A B

C

◦

An object with propertyA but lacking the propertiesB andC has to be inside theA circle,
but outside the B and C circles, like this:

3-10 CHAPTER 3. SYLLOGISTIC REASONING

A B

C

◦

Now let us look in detail at what the Aristotelian quantifiers express. All A are B expresses
that the part of the A circle outside the B circle has to be empty. We can indicate that in
the picture by crossing out the forbidden regions, like this:

A B

C

×
×

Note that the preceding picture does not take existential import into account. As we
already said, we will leave it out in the interest of simplicity. And we lose nothing in this
way. If you want to say that a predicate P is non-empty, you can always do so explicitly
with a quantifier ‘Some’.

No A are B expresses that the part of the A circle that overlaps with the B circle has
to be empty. Again, we can indicate this in a picture by crossing out the forbidden areas:

A B

C

×
×

Again, existential import (“there must be A’s”) is not taken into account by this picture.

Now we move from universal quantifiers to existential ones. Some A are B expresses
that the part of the picture where the A and the B circles overlap has to be non-empty. We
can indicate that in the picture by putting an individual in an appropriate position. Since
we do not know if that individual has property C or not, this can be done in two ways:

3.5. VALIDITY CHECKING FOR SYLLOGISTIC FORMS 3-11

A B

C

◦ A B

C

◦

Not all A are B, or equivalently Some are are not B, expresses that the part of the A circle
that falls outside the B circle has to be non-empty. There has to be at least one individual
that is an A but not a B. Since we do not know whether this individual has property C or
not, we can again picture this information in two possible ways:

A B

C

◦ A B

C

◦

Some authors do not like this duplication of pictures, and prefer putting the small
round circle for the individual on the border line of several areas.

You no doubt realize that such a duplication of cases makes the picture method much
harder in terms of complexity, and hence, as we shall see, the art in checking validity for
syllogisms is avoiding it whenever possible.

3.5 Validity Checking for Syllogistic Forms
The diagrams from the preceding section lead to a check for syllogistic validity:

Working with diagrams We illustrate the method with the following valid syllogism:

All warlords are rich

No student is rich

No warlord is a student

(3.18)

To carry out the validity check for this inference, we start out with the general picture
of a domain of discourse with three properties. Next, we update the picture with the
information provided by the premises. Here, the understanding is this:

3-12 CHAPTER 3. SYLLOGISTIC REASONING

Crossing out a region with × means that this region is empty (there are no
individuals in the domain of discourse with this combination of properties),
while putting a ◦ in a region means that this region is non-empty (there is
at least one individual with this combination of properties). Leaving a blank
region means that there is no information about this region (there may be
individuals with this combination of properties, or there may not).

The method is this: we update with the information from the premises, and next check
in the resulting picture whether the conclusion holds or not. Let A represent the property
of being a warlord, B the property of being rich, and C the property of being a student.
Then we start with the following general picture:

A B

C

According to the first premise, All A are B has to be true, so we get:

A B

C

×
×

By the second premise, No C are B has to be true, so we extend the picture as follows:

A B

C

×
× × ×

Finally, we have to check the conclusion. The conclusion says that the regions where
A and C overlap have to be empty. Well, they are, for both of these regions have been
crossed out. So the conclusion has to be true. Therefore, the inference is valid.

3.5. VALIDITY CHECKING FOR SYLLOGISTIC FORMS 3-13

The general method The method we have used consists of the following four steps:

Draw the Skeleton Draw an empty picture of a domain of discourse with three properties
A, B and C. Make sure that all eight combinations of the three sets are present.

Crossing out – Universal step Take the universal statements from the premises (the state-
ments of the form “All . . . ” and “No . . . ”, and cross out the forbidden regions in
the diagram.

Filling up – Existential step Take the existential statements from the premises (the state-
ments of the form “Some . . . ” and “Not all . . . ”), and try to make them true in the
diagram by putting a ◦ in an appropriate region, while respecting the× signs. (This
step might lead to several possibilities, all of which have to satisfy the check in the
next item.)

Check Conclusion If the conclusion is universal it says that certain regions should have
been crossed out. Are they? If the conclusion is existential it says that certain
regions should have been marked with a ◦. Are they? If the answer to this question
is affirmative the syllogism is valid; otherwise a counterexample can be constructed,
indicating that the syllogism is invalid.

To illustrate the procedure once more, let us now take the invalid syllogism 3.4 that was
mentioned before (repeated as 3.19).

All warlords are rich

No student is a warlord

No student is rich

(3.19)

The symbolic form of this syllogism is:

All A are B No C are A Therefore: No C are B. (3.20)

The premise statements are both universal. Crossing out the appropriate regions for the
first premise gives us:

A B

C

×
×

After also crossing out the regions forbidden by the second premise we get:

3-14 CHAPTER 3. SYLLOGISTIC REASONING

A B

C

×
× ×

Note that the region for the AC’s outside B gets ruled out twice. It looks like the second
premise repeats some of the information that was already conveyed by the first premise
(unlike the case with the previous example). But though this may say something about
presentation of information, it does not affect valid or invalid consequences.

Finally, we check whether the conclusion holds. No C are B means that the regions
where C andB overlap are forbidden. Checking this in the diagram we see that the region
where A, B and C overlap is indeed crossed out, but the region outside A where B and C
overlap is not. Indeed, the diagram does not contain information about this region. This
means that we can use the diagram to construct a counterexample to the inference.

The diagram allows us to posit the existence of an object that satisfies B and
C but not A, in the concrete case of our example, a rich student who is not a
warlord:

A B

C

×
× × ◦

This final diagram gives the shape that all counterexamples to the valididity of 3.19 have
in common. All these counterexamples will have no objects in the forbidden regions, and
at least one object in the region marked with ◦.

Diagrams like this have a long history in logic, going back to Leibniz and the 18th
century logicians.

Exercise 3.2 Check the following syllogistism for validity, using the method just explained.

Some philosophers are Greek

No Greeks are barbarians

No philosophers are barbarians.

(3.21)

3.5. VALIDITY CHECKING FOR SYLLOGISTIC FORMS 3-15

Exercise 3.3 Check the following syllogistic pattern for validity.

No Greeks are barbarians

No barbarians are philosophers

No Greeks are philosophers.

(3.22)

Exercise 3.4 Check the following syllogistic pattern for validity.

No Greeks are barbarians

Some barbarians are philosophers

Not all philosophers are Greek.

(3.23)

Exercise 3.5 Can you modify the method so that it checks for syllogistic validity, but now with
the quantifiers all read with existential import? How?

More than three predicates The validity check for syllogistics can also be extended to
syllogistic inferences with more than two premises (and more than three predicates). This
can still be done graphically (Venn had several beautiful visualizations), but you may also
want to think a bit more prosaically in terms of tabulating possibilities. Here is one way
(disregarding matters of computational efficiency, that will return below).

For purposes of exposition, assume that four predicates A,B,C,D occur in the infer-
ence. List all possible combinations in a table (compare the tables for the propositonal
variables in Chapter 2 – we economized a bit here, writing the property only when it
holds):

A B AB
C AC BC ABC
D AD BD ABD
CD ACD BCD ABCD

Take as example the following entailment

All A are B,No C are B,Some C are D,Therefore: Not all D are A. (3.24)

Again we can use the update method to check whether this is valid. First update with the
information that all A are B. This rules out certain possibilities:

A × B AB
C AC × BC ABC
D AD × BD ABD
CD ACD × BCD ABCD

All A are B

3-16 CHAPTER 3. SYLLOGISTIC REASONING

The information that no C are B also rules out possibilities, as follows:

A B AB
C AC BC × ABC ×
D AD BD ABD
CD ACD BCD × ABCD ×

No C are B

Combining these two updates, we get:

A × B AB
C AC × BC × ABC ×
D AD × BD ABD
CD ACD × BCD × ABCD ×

All A are B and No C are B

The third premise, “some C are D,” is existential. It states that there has to at least one
CD combination in the table. There is only one possibility for this:

A × B AB
C AC × BC × ABC ×
D AD × BD ABD
CD ◦ ACD × BCD × ABCD ×

Finally, we must check whether “not all D are A” holds in the table that results from
updating with the premises. And indeed it does: region CD is non-empty (indicated by
the presence of the ◦), so it gives us a witness of a D which is not an A. Therefore, the
given inference must be valid.

The system Working through the exercises of this section you may have realized that
the diagrammatic validity testing method can be applied to any syllogism, and that, in
the terms of Chapter 2, it is sound (only valid syllogism pass the test) and complete (all
valid syllogisms pass the test). Moreover, the method decides the question of validity in a
matter of a few steps. Thus, again in our earlier terms, it is a decision method for validity:
the system of the Syllogistic is decidable. This is like what we saw for propositional logic,
and indeed, the two systems are related, as we shall see in Section 3.7.

3.6 A Refutation Method for Syllogistic Validity
The validity testing method presented in the previous section proceeds by starting out
from the set of all possible syllogistic situations. Since syllogistic arguments involve
three properties, a situation for a syllogistic argument has 23 = 8 regions, corresponding
to all the possible combinations of the three properties. So there are 28 = 256 different

3.6. A REFUTATION METHOD FOR SYLLOGISTIC VALIDITY 3-17

situations to be considered altogether, for each region in the diagram can either be in-
habited or empty. This is somewhat daunting, and we would like to do better. And we
can.

A variation on the validity testing method presented in the previous section was pro-
posed by Christine Ladd, in a thesis written in 1882, under the direction of the famous
American logician Charles Sanders Peirce (1839–1914). Ladd manages to test syllogistic
validity while focussing on a single syllogistic situation.

Charles Sanders Peirce Christine Ladd

Instead of starting out with a diagram representing all possible syllogistic situations,
Ladd proposed to start out from a single situation, namely the situation where all regions
are inhabited:

A B

C

◦ ◦ ◦◦
◦◦ ◦
◦

Now consider again the syllogism

All A are B

All B are C

All A are C.

(3.25)

Now we make an important twist. To check whether this is valid, we attempt to refute
the argument, by trying to find a situation where the premises and the negation of the
conclusion are true. In other words, we are trying to find a model for:

All A are B,All B are C,Not all A are C.

3-18 CHAPTER 3. SYLLOGISTIC REASONING

First, observe that Not all A are C is equivalent to Some A are not C. Starting out from
the picture above, we first process the universal statements, as instructions to remove
individuals from the picture. The statement All A are B requires the region A \ B to be
empty, so we have to remove the inhabitants of this region, as follows:

A B

C

◦ × ◦◦
◦× ◦
◦

The statement All B are C requires the region B \ C to be empty, so we have to remove
the inhabitants from this region too, as follows:

A B

C

◦ × ××
◦× ◦
◦

Does this leave us with a situation where Some A are not C is true? For that to be the case,
we need to have at least one inhabitant in the region A \ C. But, as you can see in the
picture, such an inhabitant cannot be found. Now what does this mean? We have taken
care to start out with representatives for all possible combinations of the properties A, B
and C. Next, we have take care not to eliminate more individuals than strictly necessary
to make universal statements true. We end up with a situation where some existential
statement fails. So there is no way to make this particular set of statements jointly true.
This can only mean that the refutation attempt fails. In other words: the syllogism that we
started out with must be valid. This method is much more efficient, especially when used
for syllogisms with (many) more assumptions and classes.

The elimination process described above looks remarkably like update with propo-
sitional information. In fact, George Boole himself already suggested that propositional
logic can be used for checking syllogistic validity. The ruling out of combinations that
occurs in checking universal syllogistic statements works in the same way as the up-
date method for propositional logic that was discussed in Chapter 2. In updating with
propositional formulas, situations that make a formula false get eliminated from the set
of possibilities. With universal syllogistic statements things work the same way. The
universal statement “All A are B” eliminates situations where some members of A are

3.7. OUTLOOK — THE COMPLEXITY OF SYLLOGISTIC REASONING 3-19

non-Bs. In the same way a universal statement of the form “No A are B” rules out the
AB-representatives.

The treatment of existential statements is different in this setting. After the truth of
universal statements is enforced by eliminative updates, existential statements are to be
tested only. Verification of the existential statement “Some A are B” is the same as
checking whether there is anAwhich is alsoB still present in the situation. An existential
statement “Not all A are B” is true if an A which does not belong to B is still present.

As usual, the rest of this chapter explores a few connections with other areas, start-
ing with mathematical systems, then moving to computation, and ending with cognition.
These topics are not compulsory in terms of understanding all their ins and outs, but they
should help broaden your horizon.

3.7 Outlook — The Complexity of Syllogistic Reasoning
The clear advantage of the refutation method as presented in the previous section is that
only a single diagram is needed to test the validity of a syllogism. Still, this method
suggests that syllogistic reasoning is just as complex as testing validity of propositional
logical inferences since all the possible combinations of properties have to be represented
in such a diagram or table. The number of combinations coincide with the number of rows
in truth tables for propositional logic: 2n where n is the number of variables. Fortunately,
there exists an alternative translation to propositional logic such that it can be incorporated
into a computationally well behaving fragment for which a simple algorithm can be given
which decides validity in polynomial time.

Again, as in the previous section, this method is refutation based by means of checking
the consistency of the assumptions extended with the negation of the conclusion.

Translation to propositional logic Let Σ be some finite set of syllogistic statements of
which we want to test whether it is consistent or not. To begin with, we translate this set
by means of a function T which assigns a set of propositional formulas to every statement
in Σ. Let ϕ1, ..., ϕn be an enumeration of all existential statements in Σ, then T is defined
in the following way for every ϕi:

T (ϕi) =

{ {pi, qi} if ϕi = Some P are Q

{pi,¬qi} if ϕi = Not all P are Q

For the universal statements we define T in the following way:

T (All P are Q) = {¬p1 ∨ q1, . . . ,¬pn ∨ qn}
T (No P are Q) = {¬p1 ∨ ¬q1, . . . ,¬pn ∨ ¬qn}

A propositional variable pi can be read as the statement that the individual indexed by
the number i belongs to the class P .” The translation T introduces for each existential

3-20 CHAPTER 3. SYLLOGISTIC REASONING

statement an individual numbered i witnessing this statement: A PQ-er confirms Some
P are Q, and a P -er who belongs to the non-Q’s establishes Not all P are Q. For each
universal statement All P are (not)Q the translation T settles for each of these individuals
that if it is a P then it has to be a (non)-Q.

Let T (Σ) be the set of propositional formulas obtained by joining all individual trans-
lations into one set. For this set we have the following property:

T (Σ) is consistent if and only if Σ is consistent. (3.26)

In the last chapter of the third part on logical methods the technical details of this kind of
correspondences will be explained.

The set T (Σ) contains relatively simple formulas for which consistency can be tested
by means of a simple procedure. All the formulas in T (Σ) are so-called Horn-formulas
and these formulas have the so-called minimal valuation property. This means that if such
a set S is consistent then there exists a valuation VS which supports all the formulas in
the set S and that all other valuations V which supports S completely assigns 1 to all the
propositional variables which are true under VS .

Checking consistency of our syllogistic set Σ then comes down to computing first
which variables have to be made true by a candidate minimal valuation for T (Σ), and
then we test whether this candidate also supports all negative information in T (Σ). In or-
der to get hold of the only candidate minimal valuation we take all propositional variables
in T (Σ) and combine these with the formulas of the form ¬p ∨ q as to specify what else
has to be made true. So, we start with

{p | p ∈ T (Σ)}

and then add
{q | ¬p ∨ q ∈ T (Σ)}

for all propositional variables p of which truth was already confirmed. The last extension
step has then to be repeated until no further propositional variables are added. This pro-
cedure has to end at a certain stage since the number of propositional variables occuring
in the translation set T (Σ) is finite.

The second part of the consistency test requires the definition of our candidate valua-
tion V as the valuation which assigns 1 to all the propositional variables in the set which
has been constructed in the first part and the value 0 to those variables which are not in
this set.

The last part of the test is whether this valuation V supports all negative formulas ¬p
and ¬q ∨¬r in T (Σ). If this is the case then this valuation is the minimal valuation VT (Σ)

and then T (Σ), and also Σ, must be consistent. If it does not support all the negative
information in T (Σ) then Σ must be inconsistent.

The soundness of the last conclusion comes with the minimal valuation property.
Surely, the valuation V supports all the formulas of the form p and ¬q ∨ r because of

3.7. OUTLOOK — THE COMPLEXITY OF SYLLOGISTIC REASONING 3-21

the way it has been constructed. Moreover, it is a minimal valuation for this part of T (Σ).
If V falsifies one of the negative formulas then every valuation which extends V with
more true propositional variables will also falsify such a formula. Formally, if V sup-
ports all the formulas in T (Σ) then V = VT (Σ). If it does not, then VT (Σ) does not exist
and therefore no valuation supports the full translation set. In the latter case T (Σ), and
therefore Σ itself, must be inconsistent.

Examples Let us illustrate the method by the following example with four properties:

All PQ, All QR, Some PS/ All RS

Following the refutation procedure we instead check the consistency of the set

{All PQ, All QR, Some PS, Not all RS}

There are two existential statements in this set, and therefore, our procedure tries to con-
struct a situation with two individuals, of which the first belongs to the PS’s and the
second belongs to R but not to S. Together with the translation of the two universal
statements we obtain the following set of propositional formulas:

{p1, s1, r2,¬s2,¬p1 ∨ q1,¬p2 ∨ q2,¬q1 ∨ r1,¬q2 ∨ r2}

The set of true propositional variables we start with is {p1, s1, r2}. In the first round
of the procedure to construct the minimal valuation this set is extended with q1 and in
the second round with r1. Then in the third round no more information is added. The
corresponding valuation verifies the negative information indeed, and therefore the given
set is consistent. This means that the original syllogism must be invalid. A situation with
two individuals of which the first has all four properties and the second belongs only to R
is indeed a situation which supports the three assumptions but rejects the conclusion.

If we replace the conclusion of the first example by Some RS then we obtain a valid
syllogism. We have to prove this by demonstrating the inconsistency of

{All PQ, All QR, Some PS, No RS}

This set contains only a single existential statement, and the translation procedure gives a
smaller set than in the previous case:

{p1, s1,¬p1 ∨ q1,¬q1 ∨ r1,¬r1 ∨ ¬s1}

The set of true propositional variables we begin with is {p1, s1}. In the first extension
round q1 is added, and in the second r1. The third round does not give a further extension.
The resulting valuation falsifies ¬r1 ∨ ¬s1 and therefore the set of syllogistic statements
must be inconsistent, i.e., the original inference must be valid.

3-22 CHAPTER 3. SYLLOGISTIC REASONING

3.8 Outlook — Knowledge Representation
Our next theme concerns a connection with computer science. So far you we have mainly
emphasized computation and algorithms. But of course, computer science is always about
two things in tandem: data representation and computation over these data. This time we
look at the former aspect.

Much of practical computing has to do with retrieving knowledge that has been stored
in data-bases or knowledge-bases. These often have a logical flavour:

Syllogistic knowledge bases A syllogistic knowledge base (henceforth KB) is a set of
triples of the form (A,B, 1) or (A,B, 0), where A and B are names of classes. If A is a
name of a class, then A is the name of the complement of that class. The complement of
a class A is the the class of all things that are not in A. If (A,B, 1) is in the KB, then we
take that to mean that A ⊆ B. If (A,B, 0) is in the KB, then we take that to mean that
A 6⊆ B. Recall that A 6⊆ B is equivalent to A ∩ B 6= ∅. (Again, if you have difficulty
with this set notation, you should consult Appendix A.)

Here is an example of a very simple KB:

{(Academics,Europeans, 0), (Musicians,Europeans, 0),
(Dutch,Europeans, 1), (Academics,Musicians, 1)}. (3.27)

The triple (Academics,Europeans, 0) says that there are non-European academics.
(Musicians,European, 0) expresses that not all musicians are Europeans.

(Dutch,European, 1) expresses that all Dutch are Europeans.
Finally, the triple (Academics,Musicians, 1) expresses that Academics ⊆ Musicians,

or equivalently, that no-one is both an academic and a musician (according to this KB,
that is).

Such knowledge bases can store general conceptual knowledge about how predicates
are related, but also particular connections between properties that hold for certain groups
of objects. Both occur widely in practice.

Incidentally, when talking about complements, we want to avoid class names like
A. We don’t want to talk about the class of “un-unhappy people”. We call such people
“happy”. Here is a trick for that. Let Ã be given by: if A is of the form C then Ã = C,
otherwise Ã = A. In other words, we let double overlines cancel out.

Extracting information through logic Now we can ask ourselves questions about what
follows from the information in a KB. For example, does it follow from the information in
(3.27) that some academics are Europeans? No, it does not, but it does follow that some
academics are non-Europeans. Does it follow from the information in (3.27) that there
are European musicians? No, it does not. Does it follow from the KB that all academics
are non-European? No, it does not.

3.8. OUTLOOK — KNOWLEDGE REPRESENTATION 3-23

We will now give axioms and rules for deriving information from a KB. These axioms
and rules give an inference engine for consulting a KB. The rules of the inference engine
allow us to compute properties of the ⊆ relation. Intuitively, A =⇒ B expresses dat
A ⊆ B. That is, =⇒ is a syntactic symbol that is semantically interpreted as the subset
relation. We will use A 6=⇒ B to express that A 6⊆ B.

Here is the connection with the statements of Syllogistics:

• “All A are B” is expressed as A =⇒ B,

• “No A are B” is expressed as A =⇒ B̃,

• “Not all A are B” is expressed as A 6=⇒ B,

• “Some A are B” is expressed as A 6=⇒ B̃,

Now we formulate the axioms and rules of the system. You can see what follows as
another exercise with a little symbolic proof calculus of the sort that we have also explored
in Chapter 2 for propositional logic.

An axiom is a rule without a premise. Our first axiom says that all A are A:

A =⇒ A

Next, we will not follow Aristotle in reading the classes with existential import, but in-
stead we will make the weaker assumption that our domain of discourse is not empty.
One way to express this is by saying that it has to hold for any class A that if there are
no non-A, then there must be A. (For if there are no A and there are no non-A, then
this means that the universe is empty, and this we want to exclude.) Here is the rule that
expresses our assumption of a non-empty domain of discourse:

Ã =⇒ A

A 6=⇒ Ã

Computing the subset relation from a knowledge base K is done with the following rules:

(A,B, 1) ∈ K
A =⇒ B

A =⇒ B

B̃ =⇒ Ã
A =⇒ B B =⇒ C

A =⇒ C

Computing the non-subset relation from the knowledge base is done with the rules below:

(A,B, 0) ∈ K
A 6=⇒ B

A 6=⇒ B

B̃ 6=⇒ Ã

A 6=⇒ C B =⇒ C

A 6=⇒ B

A =⇒ B A 6=⇒ C

B 6=⇒ C

These are all the rules of the system.

Here is a concrete example of the derivation of a statement from the KB given in (3.27)
with these rules:

3-24 CHAPTER 3. SYLLOGISTIC REASONING

(Academics,Europeans, 0) ∈ K
Academics 6=⇒ Europeans

(Dutch,Europeans, 1) ∈ K
Dutch =⇒ Europeans

Academics 6=⇒ Dutch

Next we call a KB inconsistent if there exist A,B for which both A =⇒ B and
A 6=⇒ B can be derived. If a KB is not inconsistent it is called consistent, and these are
of course the ones that the information systems around us hopefully use:

Exercise 3.6 Show that the KB {(A,B, 1), (B,C, 1), (C,D, 1), (A,D, 0)} is inconsistent.

If a knowledge base is consistent, then questions of the form Do Q CN VP?’ will
always have an unambiguous answer: “Yes”, “No”, or “I don’t know”. For example, the
question about (3.27) “Are all musicians Dutch?” will get the answer “I don’t know”.

Exercise 3.7 What is the answer of (3.27) to the question “Are there any non-Dutch musicians?”

Updating knowledge bases Other topics from earlier chapters, too, make sense in this
setting. In particular, if a knowledge base is consistent, then an update operation can be
defined to create a larger knowledge base. To a new fact of the form “QCNV P ” there
can be three possible reactions:

• “I knew that already” if the information is already derivable from the KB.

• “Inconsistent with my information” if the information contradicts what is in the KB.

• “OK” if the information is consistent with the KB (this means: if adding the infor-
mation to the knowledge base results in a new consistent knowledge base).

Example Update of (3.27) with “not all musicians are Dutch” results in “OK”, and the
fact (Musicians,Dutch, 0) gets added to the KB.

Exercise 3.8 What is the reaction to update of (3.27) with “not all academics are Dutch”?

Exercise 3.9 What is the reaction to update of (3.27) with “no musicians are academics”?

Thus, the old Aristotelian language of predicates is at the same time a modern data-
base language. It is also used in information retrieval, where computer systems (try to)
derive information from text corpora. The area of description logic in computer science
deals with such simple formalisms for representing knowledge, and efficient algorithms
for extracting information from them.

3.9. OUTLOOK — THE SYLLOGISTIC AND ACTUAL REASONING 3-25

3.9 Outlook — The Syllogistic and Actual Reasoning
Aristotle’s system is closely linked to the grammatical structure of natural language, as
we have said at the start. Indeed, many people have claimed that it stays so close to
our ordinary language that it is part of the natural logic that we normally use. Medieval
logicians tried to extend this, and found further patterns of reasoning with quantifiers
that share these same features of staying close to linguistic syntax, and allowing for very
simple inference rules. ’Natural Logic’ is a growing topic these days, where one tries to
find large simple inferential subsystems of natural language that can be described without
too much mathematical system complexity. Even so, we have to say that the real logical
hitting power will only come in our next chapter on predicate logic, which consciously
deviates from natural language to describe more complex quantifier reasoning of types
that Aristotle did not handle.

Syllogistic reasoning has also drawn the attention of cognitive scientists, who try to
draw conclusions about what goes on in the human brain when we combine predicates
and reason about objects. As with propositional reasoning, one then finds differences in
performance that do not always match what our methods say, calling attention to the issue
how the brain represents objects and their properties and relations. From another point
of view, the diagrammatic aspect of our methods has attracted attention from cognitive
scientists lately. It is known that the brain routinely combines symbolic language-oriented
and visual and diagrammatic representations, and the Venn Diagram method is one of the
simplest pilot settings for studying how this combination works.

Summary In this chapter you have learnt how one simple but very widespread kind
of reasoning with predicates and quantifiers works. This places you squarely in a long
logical tradition, before we move to the radical revolutions of the 19th century in our next
chapter. More concretely, you are now able to

• write basic syllogistic forms for quantifiers,

• understand set diagram notation for syllogistic forms,

• test syllogistic inferences using Venn diagrams,

• understand how diagrams allow for update,

• understand connections with propositional logic,

• understand connections with data representation.

3-26 CHAPTER 3. SYLLOGISTIC REASONING

Chapter 4

Talking about the World with Predicate
Logic

Overview At this stage of our course, you already know propositional logic, the sys-
tem for reasoning with sentence combination. You have also seen how sentences make
quantified statements about properties of objects, and you know the basics of syllogistic
reasoning with quantifiers. In this Chapter you are going to learn the full system of ‘pred-
icate logic’ of objects, predicates, and in principle, arbitrary forms of quantification. This
is the most important system in logic today, because it is a universal language for talking
about structure. A structure is a situation with objects, properties and relations, and it can
be anything from daily life to science: your family tree, the information about you and
your friends on facebook, the design of the town you live in, but also the structure of the
number systems that are used in mathematics, geometrical spaces, or the universe of sets.

Predicate logic has been used to increase precision in describing and studying all these
structures, from linguistics and philosophy to computer science and mathematics. In this
chapter, you will learn how it works, first more informally with examples, later with more
formal definitions. But this power comes at a price, this chapter is not easy, and mastering
predicate logic until it comes naturally to you takes a while, as successive generations of
students (including your teachers) have found.

4.1 Learning the Language

Propositional logic is about classifying situations in terms of ‘not’, ‘and’, ‘or’ combina-
tions of facts, whose structure we do not analyze any further. This truth-table perspective
is powerful in its own way (it is the basis of all the digital circuits running your computer),
but very poor in other respects. Basic propositions in propositional logic are not assumed
to have internal structure. “John walks” is translated as p, “John talks” as q, and the infor-
mation that both statements are about John gets lost. Predicate logic looks at the internal
structure of such basic facts. It translates “John walks” as Wj and “John talks” as Tj,
so that it becomes clear that the two facts express two properties of the same individual

4-1

4-2 CHAPTER 4. TALKING ABOUT THE WORLD WITH PREDICATE LOGIC

(named by the constant j).
More generally, predicate logic is a language that can say much more than proposi-

tional logic about the internal structure of situations, especially, the objects that occur, the
properties of these objects, and their relations to each other. In addition, predicate logic
can talk about universal quantification (all, every, each, . . .) and existential quantification
(some, a, . . .). This brings it much closer to two other languages that you already knew
before this course: the natural languages that we use in the common sense world of our
daily activities, and the symbolic languages that are used in mathematics and the sciences.
You can view predicate logic as a bit of both, though in decisive points, it differs from
natural language and follows a more mathematical system.

Predicate logic is a somewhat streamlined version of a “language of thought” that was
proposed in 1878 by the German philosopher and mathematician Gottlob Frege (1848 –
1925). The experience of a century of work with this language is that, in principle, it can
write all of mathematics as we know it today.

Gotlobb Frege

We will now introduce predicate logic via a long string of examples, the way you
usually learn a language by doing. Grammar comes later: further on in this chapter
we give precise grammatical definitions, plus other information. First comes our list of
examples, to allow you to learn by cases. We do not start in a vacuum here: the natural
language that you know already is our running source of examples and, in some cases,
contrasts:

The basic alphabet We first need names for objects. We use constants (‘proper names’)
a, b, c, . . . for special objects, and variables x, y, z, . . . when the object is indefinite. Later
on, we will also talk about function symbols for complex objects.

Then, we need to talk about properties and predicates of objects. Capital letters are
predicate letters, with different numbers of ‘arguments’ (i.e., the objects they relate) indi-
cated. In natural language, 1-place predicates are intransitive verbs (“walk”) and common
nouns (“boy”), 2-place predicates are transitive verbs (“see”), and 3-place predicates are
so-called ditransitive verbs (“give”). 1-place predicates are als called unary predicates,
2-place predicates are called binary predicates, and 3-place predicates are called ternary
predicates. In natural language ternary predicates are enough to express the most complex
verb pattern you can get, but logical languages can handle any number of arguments.

4.1. LEARNING THE LANGUAGE 4-3

Next, there is still sentence combination. Predicate logic also has the usual operations
from propositional logic: ¬, ∧, ∨,→,↔.

Finally, and very importantly, we need to express quantification. Predicate logic has
quantifiers ∀x (“for all x”) and ∃x (“there exists an x”) that can express an amazing
number of things. The use of these key operators will become clear in what follows.

Learning by example: from natural language to predicate logic For now, here is a
long list of examples exploring the style of thinking in predicate logic. You can think
of this as learning to see the underlying ‘logical form’ of the statements that you would
normally make when speaking or writing. Later on in this chapter we will say a bit
more about the history of this important notion. Along the way we will point out various
important features.

We start with the simplest statements about objects:

natural language logical formula
John walks Wj
John is a boy Bj
He walks Wx
John sees Mary Sjm
John gives Mary the book Gjmb

Predicate logic treats both verbs and nouns as standing for properties of objects, even
though their syntax and communicative function is different in natural language. The
predicate logical translation of “John walks” uses a predicate letter and a constant. The
predicate logical translation of “John is a boy” also uses a predicate letter with a single
constant: Bj.

Remark on natural language and logic This example is interesting, for it may seem
that “John is a boy” contains an existential quantifier (“there is a boy”), but this appear-
ance is misleading. This has been much discussed: already ancient Greek logicians felt
that their own language has a redundancy here. Likewise, the Greek logicians already
observed that the “is” of predication in “John is a boy” does not seem to do any real work,
and again, might just be an accident of language. Indeed, many natural languages do not
put an “a” in this position. An example from Latin: “puer est” (“he is a child”). But such
languages also do not put an “a” in positions where there is a real existential quantifier.
Another example from Latin: “puer natus est” (“a child is born”). As one can imagine,
debates about how natural language structure relates to logical structure are far from over.

Translation key Note that in writing predicate logical translations, one has to choose a
“key” that matches natural languages expressions with the corresponding logical letters.
And then stick to it. For mnemonic purposes, we often take a capital letter for a predicate
close to the natural language expression (B for “boy”). Technically, in the logical nota-
tion, we should indicate the exact number of object places that the predicate takes (“B has

4-4 CHAPTER 4. TALKING ABOUT THE WORLD WITH PREDICATE LOGIC

one object place”), but we drop this information when it is clear from context. The object
places of predicates are also called argument places. If a predicate takes more than one
argument, the key should say in which order you read the arguments. E.g., our key here
is that Sjm says that John sees Mary, not that Mary sees John. The latter would be Smj.

Predicates in language and mathematics In mathematics, 2-place predicates are most
frequent. Common examples are =, <, ∈. It is usual to write these predicates in between
their arguments: 2 < 3. (We will say more about the expressive possibilities of the
predicate “=” in section 4.5.) Occasionally, we also have 3-place predicates. An example
from geometry is “x lies between y and z”. Note that this is not a conjunction of “x lies
between y” and “x lies between z”: that would be nonsense.

informal mathematics logical/mathematical formula
Two is smaller than three 2 < 3
x is smaller than three x < 3
x is even (i.e., 2 divides x) 2|x
Point p lies between q and r Bpqr

In the special case of talking about mathematics there are standard names for objects and
relations. In x < 3, the term “3” is a constant that names a particular natural number,
and “<” is a standard name for a specific relation. The notation x|y expresses that x is a
divisor of y, i.e., that division of y by x leaves no remainder.

Incidentally, an abbreviation that is often used in mathematics is x < y < z, to express
that the number y is in between x and z. This is not an example of real 3-place predicate.
Rather, it is an abbreviation of x < y ∧ y < z.

Exercise 4.1 Express ¬(x < y < z) in terms of the binary predicate < and propositional connec-
tives, using the fact that x < y < z is an abbreviation of x < y ∧ y < z.

The standard in predicate logic is to write the predicate first, then the objects. The
exceptions to this rule are the names for binary relations in mathematics: < for less than,
> for greater than, and so on. Still, the general rule is to write the predicate letter first.
This is for uniformity, and it takes getting used to. Many natural languages put predicates
in the middle (English, French, but also the informal language of mathematics), but there
are also languages that put them first, or last. Dutch and German are interesting, since
they put predicates in the middle in main clauses (“Jan zag Marie”), but change that order
in subordinate clauses (“Ik hoorde dat Jan Marie zag”).

Referring to objects: pronouns and variables We already saw how proper names
like “John” or “Mary” refer to specific objects, for which we wrote constants like a, b.
But both natural language and mathematics have found the need for ‘variable names’ as
well, that stand for different objects in different contexts. Pronouns in language more
or less correspond with variables: Sjx expresses “John sees her” for some contextually
determined female, and x > 2 expresses that some contextually determined number x is

4.1. LEARNING THE LANGUAGE 4-5

larger than 2. So pronouns are like variables, at least, to a first approximation. Now the
famous author Italo Calvino once wittily called pronouns “the lice of thought” [Cal88].
But are they just a nuisance? To the contrary, what pronouns do is provide coherence in
what you say, in referring back to the same individual in the right places. That is also
exactly what mathematical variables do. So we get:

John sees her Sjx
He sees her Syx
This is less than that x < y
He sees himself Sxx

Note that whether x < y is true totally depends on specifying x and y. ‘This’ and ‘that’ in
natural language are demonstrative pronouns for pointing at things. Mathematicians use
variables as pointers. Instead of “suppose we have some number greater than one” they
say “suppose x is a number greater than one”. Next, they use x to refer to this number.

Adding on propositional logic Propositional operators can be added in the obvious
way to the preceding statements, and they function as before:

John does not see Mary ¬Sjm
Three is not less than two ¬3 < 2, or abbreviated: 3 ≮ 2.
John sees Mary or Paula Sjm ∨ Sjp
Three is less than three or three is less than four 3 < 3 ∨ 3 < 4.
x is odd (i.e., two does not divide x) ¬(2|x)
If John sees Mary, he is happy Sjm→ Hj

In the last example, natural language uses a pronoun (“he is happy”), while the logical
translation does not use a variable but a second occurrence of the constant j to refer to the
same object as before.

Exercise 4.2 Translate the following sentences into predicate logical formulas:

(1) If John loves Mary then Mary loves John too.

(2) John and Mary love each other.

(3) John and Mary don’t love each other.

(4) If John and Peter love Mary then Peter nor Mary loves John.

The binary predicate ≤ can be expressed in terms of < and =:

x is less than or equal to y x ≤ y x < y ∨ x = y

Exercise 4.3 Rephrase “x ≤ y ∧ y ≤ z” in predicate logic, using binary relations < for “less
than” and = for “equal”.

Exercise 4.4 Rephrase “¬(x ≤ y ∧ y ≤ z)” in predicate logic, using binary relations < for “less
than” and = for “equal”.

4-6 CHAPTER 4. TALKING ABOUT THE WORLD WITH PREDICATE LOGIC

A first glimpse of quantifiers Now for quantifiers, where we say that objects exist
without naming them explicitly:

Someone walks ∃xWx
Some boy walks ∃x(Bx ∧Wx)
John sees a girl ∃x(Gx ∧ Sjx)
A girl sees John ∃x(Gx ∧ Sxj)
A girl sees herself ∃x(Gx ∧ Sxx)

Here you can see what variables do: they keep track of which object does what when that
object occurs several times in the sentence. With long sentences or long texts, a systematic
mechanism like this becomes crucial in keeping reasoning straight.

Here are some examples with universal quantifiers:

Everyone walks ∀xWx
Every boy walks ∀x(Bx→ Wx)
Every girl sees Mary ∀x(Gx→ Sxm)

Note that “Some boy walks” is translated with a conjunction symbol, and “Every boy
walks” is translated using an implication symbol. The following exercise explains why.

Exercise 4.5 Let B be the predicate for “boy” and W the predicate for “walk”.

(1) What does ∀x(Bx ∧Wx) express?

(2) And what does ∃x(Bx→Wx) express?

There is much more to quantifiers, but we will take things slowly. For the moment,
just let the above examples sink in. At first, you may find the predicate-logical way of
thinking unfamiliar. But give it some more thought, and you may come to see that the
predicate-logical formulas really get to the heart of meaning and structure of objects.

4.2 Monadic Predicate Logic
Before unleashing the full power of quantifiers in predicate logic, let us first use a more
modest stepping stone.

The language of the Syllogism (Chapter 3) may be compared with a small fragment
of predicate logic that imposes a restriction on the form of the predicates that are al-
lowed. Predicate logic with only 1-place predicates (unary properties of objects) is called
monadic predicate logic. This restriction on predicate form curbs the power of quantifica-
tion considerably, but it also makes it easier to understand. In this section we will iscuss
how syllogistic reasoning can be expressed in monadic predicate logic.

Here is how the syllogistic statements can be expressed in monadic predicate logic:

All A are B ∀x(Ax→ Bx)

No A are B ¬∃x(Ax ∧Bx)

Some A are B ∃x(Ax ∧Bx)

Not all A are B ¬∀x(Ax→ Bx)

4.2. MONADIC PREDICATE LOGIC 4-7

Exercise 4.6 Give the predicate logical formulas for the following syllogistic statements:

(1) No B are C.

(2) Some A are C.

(3) Not all A are B.

Exercise 4.7 Take the following set of premises:

∀x(Ax→ Bx),∀x(Bx→ Cx),∀x(Cx→ Ax).

Show that the conclusion ∀x(Bx→ Ax) follows from these premises, by using a small variation
of one of the methods of Chapter 3.

Syllogistic theory has the following equivalences:

• Not all A are B has the same meaning as Some A are not B.

• All A are not B has the same meaning is there are no A that are also B.

The predicate logical versions of these equivalences give important information about
the interaction between quantification and negation:

• ¬∀x(Ax → Bx) is equivalent to ∃x¬(Ax → Bx), which is in turn equivalent to
∃x(Ax ∧ ¬Bx),

• ∀x(Ax → ¬Bx) is equivalent to ¬∃x¬(Ax → ¬Bx), which is in turn equivalent
to ¬∃x(Ax ∧Bx).

From this we can distill some important general quantification principles:

• ¬∀xϕ is equivalent to ∃x¬ϕ,

• ¬∃xϕ is equivalent to ∀x¬ϕ.

Reflecting on these principles a bit further, we see that negation allows us to express
one quantifier in terms of the other, as follows:

• ∀xϕ is equivalent to ¬∃x¬ϕ,

• ∃xϕ is equivalent to ¬∀x¬ϕ.

Exercise 4.8 Translate the following syllogistic statements into predicate logic, without using
existential quantifiers:

(1) Some A are B.

(2) Some A are not B.

4-8 CHAPTER 4. TALKING ABOUT THE WORLD WITH PREDICATE LOGIC

(3) No A are B.

Exercise 4.9 Translate the following syllogistic statements into predicate logic, without using
universal quantifiers:

(1) All A are B.

(2) All A are non-B.

(3) No A are B.

In the chapter on computation (Chapter 11), we will show how all syllogistic reasoning
can be translated in monadic predicate logic. Here we just summarize a few features of
this important subsystem:

• Each formula of monadic predicate logic is equivalent to one in which no quantifier
stands over another.

• In fact, we have a generalization of the earlier ‘distributive normal forms’ of propo-
sitional logic. Calling an atom of the form Px or a negated atom Px a literal, a
‘type description’ is a conjunction of literals: one for each monadic predicate let-
ter. These describe the kinds of objects that can occur. A state description is then
a conjunction, for each state description, of either its existential version that such
objects occur, or the negation of that. This completely determines a ‘kind of se-
mantic model’. Now comes the key fact: each formula in monadic predicate logic
is equivalent to a disjunction of state descriptions.

• Given this closeness to propositional logic, we have a fact that already showed
when we saw the Venn Diagram method for testing syllogisms. Valid consequence
in monadic predicate logic is decidable: there is a mechanical method for testing it.

• One way of testing validity in monadic predicate logic is by translation into propo-
sitional logic, but there are many other methods. All share one feature: the com-
putational complexity goes up exponentially compared to propositional logic, since
we get many more possible situations to check than there were lines in a simple
truth table. Thus, as we have said several times already: one always pays a price,
greater expressive power means higher computational complexity. To console you,
this is not a special curse of logic, the maxim holds everywhere in science.

4.3 Binary Predicates and Quantifier Combinations

Now we make a step where predicate logic really comes into its own.

4.3. BINARY PREDICATES AND QUANTIFIER COMBINATIONS 4-9

Predicates with more than one object The real power of quantifiers shows when we go
beyond monadic predicates, i.e., properties of objects to relations between more objects
at the same time. This move is crucial to mathematics and science, which all turn on
comparative predicates such ‘x is smaller than y’, ‘x is an element of y’, or ‘x lies in
between y and z’. But the same move is central to natural language. Monadic predicates
are like intransitive verbs ‘Walk’, ‘Talk’, etc. But equally ubiquitous are transitive verbs
that take both a subject and an object, such as ‘Sees’, ‘Loves’. In fact, some verbs even
take 3 objects, as in ‘x gives y to z’.

Actually, the hold of the syllogistic and unary predicates has been so strong that
throughout history poeple have tried to reduce binary predicates to unary ones, reading,
say, ‘x is smaller than y’ as ‘x is small and y is not small’. But if you think about this a
bit, you will see that it has little to recommend itself. Mount Everest is taller than the K2,
but the K2 is still really tall!

Therefore, we now take binary and higher predicates seriously.

Repeated quantifiers And once we do that, we will also see that quantifiers latch on
to them, creating patterns that are essentially more complex than those found in monadic
predicate logic. These patterns occur in science and natural language, but predicate logic
makes them especially perspicuous:

Everyone sees someone ∀x∃ySxy
Someone sees everyone ∃x∀ySxy
Everyone is seen by someone ∀x∃ySyx
Someone is seen by everyone ∃x∀ySyx

The domain of quantifiers Here an additional assumption is made. The quantifiers
range over all objects in some given set of objects. This is called the domain of discourse.
In this case the domain only contains human beings.

Most often quantification in natural language sentences range over a particular subset
of the domain of discourse. If the domain of discourse is human beings, then ‘every girl’
talks about a subset of the domain, as does ‘some boy’. In the case of the translations of
syllogistic statements like “All A are B” the situation was similar. In a sense, this is not
a statement about the whole domain of discourse, but only about the As in the domain of
discourse. The patterns are:

• “All A are . . . ” translates into ∀x(Ax→ · · ·).

• “Some A are . . . ” translates into ∃x(Ax ∧ · · ·).

Translating sentences with multiple quantifiers We can also use these patterns for
finding translations for sentences involving double quantifications, as in the following
example:

Every boy loves a girl. (4.1)

4-10 CHAPTER 4. TALKING ABOUT THE WORLD WITH PREDICATE LOGIC

To begin with we translate the pattern for “All A are B”:

∀x (Bx→ ϕ(x)) (4.2)

Here B is a unary predicate to represent ‘boy’, and ϕ(x) stands for the property that we
want to assign to all the boys x: “x loves a girl”. This part of the sentence is in fact
something of the form “Some C are D”, where C represents the class of girls and D the
class of those objects which are loved by x. The predicate logical translation of ϕ(x)
therefore looks as follows:

∃y (Gy ∧ Lxy) (4.3)

with Gy for “y is a girl” and Lxy for “x loves y”. Substition of this translation for ϕ(x)
in (4.2) gives us the full predicate logical translation of (4.1):

∀x (Bx→ ∃y (Gy ∧ Lxy)) (4.4)

In the following figure, a parse tree of the translation is given which shows the composi-
tional structure of predicate logic. Every subformula corresponds to a sentence in natural
language:

∀x
Every boy loves some girl

→
If x is a boy then x loves some girl

Bx

x is a boy
∃y

x loves some girl

∧
y is a girl whom x loves

Gy

y is a girl
Lxy

x loves y
(4.5)

This way of constructing translations can be of great help to find predicate logical
formulas for natural language sentences. In ordinary language we are used to writing
from left to right, but in predicate logic the order of putting together connectives and
quantifiers is often non-linear. The following longer example illustrates this.

No girl who loves a boy is not loved by some boy. (4.6)

Although this sentence looks quite complicated, its surface structure coincides with the
syllogistic form “No A are B”, and so our first translation step is:

¬∃x (ϕ(x) ∧ ψ(x)) (4.7)

4.3. BINARY PREDICATES AND QUANTIFIER COMBINATIONS 4-11

where ϕ(x) are those x who are girls who love some boy, and ψ(x) represents the class of
those x who are loved by no boy. The first part, ϕ(x), is a conjunction of two properties:
x is a girl and x loves a boy. This is just a small step towards a complete translation:

¬∃x ((Gx ∧ ϕ1(x)) ∧ ψ(x)) (4.8)

with ϕ1(x) representing “x loves a boy”. This part can be translated into:

∃y (By ∧ Lxy) (4.9)

Substitution of this result for ϕ1(x) in (4.8) gives us the following intermediate result:

¬∃x ((Gx ∧ ∃y (By ∧ Lxy)) ∧ ψ(x)) (4.10)

The subformula ψ(x) represents “No boy loves x”, which can be translated into:

¬∃z (Bz ∧ Lzx) (4.11)

This yields the final result:

¬∃x ((Gx ∧ ∃y (By ∧ Lxy)) ∧ ¬∃z (Bz ∧ Lzx)) (4.12)

Below a complete composition tree is given for this translation. Again, every subformula
can be paraphrased in natural language:

¬
No girl who loves a boy is not loved by some boy

∃x
Some girl who loves a boy is not loved by some boy

∧
x is a girl who loves a boy is not loved by some boy

∧
x is a girl who loves a boy

Gx

x is a girl
∃y

x loves a boy

∧
y is a boy who is loved by x

By

y is a boy
Lxy

x loves y

¬
x is not loved by some boy

∃z
x is loved by some boy

∧
z is a boy who loves x

Bz

z is a boy
Lzx

z loves x
(4.13)

4-12 CHAPTER 4. TALKING ABOUT THE WORLD WITH PREDICATE LOGIC

Iterating quantifiers: twice, and more Two-quantifier combinations occur in natural
language as we have just seen, and they are also very common in mathematics. The
same logical form that expressed ‘Everyone sees someone’ is also that for a statement
like ‘Every number has a larger number’. And the above from for ‘Some girl sees every
boy’ is also that for ‘There is an odd number that divides every even number’ (namely,
the number 1).

Can there be still higher nestings of quantifiers? Yes, indeed. For instance, three
quantifiers are involved in the famous saying that “You can fool some people some of the
time, and you can fool some people all of the time, but you cannot fool all people all of the
time”. Likewise, three-quantifier combinations occur in mathematics. A typical example
is the definition of ‘continuity’ of a function f in a point x:

For every number r, there is a number s such that for all y with |x− y| < s:
|f(x)− f(y)| < r.

Finally, nestings of four quantifiers seem to get very hard for humans to understand.

Exercise 4.10 Assume the domain of discourse to be all human beings. Translate the following
sentences into predicate logic:

(1) Augustus is not loved by everyone. (Use a for Augustus, L for love.)

(2) Augustus and Livia respect each other. (Use a for Augustus, l for Livia and R for respect.)

(3) Livia respects everyone who loves Augustus.

Exercise 4.11 Assume the domain of discourse is all animals. Translate: Some birds do not fly.
(Use B for being a bird and F for being able to fly.)

Exercise 4.12 For each of the following, specify an appropriate domain of discourse, specify a
key, and translate into predicate logic. (Note: you have to understand what a sentence means
before you can attempt to translate it.)

(1) Dogs that bark do not bite.

(2) All that glitters is not gold.

(3) Friends of Michelle’s friends are her friends.

(4) There is a least natural number.

(5) There is no largest prime number.

Exercise 4.13 Translate the following sentences into predicate logical formulas. Assume the do-
main of discourse is human beings.

(1) Every boy loves Mary.

(2) Not all girls love themselves.

4.3. BINARY PREDICATES AND QUANTIFIER COMBINATIONS 4-13

(3) No boy or girl loves Peter.

(4) Peter loves some girl that loves John.

Exercise 4.14 For each sentence from the previous exercise, draw a picture that makes it true.

Exercise 4.15 Translate the following sentences into predicate logical formulas. Assume the do-
main of discourse is human beings.

(1) Some boy doesn’t love all girls.

(2) Every boy who loves a girl is also loved by some girl.

(3) Every girl who loves all boys does not love every girl.

(4) No girl who does not love a boy loves a girl who loves a boy.

Adding Function Symbols We actually left out some other devices that predicate logic
has for speaking about objects.Mathematics is rand likewise, eplete with functions that
create new objects out of old, and likewise, predicate logic becomes more expressive if
we allow function symbols for functions like ‘the square of x’ or ‘the sum of x and y’.
We will see later how this can be used to write algebraic facts and do calculations, but
for now, we just note that function symbols also make sense for natural language. On the
domain of human beings, for instance, the father function gives the father of a person.
Suppose we write f(x) for the father of x and m(x) for the mother of x, while helping
ourselves to an equality symbol = to state identity of objects. Then we can say things like:

Paula’s father loves her Lf(p)p
Bill and John are full brothers f(b) = f(j) ∧m(b) = m(j)
Not everyone has the same father ¬∀x∀yf(x) = f(y)

4-14 CHAPTER 4. TALKING ABOUT THE WORLD WITH PREDICATE LOGIC

4.4 Concrete Semantics: Formulas and Pictures
By now, it will have become clear to you that predicate logic is a very general language for
talking about situations where objects have certain properties or are in certain relations.

Examples from daily life Here is a simple example from everyday life:

Suppose we use B for the property of being a bicycle, M for the property of being a man,
and R for the relation of riding, then we can say that the following formula describes this
salient fact about the situation in the picture:

∃x∃y(Mx ∧By ∧Rxy).

Of course, you can also add statements about the trees.

Exercise 4.16 Consider the following picture:

Use G for the property of being a girl, H for the property of being a hat, and W for the relation of
wearing (so that Wxy expresses that x is wearing y). Now carry out the following tasks:

(1) Give a predicate logical formula that makes a true statement about the situation in the
picture.

(2) Give a predicate logical formula that makes a false statement about the situation in the
picture.

4.4. CONCRETE SEMANTICS: FORMULAS AND PICTURES 4-15

Venn diagrams The Venn diagrams that you encountered in section 3.3 are in fact also
pictures of situations where objects have certain properties, although of a slightly more
abstract nature. Take the Venn picture of the set of things that are in A but not in B as an
example:

A B

(4.14)

Here is the corresponding predicate logical formula:

Ax ∧ ¬Bx. (4.15)

The green area in the picture corresponds to the set of individuals x that make formula
4.15 true. The formula (4.15) contains a free variable x, that is, x is not bound by a
quantifier. In a given situation, a diagram or some other kind of structure, formulas with
free variables, also called open formulas, may be without a determinate truth value.

This is not a peculiarity of predicate logic. In fact, this is similar to the way variables
are used in mathematical equations: x2 ≥ 0 is true for the real numbers, whereas the
truth-value of x2 < x depends on the value of x. It is true for values of x within the
open interval (0, 1) but false when x has a value outside this segment of the real line.
As soon as we ‘close’ such open formulas or equations with a quantifier which binds
the free occurrences of x then we have statements that obtain a determinate truth-value:
∀x (x2 ≥ 0) and ∃x (x2 < x) are true for the real numbers and ∀x (x2 < x) is obviously
false.

Putting a quantifier in front of (4.15) has the same determining effect. Venn diagrams
can then be used in a similar way we have used them to represent syllogistic statements
in the previous chapter. ∃x (Ax∧¬Bx) requires that the green area in (4.14) is inhabited
(non-empty), whereas the formula ∀x (Ax ∧ ¬Bx) states that the complement of the
Ax ∧ ¬Bx-zone must be empty. Using the same indication of empty and non-empty
areas as in the previous chapter, we get the following two diagrams for the two quantified
versions of Ax ∧ ¬Bx:

A B◦ A B

∃x (Ax ∧ ¬Bx) ∀x (Ax ∧ ¬Bx)

4-16 CHAPTER 4. TALKING ABOUT THE WORLD WITH PREDICATE LOGIC

Testing validity by means of Venn diagrams Although this chapter is meant to learn
to ‘talk with predicate logic’, Venn diagrams can be used, at this early stage, to ‘reason
with predicate logic’ to understand simple inferential patterns. For the complete formal
semantics of predicate logic, and a subsequent definition of valid inference, we will have
to wait until the next chapter. Venn diagrams suffice for simple monadic inferences. Here
is a first simple example:

A B

(4.16)

This diagram corresponds to the formula ∀x (Ax∨Bx). The objects which are neither A
nor B have been excluded. The diagram can be extended with an inhabitant in the A \ B
and the B \ A region, respectively:

A B◦ ◦

(4.17)

The latter makes the statement ∀xAx false and the former falsifies ∀xBx. This means
that ∀xAx ∨ ∀xBx is false in a diagram which supports ∀x (Ax ∨Bx):

∀x (Ax ∨Bx) 6|= ∀xAx ∨ ∀xBx

On the other hand ∀xAx ∨ ∃xBx is a valid consequence of the same assumption:

∀x (Ax ∨Bx) |= ∀xAx ∨ ∃xBx (4.18)

This can be proven by extending diagram (4.16) with the only two possible indications
for the B \ A area. It is either empty or not:

A B A B◦

In the diagram on the left ∀xAx holds, whereas the one on the right hand supports ∃xBx.
This means that one of these two formulas must be true if ∀x (Ax ∨ Bx) is true, which
proves that the inference (4.18) is indeed valid.

4.4. CONCRETE SEMANTICS: FORMULAS AND PICTURES 4-17

Exercise 4.17 Show that ∃xAx ∧ ∃xBx 6|= ∃x (Ax ∧Bx) by making use of Venn diagrams.

Exercise 4.18 Show that ∀xAx ∧ ∃xBx |= ∃x (Ax ∧Bx) by making use of Venn diagrams.

Graphs: representing relations Venn diagrams are for picturing sets of objects with
certain properties. In case we want to talk about relations between objects we need pic-
tures of sets with arrows between them. Such pictures are often called graphs. Graphs
occur at many places in this course. A tree with a dominance relation is a graph, so you
have already seen graphs for constructing formulas. Likewise, we will use graph models
in the next two chapters to model information of agents, and the actions that they can
perform. In fact, graphs are one of the most useful mathematical structures all around,
and they are abstract yet simple to grasp. that is why one often uses them to demonstrate
points about logic.

Undirected graphs In what follows we will give examples of how predicate logic can
be used to talk about graph structure. We start with a simpler case, where points are
just connected by lines (‘edges’), without any direction to them. Consider the following
picture of a situation with three objects, two of which are connected by an edge:

The domain of discourse now consists of three nameless points. What would be an
appropriate key for talking about these points? Let us assume we have one binary predi-
cate, call it R, for expressing that two objects in the picture are linked by an edge. Then
it is easy for you to check that the following predicate logical statement is true for this
situation:

∃x∃yRxy. (4.19)

This is true, for formula (4.19) says that there are two points that are linked.

∀x∀y(Rxy → Ryx). (4.20)

Formula (4.20) is also true for the picture, for it expresses that if there is a link from a point
to another point, then there is also a link vice-versa. This property is called symmetry. We
say: the relation of the picture is symmetric: the direction of the links does not matter.
Next take the following formula:

∃x∀y¬Rxy. (4.21)

This expresses that there is a point that is not linked to any point. Also true, for the point
on the right has no links.

4-18 CHAPTER 4. TALKING ABOUT THE WORLD WITH PREDICATE LOGIC

Exercise 4.19 Consider the following picture.

Which of the following formulas are true? (R expresses that there is a direct link.)

(1) ∃xRxx,

(2) ∃x¬Rxx,

(3) ∃x∀y¬Rxy,

(4) ∀x∃yRxy,

(5) ∀x∃y¬Rxy.

Exercise 4.20 Consider the following picture.

Which of the following formulas are true? (R expresses that there is a direct link.)

(1) ∃x¬Rxx,

(2) ∃x∀y¬Rxy,

(3) ∃x∃y¬Rxy,

(4) ∀x∃y¬Rxy.

The next example has a distinction between two kinds of nodes. This is something we
can talk about with a 1-place predicate:

4.4. CONCRETE SEMANTICS: FORMULAS AND PICTURES 4-19

Let us say that the solid dots • have the property P , and the open dots ◦ lack that
property. We continue to use R for the link relation. “All solid dots are linked to at least
one open dot” can now be expressed as follows:

∀x(Px→ ∃y(¬Py ∧Rxy)).

Exercise 4.21 Express “No solid dots are linked to any open dot” in predicate logic.

The links in the last picture also have the property that every link is between a solid
dot and an open dot. How can we express this? A first attempt is the following:

∀x∀y(Rxy → (Px ∧ ¬Py)).

To see why this is wrong, it is enough to consider any pair of an open dot x and a solid
dot y. All these pairs are linked, but x does not have property P , whereas y does have P .
To solve this, observe that we can express what we are after by saying that all links are
between pairs which differ with respect to property P . This insight immediately leads to
the correct translation:

∀x∀y(Rxy → (Px↔ ¬Py)).

Directed graphs The relations in the graphs so far were all symmetric: links were the
same in both directions. Let us move on to cases of relations that have a direction, encoded
by pointed arrows, the more common structure in the remainder of these notes. Here is
an example of such a directed graph:

Again we use R to refer to the binary relation in the picture, and we use predicate logic
to describe the properties of the relation.

4-20 CHAPTER 4. TALKING ABOUT THE WORLD WITH PREDICATE LOGIC

Exercise 4.22 Which of the following formulas are true of the last picture:

(1) ∀x∃yRxy,

(2) ∃x∀yRxy,

(3) ∀x∃yRyx.

Directed graphs are useful for visualisation of relations of many kinds. Consider the
relation of divisibility on natural numbers. Here is a graph representation of that relation,
within the set of numbers {1, 2, 3, 4, 5, 6}.

1 5

62 3

4 (4.22)

The circles around the numbers represent the reflexive arrows. Every number divides
itself: ∀x (x|x) where | is used as an infix symbol for the relation of divisibility. Another
property of the divisibility relation is the following:

∀x∀y∀z ((x|y ∧ y|z)→ x|z).

This is called transitivity. In words, for every triple it is the case that if the first divides
the second, and the second divides the third then the first must be a divisor of the third.
Another typical distinctive feature of this arithmetical relation is anti- symmetry:

∀x∀y((x|y ∧ y|x)→ x = y)

It states that mutual divisibility only holds for identical objects.

Trees Family trees are diagrams representing family relations in a tree structure, with
the oldest generations at the top. Here is a famous example. The family tree of Tu-
tankhamun was revealed by DNA research in 2010 to look as follows:

4.4. CONCRETE SEMANTICS: FORMULAS AND PICTURES 4-21

Exercise 4.23 Draw a version of this using just two kinds of arrows, ♂−→ for pointing to the father,

and
♀−→ for pointing to the mother.

Exercise 4.24 Using function symbols m and f for ‘mother of’ and ‘father of’, give a predicate
logical formula that expresses the surprising fact that was revealed in 2010 about the lineage of
Tutankhamun: The parents of Tutankhamun were brother and sister.

Truth, distinguishing power, and changing graphs Formulas of predicate logic need
not just be interpreted in graphs: once we have done so, we can also use them to do other
things. One is telling two pictures apart. The recipe for this is to find a formula that is
true in one graph but not in the other. For example, ∀x∃yRxy is false if we interpret R as
the relation given by the solid arrows, but true if we interpret R as the relation given by
the dashed arrows:

Exercise 4.25 Consider the following two pictures:

4-22 CHAPTER 4. TALKING ABOUT THE WORLD WITH PREDICATE LOGIC

Give a predicate logical formula (using the predicate R for the arrow relation) that is true in the
picture on the left and false in the picture on the right.

Exercise 4.26 Sometimes, when a formula is false in a graph, we may want to change that graph
in some minimal manner to make the formula true after all. Compare the way engineers change
blueprints to achieve some desired property of their constructions. Consider the following graph.

The formula ∃x∀yRxy is false in the graph if R is interpreted as the→ relation. Show how the
formula can be made true by adding a single→ link to the graph.

4.5 Predicate Logic and Equality
As we already hinted at above, the expressive power of predicate logic really grows when
we add identity and function symbols. We will discuss a number of examples showing
how this makes sense, and a the same time, increasing your familiarity with the formalism.

Equality We start with a simple example. Define a ‘celebrity’ as a person who knows
no one, but is known by everyone. This means, of course, someone who does not know
anyone else, but is known by everyone else. To express this we need a predicate for
equality (or: identity). So let’s use the predicate x = y that was mentioned before. Now
we can say:

x is a celebrity (i) ∀y(¬x = y → (Kyx ∧ ¬Kxy)).
(ii) ∀y(¬x = y → Kyx) ∧ ∀y(¬x = y → ¬Kxy).

The two translations (i) and (ii) express the same thing: they are logically equivalent.
Using such translations, we can represent arguments in much finer detail than in

propositional logic. For instance, the following formula expresses that C is a definition of
the property of being a celebrity (this employs the useful abbreviation x 6= y for ¬x = y).

∀x(Cx↔ ∀y(x 6= y → (Kyx ∧ ¬Kxy))). (4.23)

From definition (4.23) and the formula that expresses that Mary knows John, Kmj, it
follows that ¬Cm (Mary is not a celebrity). Clearly, this inference is far beyond the
power of propositional logic.

4.5. PREDICATE LOGIC AND EQUALITY 4-23

Equality is also needed to translate the following example:

John loves Mary and Bill loves another girl. (4.24)

Clearly, with “another girl” is meant “a girl different from Mary.” Using equality we can
translate the example as follows:

Ljm ∧ ∃x(Gx ∧ x 6= m ∧ Lbx). (4.25)

Equality is a binary predicate with a fixed logical meaning. It is always written in infix
notation, as x = y, and with ¬x = y abbreviated as x 6= y. Here is a similar case where
equality is useful:

Mary is the only girl that John loves. (4.26)

Being the only girl with a certain property means that all other girls lack that property.
Spelling this out we get:

Gm ∧ Ljm ∧ ∀x ((x 6= m ∧Gx)→ ¬Ljx) (4.27)

By using an equivalence instead of an implication symbol we can express this a bit shorter:

∀x (Gx→ (x = m↔ Ljx)) ∧Gm (4.28)

Rephrasing this in English it says that all girls have the property that being loved by John
boils down to the same thing as being equal to Mary.

Expressing Uniqueness Equality also provides a way of expressing uniqueness prop-
erties of objects. The following formula states that there is exactly one object which has
the property P :

∃x (Px ∧ ∀y (Py → y = x)) (4.29)

In words, there exists a ‘P ’ such that each second object which has the property P as well
must be equal to the first. Again, this can be formulated somewhat shorter by using an
equivalence:

∃x∀y (Py ↔ y = x) (4.30)

There is an object x such that for each object having the property P is the same thing as
being equal to x. The British philosopher Bertrand Russell proposed to use this recipe to
translate definite descriptions.

The father of Charles II was executed. (4.31)

This can be translated, using F for the property of being father of Charles II, as:

∃x(Fx ∧ ∀y(Fy → x = y) ∧ Ex), (4.32)

or, as we have seen, more succinctly as:

∃x(∀y(Fy ↔ x = y) ∧ Ex). (4.33)

Russell’s analysis then gets extended to an account of the meaning of proper names as
disguised or abbreviated descriptions.

4-24 CHAPTER 4. TALKING ABOUT THE WORLD WITH PREDICATE LOGIC

Counting Objects in Predicate Logic In a similar way we can give a formula stating
that there exists exactly two objects which have the property P :

∃x∃y (¬x = y ∧ ∀z (Pz ↔ (z = y ∨ z = x))) (4.34)

This says that there exists a pair (of two different things) such that having the property
P is the same as being equal to one of the members of this pair. To avoid such long re-
formulation of relatively simple information (4.34) is sometimes abbreviated as ∃!2xPx,
and in general ∃!nPx is used to express that exactly n things have the property P . In the
case n = 1 we also write ∃!xP .

Exercise 4.27 Write out the predicate logical translation for “there are exactly three objects with
property P ”.

Exercise 4.28 The ∃!2-quantifier can be used to give a predicate logical description of prime
numbers in the divisibility graph as depicted in (4.22) on page 4-20. How? And what kind of
numbers do you get when you replace ∃!2 in your definition by ∃!3?

Exercise 4.29

(1) Explain why the two following sentences have different meanings (by a description of a
situation in which the sentences have a different truth-value)

There is exactly one boy who loves exactly one girl. (∃!x ∃!y (Bx∧Gy∧Lxy))

There is exactly one girl who is loved by exactly one boy. (∃!y ∃!x (Bx∧Gy ∧
Lxy))

(2) Explain why ∃!x (Ax ∨Bx) and ∃!xAx ∨ ∃!xBx have different meanings.

Applications to mathematics: expressing algebraic equations Now we move from
natural language to mathematical language. As usual in this chapter, similar phenomena
arise there. In the lingo of mathematics, function symbols are combined with equality to
express algebraic equations like the following:

x · (y + z) = x · y + x · z.

This is a statement of the sort that you learn to manipulate in high school. In fact, this can
be viewed as a formula of predicate logic. There is the equality predicate here, but the
main point is made with the function symbols for addition and multiplication.

In a domain of numbers (natural numbers, integers, fractions, reals) + is a function
symbol that takes two numbers and creates a number. The symbol · (also written as ×) is
also a binary function symbol for the same domain of discourse.

Now that we can refer to objects in this way, we can also state basic facts about
them. Algebraic equations typically say that two complex terms, viewed as two different

4.5. PREDICATE LOGIC AND EQUALITY 4-25

instructions for computation, denote the same object. If x, y, z refer to numbers, then
x · (y + z) also refers to a number, and the equation states that x · y + x · z refers to the
same number.

The same syntax with function symbols works everywhere in mathematics. Think of
mathematical notation for sets. The domain of discourse now is a universe of sets. Letters
x, y, . . . , stand for arbitrary sets, ∅ is the special constant name of the empty set, and
function terms for intersection and union create complex terms like x∩(y∪z) that denote
sets in the way you have already seen when computing pictures for Venn Diagrams and
related structures.

4-26 CHAPTER 4. TALKING ABOUT THE WORLD WITH PREDICATE LOGIC

4.6 Outlook — Predicate Logic and Natural Language
In natural language, quantifier expressions may behave differently from what you would
expect after this training in predicate logic.

A first peculiarity is that “a” may also be generic, with universal force. This would be
written in logic with a universal quantifier:

A dog has fleas ∀x(Dx→ ∃y(Fy ∧Hxy))
A banker is trusted by no-one ∀x(Bx→ ∀y¬Tyx).

*** To be extended ***

4.7 Outlook — Predicate Logic and Philosophy
Truth Correspondence theory of truth

Truth definition versus truth criterion.
Tarski on non-definability of truth predicate.

Meaning Categories of expressions. Meanings for nouns, verbs, determiners, sentences
. . .

Meaning and cognition.

Paradox Paradox of the liar, and its importance for Gödel’s incompleteness proof.

4.8 Outlook — Predicate Logic and Cognition
Summary of Things You Have Learnt in This Chapter If you have tackled the exer-
cises in this Chapter you will have come to realize that predicate logic is a power tool
of expression. You have started to learn a new language, and in using that language you
have learnt to express yourself in new ways. You have learnt to recognize relevant aspects
of structures. You have learnt to see the models of predicate logic as pictures with cer-
tain properties. When you read ∀xRxx you think ‘reflexivity’, and you see a picture with
loops.

Chapter 5

Predicate Logic: Syntax and Semantics

Overview So far, we have looked at the language of predicate logic through a series of
translations from natural language. This is the usual skill taught in logic courses: you
learn to think in two related ways, once with our ordinary language whose meaning you
understand, and once with a related formal language that is a bit more precise. But what
does this practice really mean? In particular, how do languages acquire meaning, and
how can we analyze this in logic? This chapter focusses on the connection between the
language of predicate logic and models for that language. First we list the ingredients
for talking about things with predicate logic: domain of discourse, structured situations,
interpretation, and the linking of variables to objects. Next, we will define syntax and
semantics of predicate logic in a more formal way. Finally, we turn to the activity of
proving theorems in predicate logic.

5.1 Domains of Discourse and Interpreting a Language

Semantics: structured situations, language, and interpretation A language describes
situations, and the way this works really involves three ingredients. First, the situations
described consist of objects with structure: properties, relations, and the like. Then there
are the sentences of the language, that we could see in principle as syntactic code. This
code acquires meaning by connecting it with structures, through a process of ‘interpreta-
tion’. If you get a text in a language that you do not know, you just have the syntax. If you
see a newspaper in a language you do not know with a front-page picture of Mount Etna
erupting, you know ther situation and the language, but you still do not know what the
message says, since you do not know its interpretation, its ties to that situation. This gives
language an amazing versatility: one piece of code can talk about many situations under
different interpretations, one situation can be described in many languages, if a situation
does not fit what we say about it we can change it so that it does, and so on. In what
follows, we develop these ideas for predicate logic, giving it the required flexibility.

5-1

5-2 CHAPTER 5. PREDICATE LOGIC: SYNTAX AND SEMANTICS

Domains of discourse and interpretations We start with a simple observation. In-
terpreted predicate-logical formulas are about situations where a number of objects are
present. One calls such a situation a ‘domain of discourse’ or ‘universe of discourse’. In
the translations that we discussed above the domain of discourse was implicitly assumed
to be some set of human beings (when we were talking about John, Mary, Paul and their
properties), or the set of natural numbers (when talking about being an even number, or
being a prime number). We will keep giving examples of both kinds, to show you the
range of predicate logic: from common sense situations to the world of science.

Next we need to say more precisely how an interpretation functions, linking the lan-
guage to a given domain of discourse. In propositional logic, this was just done by a
valuation, mapping proposition letters to truth values. But this will no longer do. For
checking whether a statement saying that a certain object has a certain property, or that
certain objects are in a certain relation is true we need something more refined. Instead of
just saying that “John is boy” is assigned the value true by a valuation, we now need an
interpretation for “John” and an interpretation for “being a boy”.

Suppose the domain of discourse is a particular set of people. To interpret “John is a
boy”, or its predicate logical version Bj, in this given situation, we need a link between
“John” or j and a particular individual in the domain that bears that name, and also a link
between “being a boy” or B and a particular subset of the domain of discourse consisting
of all its boys. Here is a picture that may help:

j B

Constants are proper names Individual constants like j are like proper names of indi-
viduals in the domain of discourse. In other words: individual constants are interpreted
as concrete individuals in the domain of discourse.

Unary predicates denote subsets Predicate letters that combine with just a single con-
stant correspond to properties of individuals in the domain of discourse. In other words:
a one-place predicate letter B is interpreted as a subset of the domain of discourse.

Binary predicates denote relations Predicate letters that combine with two constants
correspond to relations between individuals in the domain of discourse. In other words, a
two-place predicate letter R is interpreted as a relation on the domain of discourse.

5.1. DOMAINS OF DISCOURSE AND INTERPRETING A LANGUAGE 5-3

Linking variables to objects Now how about variables? To interpret Rxy in a domain
of discourse, it is not enough to know what the relation is that R refers to. We also need
to have some way to link x and y to individuals in the domain of discourse. now variables
do not refer to objects the same way that proper names do, since the object that they stand
for can vary. Still, at any stage of interpreting a sentence, we may assume that variables
link with objects in the domain, if only temporarily. Later on we will be more precise
about how to do this, via so-called ‘variable assignments’.

Interpreting complex sentences in stages So far, we have discussed how the basic
alphabet of the language gets mapped to corresponding items in a structured situation. It
is clear then how to interpret atomic statements saying that one or more objects stand in
some relation. But of course, there are also much more complex sentences, formed using
propositional operators and quantifiers. How do these get interpreted in a situation?

We will interpret the propositional operators just as before in our chapter on propo-
sitional logic. If you understood them there, you also do now. Next, we have already
given informal readings for the quantifiers. In principe, this is enough: once you un-
derstand these meanings, every sentence, no matter how complex, can be understood in
stages following its syntactic construction one step at a time. While we will sharpen this
up later, for now, you will just learn to interpret complex sentences through a sequence of
examples:

Change of discourse domain changes what a sentence says Summing up what we
have said, sentences are true in situations, once a link is given betweenthe vocabulary and
matching things in that situation. Here all aspects are equally important in determining
whether given statements are true or false.

If the domain of discourse is human beings then everyone likes Mary gets the fol-
lowing interpretation: for each object d in the domain, the relation corresponding to the
alphabet item ‘likes’ runs from d to the object whose name is ‘Mary’. Whether this is true
or not, depends on the situation: languages are not just used to state truths, they also serve
for stating falsehoods. In fact, if we change the situation, the truth value may change as
well: if the domain of discourse is human beings and pet animals then the given sentence
says something quite different. And it will even be different if we just add one human
object, say, a known misanthropist.

Exactly the same point holds for mathematical structures. The choice of domain of
discourse can make the difference between truth and falsity of statements. Here is an
example, for two domains of discourse. The set of natural numbers N is the infinite set

{0, 1, 2, 3, . . .}.

The set of integer numbers Z is the infinite set

{. . . ,−3,−2,−1, 0, 1, 2, 3, . . .}.

The statement “there is no smallest number” (Exercise 5.1) is true when talking about Z
but false when talking about N.

5-4 CHAPTER 5. PREDICATE LOGIC: SYNTAX AND SEMANTICS

Exercise 5.1 How would you express the statement “there is no smallest number” in predicate
logic? (All you need is the binary predicate < and logical connectives plus quantifiers.)

Exercise 5.2 Give a definition of being an odd number, using the predicate x|y for “x divides y”.
The definition should run like this:

∀x(Ox↔ · · ·),

with the actual definition of “x is an odd number” at the place of the dots.

Exercise 5.3 Can you give a definition of being a prime number, using x|y for “x divides y”, the
name 1 for the natural number one, and x < y for “x is less than y”? (A prime number is a natural
number greater than one that is not divided by any number greater than one and less than itself.)

Translations once more In this light, what is the status of the translations that we have
been making? You can think of them as expressing more precisely what a natural language
says about some relevant domain of discourse. In particular, if we can define precisely
how our formulas are interpreted over given domains, we learn not only how this formal
logical language works, but we also give a model of precision for the semantics of natural
language or languages in science. This is in fact one of the greatest uses of predicate
logic in a wide range of disciplines: a model for simple perspicuous syntax that can be
interpreted semantically in a straightforward manner.

5.2 Syntax of Predicate Logic
You have now seen how the language of predicate logic works in a number of settings, and
how it can describe various structures from mathematics to our daily world. Next, you
may want to see how it works for the same purposes that you have seen in earlier chapters,
such as information update and, in particular, inference. But before we do that, it is time
to sharpen up things, and say exactly what we mean by the language and semantics of
predicate logic.

The first step is an investment in ‘formal grammar’. It looks a bit technical, but still
a far cry from the complexities of a real natural language like English. The following
grammar is a simple model of basics of the grammar of many languages, including even
programming languages in computer science.

As we have seen, predicate logic is an extension of propositional logic with structured
basic propositions and quantification.

• An atomic proposition consists of an n-ary predicate followed by n variables.

• A universally quantified formula consists of the symbol ∀ followed by a variable
followed by a formula.

• An existentially quantified formula consists of the symbol ∃ followed by a variable
followed by a formula.

5.2. SYNTAX OF PREDICATE LOGIC 5-5

• Other ingredients are as in propositional logic.

Other names for predicate logic are first-order logic or first-order predicate logic. ‘First-
order’ indicates that the quantification is over entities (objects of the first order).

Formal grammar We will now give a formal definition of the language of predicate
logic. The definition assumes that individual terms are either variables or constants. We
use the ‘BNF’ (Backus-Naur Form) notation that was developed by computer scientists
for defining programming languages, and that has also become popular among logicians
for its compactness and perspicuity:

v ::= x | y | z | · · ·
c ::= a | b | c | · · ·
t ::= v | c

P ::= P | Q | R | · · ·
Atom ::= (t = t) | P t1 · · · tn where n is the arity of P

ϕ ::= Atom | ¬ϕ | (ϕ ∧ ϕ) | (ϕ ∨ ϕ) | (ϕ→ ϕ) | (ϕ↔ ϕ) |
∀ v ϕ | ∃ v ϕ.

Here is how you read such a schema. The lines separating items stand for a disjunction of
cases. Then, e.g., the clause for formulas says that a formula is either an atomic formula,
or a negation of something that is already a formula, and so on. The class of formulas is
then understood to be the smallest set of symbol sequences that is generated in this way.

Here is how this works more concretely. The following strings are examples of for-
mulas of this predicate logical language:

• ¬Px

• (Px ∧Qy)

• ((Px ∧Qy) ∨Rxz)

• ∀xRxx

• ∃x(Rxy ∧ Sxyx)

• ∀x∀y¬((x = y) ∧ ¬(y = x))

The semantics for this formal syntax will be given in the next section.
Note that the official definition of the language has more parentheses than we have

used in the examples so far. It is a useful convention to omit parentheses when they are
not essential for disambiguation.

5-6 CHAPTER 5. PREDICATE LOGIC: SYNTAX AND SEMANTICS

Free and bound variables In talking about predicate logical formulas we want to be
able to distinguish between the variable occurrences that are bound by a quantifier oc-
currence in that formula and the variable occurrences that are not. Binding is a syntactic
notion, and it can simply be stated as follows: in a formula ∀xϕ (or ∃xϕ), the quantifier
occurrence binds all occurrences of x in ϕ that are not bound by any quantifier occurrence
∀x or ∃x inside ϕ.

As an example, consider the formula Px ∧ ∀x(Qx→ Rxy). Here is its syntax tree:

Px ∧ ∀x(Qx→ Rxy)

Px ∧ ∀x(Qx→ Rxy)

∀x Qx→ Rxy

Qx → Rxy

The occurrence of x in Px is free, because it is not in the scope of a quantifier; the
other occurrences of x (the one in Qx and the one in Rxy) are bound, because they are in
the scope of ∀x. An occurrence of x is bound in ϕ if there is some quantifier occurrence
that binds it, it is free otherwise.

Exercise 5.4 Give the bound occurrences of x in the following formula.

∃x(Rxy ∨ Sxyz) ∧ Px

Exercise 5.5 Which quantifier occurrence binds which variable occurrences?

∀x(Px→ ∃xRxx).

A predicate logical formula is called open if it contains at least one variable occurrence
which is free (not bound by any quantifier); it is called closed otherwise. A closed
predicate logical formula is also called a predicate logical sentence. Thus, Px ∧ ∃xRxx
is an open formula, but ∃x(Px ∧ ∃xRxx) is a sentence.

Exercise 5.6 Which of the following formulas are sentences?

(1) ∀xPx ∨ ∀xQx,

(2) Px ∨ ∀xQx,

(3) Px ∨Qx,

(4) ∀x(Px→ Rxy),

5.2. SYNTAX OF PREDICATE LOGIC 5-7

(5) ∀x(Px→ ∃yRxy).

Suppose we have a formula ϕ that has no free occurrences of x. Then the quantifica-
tions ∀xϕ and ∃xϕ are called vacuous. Vacuous quantifiers bind all free occurrences of a
variable in a formula that does not have such free occurrences.

Exercise 5.7 Which quantifications are vacuous? Replace each formula with vacuous quantifica-
tion by an equivalent formula without vacious quantification.

(1) ∀x∃xRxx.

(2) ∀x∃yRxx.

(3) ∀x∃yRxy.

(4) ∀x∃yRyy.

Substitution Now let us talk about the ways we have for talking about objects. A term
is either a constant or a variable. Thus, x is a term, and the constant c is also a term.

Here is a function that substitutes a term t for the occurrences of a variable v in a term
s, with notation sv

t :

cvt := c

vv
t := t

v′
v
t := v′ for v′ different from v

Note that this follows the definition of terms in the syntax of predicate logic
Here is how this definition works:

xy
z is equal to x, xx

c is equal to c, xx
y is equal to y.

Next, we use the definition of sv
t to define the widely used notion of substitution of

a term t for all free occurrences of a variable v in a formula ϕ, with notation ϕv
t . This

tells us how the property expressed by ϕ holds of the object denoted by t. This time, the
definition follows the above syntactic definition of the formulas of predicate logic:

5-8 CHAPTER 5. PREDICATE LOGIC: SYNTAX AND SEMANTICS

(t1 = t2)v
t := (t1

v
t = t2

v
t)

(Pt1 · · · tn)v
t := Pt1

v
t · · · tnv

t

(¬ϕ)v
t := (¬ϕv

t)

(ϕ1 ∧ ϕ2)v
t := (ϕ1

v
t ∧ ϕ2

v
t)

(ϕ1 ∨ ϕ2)v
t := (ϕ1

v
t ∨ ϕ2

v
t)

(ϕ1 → ϕ2)v
t := (ϕ1

v
t → ϕ2

v
t)

(ϕ1 ↔ ϕ2)v
t := (ϕ1

v
t ↔ ϕ2

v
t)

(∀v1ϕ)v
t :=

{
∀v1ϕ if v1 equals v,
∀v1ϕ

v
t otherwise.

(∃v1ϕ)v
t :=

{
∃v1ϕ if v1 equals v,
∃v1ϕ

v
t otherwise.

Defining notions by recursion A remarkable feature of this definition is the use of
recursion. We explain what (¬ϕ)v

t means by assuming that we already know what ϕv
t

means, and so on. This works because the definition follows the same pattern as the
construction pattern that was used for defining the formulas in the first place.

You are invited to check whether you understand the definition of substitution of a
term for a variable in a formula by carrying out the following exercise:

Exercise 5.8 Give the results of the following substitutions:

(1) (Rxx)x
c .

(2) (Rxx)x
y .

(3) (∀xRxx)x
y .

(4) (∀yRxx)x
y .

(5) (∃yRxy)x
z .

Alphabetic variants Using the notion of a substitution, we can say what it means that
a formula is an alphabetic variant of another formula. This is useful since we often want
to switch bound variables while retaining the essential structure of a formula.

Suppose ϕ does not have occurrences of z, and consider ϕx
z , the result of replacing all

free occurrences of x in ϕ by z. Note that ∀zϕx
z quantifies over variable z in all places

where ∀xϕ quantifies over x. We say that ∀xϕ and ∀zϕx
z are alphabetic variants.

Here are some examples: ∀xRxx and ∀yRyy are alphabetic variants, and so are
∀x∃yRxy and ∀z∃xRzx. The quantification patterns are the same, although different

5.3. SEMANTICS OF PREDICATE LOGIC 5-9

variable bindings are employed to express them. In the next section we will see that
alphabetic variants always have the same meanings.

This section has given you some basic parts of the grammar of predicate logic. There
are some other grammatical notions that are widely used, such as the ‘quantifier depth’ of
a formula, being the longest ‘nesting’ of quantifiers that take scope over each other inside
the formula. But for the moment, you have seen enough precision, and we can proceed.

5.3 Semantics of Predicate Logic
Now it is time to say in more detail how the preceding language gets interpreted on se-
mantic structures.

For convenience, we will assume that all terms are either variables or individual con-
stants, leaving the extension with functional terms for the end of the section.

Structures Defining the semantics of predicate logic involves linking formulas to sit-
uations that are somehow described for those formulas. So first we need to fix what the
appropriate situations are.

What should a relevant situation or structure for the predicate letters P,R, S look like?
(Let us suppose P has arity 1, R has arity 2, and S has arity 3.)
Such a structure should at least contain a domain of discourse D consisting of indi-
vidual objects, with an interpretation for P , R and S. These interpretations are given
by a function I that should be of the right kind for the predicates:

I(P) ⊆ D,

I(R) ⊆ D ×D,
I(S) ⊆ D ×D ×D.

Here D × D (sometimes also written as D2) is the set of all pairs of elements from
D, and D ×D ×D (also written as D3 sometimes) is the set of all ordered triples of
elements from D.

Here is a useful notation:

We write I(P) as PI , I(R) as RI , and I(S) as SI . This gives a clear distinction
between a predicate letter P and the predicate PI that interprets this predicate letter.

Figure 5.1 gives a domain with a PI and RI . Shading marks objects with property PI ,
→ indicates that two objects are RI-related, a←→ link indicates that the RI-relation runs
in both directions, and loops indicate that an object is RI-related to itself.

5-10 CHAPTER 5. PREDICATE LOGIC: SYNTAX AND SEMANTICS

1 3

2

Figure 5.1: A model with interpretations for a unary and a binary relation symbol.

Languages and models Every time we fix a particular set of predicates and constants
we fix a predicate-logical language. Examples that we have seen are the ‘languages’ for
talking about example graph structures above.

In other words, a set of relation symbols, with their arities given, plus a set of constants,
specifies a predicate logical language L. Here is the matching semantic notion:

A structure M = (D, I) with a non-empty domain D of objects plus an interpretation
function mapping the relation symbols of L to appropriate predicates on D, and the
constants of L to objects in D is called a model for L.

Example: interpreting predicates and constants Looking at the example case above,
the language is given by the relation symbols P and R. In Figure 5.1 we numbered the
nodes, so we can say that the domain consists of the set {1, 2, 3}. The interpretation
function I is given by:

PI = {1, 3} and RI = {(1, 1), (1, 2), (2, 2), (3, 1), (3, 2)}.

If there are also individual constants in the language then the distinction is between
the constant or name c and its interpretation or denotation cI .

Recall our earlier example:

5.3. SEMANTICS OF PREDICATE LOGIC 5-11

1 2 3 4

j B

Here j is a constant of the language, and B is a 1 place predicate logical symbol. The
interpretation of j is the individual jI , which is object 1 in the model. The interpretation
of B is the set BI , which is {1, 2, 3} in the model.

Now we have dealt with predicates and constants. It remains to make sense of our
final important piece of syntax: variables for objects. Given a structure with interpreta-
tion function M = (D, I), we can interpret all predicate logical formulas, provided we
know how to deal with the values of individual variables. This calls for a new somewhat
technical notion, that also has independent motivations:

Variable assignments Let V be the set of variables of the language.:

A function g : V → D is called a variable assignment.

Making changes to variable assignments In the definition of the semantics of quanti-
fiers it will be important to make certain mimimal changes to variable assignments:

We use g[v := d] for the variable assignment that is like s except for the fact that v
gets value d (where g might have assigned a different value).

For example, let D = {1, 2, 3}, and let V = {v1, v2, v3}. Let g be given by g(v1) =
1, g(v2) = 2, g(v3) = 3. See the following picture, where the g links are indicated by
dotted arrows.

5-12 CHAPTER 5. PREDICATE LOGIC: SYNTAX AND SEMANTICS

1 2 3

v1 v2 v3

Then g[v1 := 2] is the variable assignment that is like g except for the fact that v1 gets
the value 2, i.e. the assignment that assigns 2 to v1, 2 to v2, and 3 to v3. See the next
picture, where the dotted arrow for v1 has changed, indicating that the new assignment
has a new value for v1.

1 2 3

v1 v2 v3

You will see in a moment how this works:

Truth Definition At last, we are ready for the core of treatment of the semantics of
predicate logic: the definition of truth of a formula in a model. This truth definition for
predicate logic is due to Alfred Tarski (1901–1983):

Alfred Tarski
Cover of Biography of
Tarski by Anita and Sol
Feferman, CUP 2004

5.3. SEMANTICS OF PREDICATE LOGIC 5-13

Let M be a model for predicate logical language L (i.e., a pair consisting of a domain
D and an interpretation function I), let g be a variable assignment for L in M , let ϕ be
a formula of L. We will assume that L has unary predicate symbols P , binary predicate
symbols R, ternary predicate symbols S, constant symbols c, but no function symbols.

Now we are ready to define the notion

M |=g ϕ, for ϕ is true in M under assignment g,

We also sometimes say that g satisfies ϕ in model M .

Values of terms First, we take care of the interpretation of the terms of the language:
variables are interpreted using the variable assignment, constants using the interpretation
function. The following definition brings these together:

[[v]]gI = g(v)
[[c]]gI = cI

Truth in a model Next, we use this to define truth of a formula in a model, given some
variable assignment g. The variable assignment is needed to deal with free variables that
may occur in the formula. Note that the definition follows the structure of the definition
of predicate logical formulas in a stepwise manner:

M |=g t1 = t2 iff [[t1]]gI = [[t2]]gI
M |=g Pt1 · · · tn iff ([[t1]]gI , . . . , [[tn]]gI) ∈ PI

M |=g ¬ϕ iff it is not the case that M |=g ϕ.
M |=g ϕ1 ∧ ϕ2 iff M |=g ϕ1 and M |=g ϕ2

M |=g ϕ1 ∨ ϕ2 iff M |=g ϕ1 or M |=g ϕ2

M |=g ϕ1 → ϕ2 iff M |=g ϕ1 implies M |=g ϕ2

M |=g ϕ1 ↔ ϕ2 iff M |=g ϕ1 if and only if M |=g ϕ2

M |=g ∀vϕ iff for all d ∈ D it holds that M |=g[v:=d] ϕ
M |=g ∃vϕ iff for at least one d ∈ D it holds that M |=g[v:=d] ϕ

What we have presented just now is a recursive definition of truth for predicate logical
formulas in given models with a given assignment. Note in particular how the clauses for
the quantifiers involve changing assignments.

Another important aspect is this. How can this small finite set of rules deal with all,
infinitely many, formulas, that may contain highly complex combinations of quantifiers?

5-14 CHAPTER 5. PREDICATE LOGIC: SYNTAX AND SEMANTICS

Do not these require lots of further clauses? The answer is that no such thing is needed:
one explanation of single quantifiers suffices, provided we repeat it every time we en-
counter a quantifier as put there in the construction of the formula. Thus, if you think
back of our earlier many-quantifier formulas on graphs, their meaning is completely de-
scribed by the mechanism given here: meaning of single words, repeated in tandem with
formula structure.

This completes our formal definition of the semantics. We now add a few further
technical issues.

Closed formulas If we evaluate closed formulas (formulas without free variables), it
is easy to see that the initial assignment g becomes irrelevant, so for a closed formula ϕ
we can simply put M |= ϕ iff there is some assignment g with M |=g ϕ. Equivalently,
we could say that M |= ϕ iff for all assignments g it holds that M |=g ϕ. Since the
truth or falsity of a closed formula does not depend on the initial assignment, it makes no
difference. And indeed, intuitively, closed formulas are just true or false.

Still, the truth definition makes essential use of assignments, and this is inevitable. For
instance, when we apply the truth definition above to a sentence, say, ∀x(Px→ ∃yRxy),
then the clause for dealing with the universal quantifier makes reference to the notion of
truth for the formula Px → ∃yRxy, which is an open formula. In order to determine
whether the latter is true we need to be told which object x denotes.

Exercise 5.9 Assume that we can extend the language with a set A of proper names for objects,
in such a way that every object in D is named by an element from A, by means of an extension I ′

of the interpretation function I of the model. In other words, we have for all d ∈ D that there is
some d̂ ∈ A with d̂I′ = d. Give an alternative truth definition for predicate logic that does not use
assignments, but these extra names, plus the notion of substituting names from A for variables.
Use the function ϕv

d̂
that was defined on page 5-8.

The importance of open formulas Sometimes, open formulas are just considered a
nuisance, since they speak about ‘transient objects’ given by the current assignment. In
mathematics, a useful convention is to interpret the free variables in open formulas uni-
versally. This convention is useful because it allows us to write, for instance, algebraic
equations without universal quantifiers. Say, associativity of the + operator can now be
expressed as:

x+ (y + z) = (x+ y) + z.

The understanding is that this is supposed to hold for all choices of x, y, z.

Exercise 5.10 Let M be the model pictured in Figure 5.1 (page 5-10). Which of the following
statements are true?

(1) M |= ∃x(Px ∧Rxx)

(2) M |= ∀x(Px→ Rxx).

5.4. VALID LAWS AND VALID CONSEQUENCE 5-15

(3) M |= ∀x(Px→ ∃yRxy)

(4) M |= ∃x(Px ∧ ¬Rxx).

(5) M |= ∃x(∃yRyx ∧Rxx).

(6) M |= ∀x(∃yRyx→ Rxx)

(7) M |= ∀x(Rxx→ ∃yRxy).

But formulas with free variables are not a nuisance. In fact, they are highly important
in their own right. For instance, in computer science, they are often used to query a given
model, say, a data base with information about individuals. In such a setting, the question
ϕ(x)? (“Which objects are ϕ-ing?”) asks for all objects in the moel that have the property
ϕ.

Extending the semantics to function symbols In order to extend the truth definition
to structured terms (terms containing function symbols), we have to assume that the in-
terpretation function I knows how to deal with a function symbol. If f is a one-place
function symbol, then I should map f to a unary operation on the domain D, i.e. to a
function fI : D → D. In general it holds that if f is an n-place function symbol, then I
should map f to an n-ary operation on the domain D, i.e. to a function fI : Dn → D. We
use C for the set of zero-place function symbols; these are the constants of the language,
and we have that if c ∈ C then cI ∈ D.

The interpretation of terms, given an assignment function g for variables and an inter-
pretation function I for constants and function symbols, is now defined as follows. Note
the by now familiar use of recursion in the definition.

[[t]]gI =

tI if t ∈ C,
g(t) if t ∈ V,
fI([[t1]]gI , . . . , [[tn]]gI) if t has the form f(t1, . . . , tn).

5.4 Valid Laws and Valid Consequence
Valid laws A predicate logical sentence ϕ is called logically valid if ϕ is true in every
model. Notation for “ϕ is logically valid” is |= ϕ. From the convention that the domains
of our models are always non-empty it follows that |= ∀xϕ→ ∃xϕ, for all ϕ with at most
the variable x free.

Exercise 5.11 Which of the following statements are true?

(1) |= ∃xPx ∨ ¬∃xPx.

(2) |= ∃xPx ∨ ∀x¬Px.

(3) |= ∀xPx ∨ ∀x¬Px.

5-16 CHAPTER 5. PREDICATE LOGIC: SYNTAX AND SEMANTICS

(4) |= ∀xPx ∨ ∃x¬Px

(5) |= ∃x∃yRxy → ∃xRxx.

(6) |= ∀x∀yRxy → ∀xRxx.

(7) |= ∃x∃yRxy → ∃x∃yRyx

(8) |= ∀xRxx ∨ ∃x∃y¬Rxy.

(9) |= ∀xRxx→ ∀x∃yRxy

(10) |= ∃xRxx→ ∀x∃yRxy

(11) |= ∀x∀y∀z((Rxy ∧Ryx)→ Rxy).

Valid consequence More generally, an important aim of any logical language is to study
the process of valid reasoning in that language. When can we draw a conclusion ψ from
premises ϕ1, . . . , ϕn? As in earlier chapters, our answer is this. Valid consequence says
that the premises can never be true while the conclusion is false, or in other words, when
the truth of the premises always brings the truth of the conclusion in its wake.

Now that we have a fully precise notion of truth for predicate logic we can make the
intuitive notion of valid consequence fully precise too:

We say that a predicate logical sentence ψ logically follows from a sentence ϕ (alter-
natively, ϕ logically implies ψ) if every model which makes ϕ true also makes ψ true.
Notation for ‘ϕ logically implies ψ’ is ϕ |= ψ.

The art of testing validity How do we judge statements of the form ϕ |= ψ. (where
ϕ, ψ are closed formulas of predicate logic)? It is clear how we can refute the statement
ϕ |= ψ, namely, by finding a counterexample. A counterexample to ϕ |= ψ is a model
M with M |= ϕ but not M |= ψ, or in abbreviated notation: M 6|= ψ. Here are some
example questions about valid consequence in predicate logic.

Exercise 5.12 Which of the following statements hold? If a statement holds, then you should
explain why. If it does not, then you should give a counterexample.

(1) ∀xPx |= ∃xPx

(2) ∃xPx |= ∀xPx.

(3) ∀xRxx |= ∀x∃yRxy.

(4) ∀x∀yRxy |= ∀xRxx.

(5) ∃x∃yRxy |= ∃xRxx

5.5. PROOF 5-17

(6) ∀x∃yRxy |= ∀xRxx.

(7) ∃y∀xRxy |= ∀x∃yRxy

(8) ∀x∃yRxy |= ∃y∀xRxy.

(9) ∃x∃yRxy |= ∃x∃yRyx.

(10) ∀xRxx |= ∀x∃yRxy.

(11) ∃xRxx |= ∃x∃yRxy.

We can make this slightly more general by allowing sets of more than one premise. As-
sume that ϕ1, . . . , ϕn, ψ are closed formulas of predicate logic. We say that ψ logically
follows from ϕ1, . . . , ϕn, or, formally, that ϕ1, . . . , ϕn |= ψ, if for every model M for the
language with the property that M |= ϕ1 and . . . and M |= ϕn it is the case that M |= ψ.

Exercise 5.13 Which of the following hold?

(1) ∀x∀y(Rxy → Ryx), Rab |= Rba

(2) ∀x∀y(Rxy → Ryx), Rab |= Raa

Maybe these exercises were not too difficult, but testing for predicate-logical validity
is much harder than what we have seen with the truth tables for propositional logic in
Chapter 2. We will devote a whole chapter later in this course to general methods for
testing validity for our system.

A word on mathematical background Here are a few reasons why predicate-logical
validity is much harder than that for propositional logic. One is that there are so many
models for the language: namely, infinitely many (just think of all the different sizes an
object domain can have). Another source of complexity is that models may be both finite
(like most of our examples so far), or infinite (like the mathematical number systems we
have also mentioned as examples occasionally). Together, this means that there is no
finite enumeration of all relevant cases to be checked, the way we did in truth tables. In
fact, it can even be proved mathematically that the notion of validity for predicate logic
is harder than anything we have seen before: it is undecidable, that is, there is just no
mechanical method that tests it automatically. This is the computational price that we pay
for the much greater expressive power of predicate logic.

5.5 Proof
Here is an axiomatisation for predicate logic with equality.

(1) All propositional tautologies.

(2) ∀xϕ(x)→ ϕ(t). Condition: no variable in t occurs bound in ϕ.

5-18 CHAPTER 5. PREDICATE LOGIC: SYNTAX AND SEMANTICS

(3) ∀x(ϕ→ ψ)→ (ϕ→ ∀xψ). Condition: x is not free in ϕ.

(4) ∀x x = x.

(5) ∀x∀y(x = y → (ϕ → ϕx
y). Condition: ϕ does not bind the variable y. ϕx

y is the
result of replacing some or all free occurrences of x in ϕ by occurrences of y.

As deduction rule we again have Modus Ponens, plus a second rule called universal gen-
eralization:

• MP: from ϕ and ϕ→ ψ, infer ψ.

• UGEN: from ϕ infer ∀xϕ, on condition that x does not occur free in any premise
which has been used in the proof of ϕ.

We derive existential generalization from this, as follows.

1. ∀x¬ϕ(x)→ ¬ϕ(t) axiom 2
2. (∀x¬ϕ(x)→ ¬ϕ(t))→ (ϕ(t)→ ¬∀x¬ϕ(x)) propositional tautology
3. ϕ(t)→ ¬∀x¬ϕ(x) from 1,2 by MP
4. ϕ(t)→ ∃xϕ(x) from 3, by def of ∃

Next, assume that we have ϕ(t). Then we can derive ∃xϕ(x), as follows:

1. ϕ(t) assumption
2. ϕ(t)→ ∃xϕ(x) this we just proved
3. ∃xϕ(x) MP from 1,2

What this means is that the following rule of existential generalization is derivable:

• EGEN: From ϕ(t), infer ∃xϕ(x).

Using this proof system one can reason about all models of predicate logic, for a given
choice of predicate letters. But it is also common to add axioms, in order to talk about
specific topics. As you may already have guessed, predicate logic can be used to talk
about anything.

5.6 Outlook — Logical Theories
Mathematical Theories: Arithmetic Suppose we want to talk about addition on the
natural numbers. This is the aritmethic of first grade, the stuff that comes before the
tables of multiplication. The domain of discourse is

N = {0, 1, 2, 3, 4, . . .}.

5.6. OUTLOOK — LOGICAL THEORIES 5-19

The predicate logical language that we can use for this has a constant for zero (we
will use 0 for this; the intention is to use 0 as a name for the number 0), and two function
symbols, one for taking the successor of a number (we will use s for this), and the familiar
+ for addition. The successor of the number is the number immediately following it.

We have four axioms and an axiom scheme (a recipe for constructing further axioms).

The first axiom states that 0 is not the successor of any number:

∀x ¬sx = 0. (PA1)

The second axiom states that different numbers cannot have the same successor, or stated
otherwise, that if sx = sy then x = y.

∀x∀y(sx = sy → x = y). (PA2)

Note that sx = sy → x = y is equivalent to x 6= y → sx 6= sy, so this does indeed
express that different numbers have different successors.

The third axiom expresses that adding zero to a number doesn’t change anything:

∀x x+ 0 = x. (PA3)

The fourth axiom expresses a sum of the form x+ sy as the successor of x+ y:

∀x∀y x+ sy = s(x+ y). (PA4)

The third and fourth axiom together define addition for any pair of numbers x and z, as
follows. Either z is equal to 0, and then apply (PA3) to see that the outcome is x, or z
is the successor of another number y and then apply (PA4) to see that the outcome is the
successor of x+ y. This is called a recursive definition, with recursion on the structure of
y.

Below we will see how the recursion definition of addition will help us in constructing
inductive proofs of facts about the addition operation.

The final axiom takes the form of a scheme. Assume that ϕ(x) is a formula with x free.
Then the following is an axiom:

(ϕ(0) ∧ ∀x(ϕ(x)→ ϕ(sx)))→ ∀yϕ(y). (PA5–scheme)

This axiom scheme expresses mathematical induction on the natural numbers. If you
are unfamiliar with mathematical induction you might wish to consult section A.6 in the
Appendix.

The theory of arithmetic defined by (PA1) — (PA5-scheme) is known as Presburger
arithmetic, after Mojzesz Presburger, student of Alfred Tarki.

5-20 CHAPTER 5. PREDICATE LOGIC: SYNTAX AND SEMANTICS

Mojzesz Presburger
(picture from his death certificate in the database of
YAD VASHEM, the Holocaust Martyrs’ and Heroes’
Remembrance Authority)

In the language of Presburger arithmetic one cannot express properties like being a
prime number, or define the relation of divisibility. But one can express properties like
being even, being odd, being a threefold, and so on. As an example, the following formula
of Presburger arithmetic expresses the property of being even:

∃y y + y = x. (x is even)

And the property of being odd:

∃y s(y + y) = x. (x is odd)

Exercise 5.14 Express the property of x of being a threefold in the language of Presburger arith-
metic.

Adding multiplication Presburger arithmetic is the restriction of the arithmetical the-
ory of addition and multiplication to just addition. If we extend the language with an
operator · for multiplication, the properties of multiplication can be captured by a recur-
sive definition, as follows:

∀x x · 0 = 0. (MA1)

∀x∀y x · sy = (x · y) + x. (MA2)

This defines x · y by recursion on the structure of y: MA1 gives the base case, MA2 the
recursion case. In still other words: MA1 gives the first row in the multiplication table
for x, and MA2 gives the recipe for computing the next row from wherever you are in the
table, as follows:

0
x
x+ x
x+ x+ x
...

5.7. OUTLOOK — PREDICATE LOGIC IN PROGRAMMING 5-21

As you may have realized in second grade, the multiplication tables are constructed by
means of addition.

Next, let IND be the induction axiom scheme for the language extended with multi-
plication.

Giuseppe Peano Kurt Gödel

The theory consisting of PA1 – PA4 plus MA1, MA2 and IND is called Peano arith-
metic, after Giuseppe Peano (1858–1932). Here the logical situation is dramatically dif-
ferent from the case of Presburger arithmetic. One of the most famous results in logic is
Kurt Gödel’s incompleteness proof (1931) for this predicate logical version of arithmetic:

Any predicate logical theory T that is an extension of Peano arithmetic is
incomplete: it is possible to find formulas in T that make true statements
about addition and multiplication on the natural numbers, but that cannot be
proved in T .

Five years later Alonzo Church and Alan Turing proved (independently) that the predi-
cate logical language of arithmetic is undecidable, and more generally, that any predicate
logical language with at least one 2-place relation symbol is undecidable (see section 13.2
below, and Chapter 11).

5.7 Outlook — Predicate Logic in Programming

The part of predicate logic without the quantifiers is called the Boolean part of predicate
logic: we only allow the boolean connectives that you already know from propositional
logic to form complex formulas. So the only difference with propositional logic is that we
now talk about objects satisfying certain properties and taking part in certain relations.
We have replaced proposition letters such as p, q, etcetera, by atomic formulas such as Bj
or Rxy.

Booleans in programming The Boolean part of predicate logic is part and parcel of
almost any programming language. Here is an example of a Ruby program (Ruby is a
popular scripting language: see http://www.ruby-lang.org/):

5-22 CHAPTER 5. PREDICATE LOGIC: SYNTAX AND SEMANTICS

if not (guess != secret1 && guess != secret2)
print "You win."

else
print "You lose."

end

The expression not (guess != secret1 && guess != secret2) is called a
Boolean. This is in fact of the form ¬(¬p∧¬q), and indeed, the program can be simplified
by using a propositional equivalence:

¬(¬p ∧ ¬q)←→ p ∨ q.

This yields a more straightforward version of the same program:

if guess == secret1 || guess == secret2
print "You win."

else
print "You lose."

end

In fact, the conditions used in a Boolean can also contain variables, like in predicate
logic. See exercise ??.

Exercise 5.15 (Only if you have some programming experience.) Simplify the following Ruby
statement by writing the Boolean condition without negation:

if not (x < y && y < z)
print "You win."

else
print "You lose."

end

Domains of discourse in programming The domains of discourse of predicate logic
also play an important role in programming. In many programming languages, when a
programming variable is declared, the programmer has to specify what kind of thing the
variable is going to be used for.

In programming terms: variable declarations have to include a type declaration. A
Java declaration int i j max declares three variables of type int, and an int in Java
is a signed integer that can be stored in 32 bits: Java int variables range from −231 =
−2, 147, 483, 648 to 231 − 1 = 2, 147, 483, 647. What this means is that the type declara-
tions fix the domains of discourse for the programming variables.

In programming, types are important because once we know the type of a variable we
know how much storage space we have to reserve for it. A Java int can be stored in four
bytes (32 bits).

5.7. OUTLOOK — PREDICATE LOGIC IN PROGRAMMING 5-23

Statement of pre- and postconditions Predicate logic can be used to state pre- and
postconditions of computational procedures. Consider the following function (in Ruby)
for computing an integer output from an integer input, together with a precondition and a
postcondition:

precondition: n >= 0
def ld(n)
d = 2
while d**2 <= n
return d if n.remainder(d) == 0
d = d + 1

end
return n
end
postcondition:
ld(n) is the least positive integer that divides n

The precondition is a predicate logical formula without quantifiers:

n ≥ 0.

The postcondition can be translated into a predicate logical formula, using | for divides,
as follows (we assume that the domain of discourse is Z, the domain of integers):

ld(n)|n ∧ ∀m(0 < m < ld(n)→ ¬m|n).

The intended meaning is: if the input of the function satisfies the precondition then the
output of the function will satisfy the postcondition.

Pre- and postconditions can be used for proving computational procedures correct.
Examples of such correctness reasoning will be discussed in section 7.9.2.

Explicit statement of pre- and postconditions is also the key ingredient of a program-
ming style called design by contract, the idea being that the precondition makes explicit
what a computational procedure may assume about its input, while the postcondition is a
statement about what the procedure is supposed to achieve, given the truth of the precon-
dition. Preconditions state rights, postconditions list duties.

Exercise 5.16 (You should only attempt this if you have some programming experience.) Suppose
the procedure for ld would have been stated like this:

precondition: n >= 0
def ld(n)
d = 2
while d**2 < n

return d if n.remainder(d) == 0
d = d + 1

end

5-24 CHAPTER 5. PREDICATE LOGIC: SYNTAX AND SEMANTICS

return n
end
postcondition:
ld(n) is the least positive integer that divides n

Why would this version of the program not satisfy the contract anymore? Try to find a simple
counterexample.

5.8 Outlook — Decidable Parts of Predicate Logic
Predicate logic with at least one 2-place relation symbol is undecidable, as Church and
Turing showed in the 1930s. But for monadic predicate logic, where all predicates are
unary — things are better. In this section we will explain why.

Consider again syllogistic reasoning patterns. These patterns use three 1-place pred-
icates, and we have seen that counterexamples to syllogistic validity have eight relevant
regions, for the following sets:

• the things that have none of the properties A, B, C, i.e., the things in the set A ∩
B ∩ C.

• the things that have property A, but neither of B, C, i.e., the things in the set
A ∩B ∩ C.

• the things that have property B, but neither of A, C, i.e., the things in the set
B ∩ A ∩ C.

• the things that have property C, but neither of A, B, i.e., the things in the set
C ∩ A ∩B.

• the things that have properties A and B but that lack C, i.e., the things in the set
A ∩B ∩ C.

• the things that have properties B and C but that lack A, i.e., the things in the set
B ∩ C ∩ A.

• the things that have properties A and C but that lack B, i.e., the things in the set
A ∩ C ∩B.

• the things that have all three of the properties A, B and C, i.e., the things in the set
A ∩B ∩ C.

Use of three predicates yields 23 = 8 regions in the diagram, and for checking validity
of syllogisms, what matters is whether these regions are empty or not. If a region is
non-empty then putting more objects in it does not make any difference for the truth of a
syllogistic statement. This is an important insight for it tells us that a domain of discourse
of eight objects is always enough for a counterexample to syllogistic validity.

5.8. OUTLOOK — DECIDABLE PARTS OF PREDICATE LOGIC 5-25

This insight can also help to see that monadic predicate logic can be translated into
propositional logic. We will first carry this out for the syllogistic part. Possible syllogis-
tic situations now correspond with valuations for proposition letters chosen in a special
way. Note that the following correspondence of the syllogistic with propositional logic
is different from the link we discussed in Chapter 3. Take the following propositional
valuation:

p∅ pA pB pC pAB pAC pBC pABC

0 1 1 0 1 0 0 0

The value 0 for p∅ expresses that A ∩ B ∩ C is empty, the value 1 for pA expresses
that A ∩ B ∩ C is nonempty, the value 1 for pB expresses that A ∩ B ∩ C is nonempty,
and so on. (If you find it hard to figure out which set is meant by the notation A ∩B ∩ C
you should consult Appendix A on elementary set notation.) In other words, the given
valuation corresponds to the following syllogistic situation:

A B

C

× ◦ ◦×

◦ × ×
×

Note that this is a total syllogistic diagram: each region has either a ◦ or a × mark.
A total diagram corresponds to a single valuation of the above sort, because the diagram
states explicitly for each region whether the region is empty or not.

Now the pictures that we have seen in our examples in Chapter 3 were usually partial
diagrams: these have some regions with neither a ◦ nor a × mark. Partial diagrams
represent multiple possibilities for total diagrams. Each region without a mark can be
either empty or non-empty, and the diagram rules out neither situation. Thus, a partial
diagram corresponds to a set of propositional valuations. Consider the following diagram:

A B

C

× ×
× × ×

This corresponds to the following set of propositional valuations:

5-26 CHAPTER 5. PREDICATE LOGIC: SYNTAX AND SEMANTICS

p∅ pA pB pC pAB pAC pBC pABC

0 0 1 1 1 0 0 0
0 0 0 1 1 0 0 0
0 0 1 0 1 0 0 0
0 0 0 0 1 0 0 0
0 0 1 1 0 0 0 0
0 0 0 1 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0

We can list these possibilities more succinctly by leaving blanks in all positions where
neither of 0,1 is ruled out. This gives us a single partial valuation (this should be compared
to the way the syllogistic diagrams abbreviate several possibilities):

p∅ pA pB pC pAB pAC pBC pABC

0 0 0 0 0

The propositional formula that corresponds to the syllogistic statement “All A are B”
is ¬pA ∧ ¬pAC . This states that the region A ∩B is empty.

This may have shown you how syllogistic reasoning is close to a propositional logic
as in Chapter 2, that talks about the kinds of objects that can occur.

Exercise 5.17 Give the propositional formulas for the following syllogistic statements:

(1) No B are C.

(2) Some A are C.

(3) Not all A are B.

In fact, this reasoning generalizes to the whole fragment of monadic predicate logic.
Let ϕ1, . . . , ϕn be a set of n formulas of monadic predicate logic, and assume these are the
premises of an inference. Assume ψ is another predicate logical formula, the conclusion.
Suppose we want to know whether ψ follows from the premises ϕ1, . . . , ϕn. Then we can
proceed like in the procedure for testing syllogistic validity from Chapter 3. We consider
the conjunction of the premises together with the negation of the conclusion:

ϕ1 ∧ · · · ∧ ϕn ∧ ¬ψ. (5.1)

If we can find a model for this, then we have a counterexample to the validity of the
inference and we know that the inference is not valid. If we cannot find a model then this
means that no counterexamples exists, and we know that the inference is valid.

The formulas that make up conjunction 5.1 may be quite complex, but however com-
plex they are they will only contain a finite number of different predicate letters. Therefore
the whole conjunction 5.1 can only contain a finite number of predicate letters. Suppose

5.8. OUTLOOK — DECIDABLE PARTS OF PREDICATE LOGIC 5-27

there are m different predicate letters. Then the number of relevant regions in a model for
5.1 is still finite. In fact, there are 2m relevant regions.

As in the case of syllogisms, all that matters for the truth or falsity of formulas of
monadic predicate logic is whether these regions are empty or not. This means that we
know beforehand that in our search for a situation where 5.1 is true, we do not need more
than 2m objects. But this in turn means that the search for a model for 5.1 (we call a
situation where a certain formula is true a model for that formula) can stop after we have
inspected all candidates with domains up to and including size 2m.

The situation is somewhat like that of propositional logic, where we can check con-
sistency of a formula by means of the truth table method. It may take a long time, but it
always finishes. Same here: it may take a long time before we have checked all possible
candidate situations, but after a finite number of checks we either have found an example
or we can know for sure that no candidate situation will fit the bill.

Like propositional logic, monadic predicate logic has a decidable satisfiabily problem:
there exists a method for settling this question, positively or negatively, in a finite
number of steps. For short: monadic predicate logic is decidable.

Exercise 5.18 Satisfiability of a formula is the property that there are situations that make the
formula true. Validity of a formula is the property that all relevant situations make that formula
true. If satisfiability of formulas is decidable for a logic, does that mean that validity is also
decidable? Why (not)?

Summary of Things You Have Learnt in This Chapter You have learned the power
of recursion in defining a formal language and in specifying its semantics.

5-28 CHAPTER 5. PREDICATE LOGIC: SYNTAX AND SEMANTICS

Knowledge, Action, Interaction

5-29

Chapter 6

Knowledge and Information Flow

Overview This chapter deals with the logic of knowledge, including change of knowl-
edge as a result of communicative acts. This branch of logic is called epistemic logic.
The main difference between epistemic logic and propositional logic is that in epistemic
logic we also want to express facts about knowledge in the logical language itself. This
will be possible in the ‘modal’ logic of knowledge. Because of its relation to reason-
ing about other people’s knowledge, this is a very important generalization. One of this
chapter’s themes is how successive information processing steps can change the logical
specification of a system.

6.1 Motivation — Logic and Information Processing
What makes humans rational? Is it their individual powers of reasoning and observation?
Or is it their skill in interaction, communication and co-operation? No doubt, it is both.
Traditionally, logic has been more concerned with an account of individual reasoning
powers, but this is rapidly changing, and one of the ambitions of modern logic is to provide
an account of rational interaction.

A sound argument such as ‘from p and p → q follows q’ is interpreted as ‘if p is true
and if p → q is true, then q is also true’. ‘True’ for whom? Isn’t there some kind of
conscious entity behind this argument, a knowing subject performing the inference

If I know p and if I know p→ q, then I also know q’.

And if another person does not know p but, like me, knows p → q, then she cannot
conclude q the way ‘I’ did.

Being explicit about knowledge The propositional logic of the previous chapter is
well-suited to model the knowledge of a single agent as in the update scenarios we have
discussed earlier. But many logical processses concern more than one person. Derivations
are often made in company, in which case they are truly arguments. One can then reason
about other agents’ knowledge, for example when I tell you “You don’t know that I live in

6-1

6-2 CHAPTER 6. KNOWLEDGE AND INFORMATION FLOW

Seville.” Having now told you this, you know it! Isn’t that a paradox? One of the things
you will learn in this chapter is why this is not at all paradoxical.

This chapter deals with the logic of knowledge, including change of knowledge as a
result of communicative acts such as the ‘telling’ (informing) above. This branch of logic
is called epistemic logic. The main difference between epistemic logic and propositional
logic is that in epistemic logic we also want to express facts about knowledge in the log-
ical language itself. This will be possible in the ‘modal’ logic of knowledge. Because
of its relation to reasoning about other people’s knowledge, this is a very important gen-
eralization of what we have seen so far. One of this chapter’s themes is how successive
information processing steps can change the logical specification of a system.

Agents The subjects whose knowledge we describe are called agents. These agents
are not necesarily human beings. We can call processes running on a computer agents
as well. Epistemic logic is used to specify multi-agent systems. A multi-agent system
accommodates multiple ‘information systems’ that have the capacity of goal-directed and
autonomous interaction, and are set in a well-defined environment. The study of multi-
agent systems is a research area of its own.

Example 6.1 Let’s take a multi-agent system for playing soccer. It consists of 22 agents:
the soccer players. A soccer player can only observe the players in his range of vision.

Player a assumes that opponent b is behind him, because in the previous stage of the
game, before a received the ball, this was indeed the case. This is therefore a reasonable
assumption, and a also knows that such an assumption can very well have become false.
It turns out to be false: b is by now somewhere else on the playing ground, but a could
not have seen that. The state of the game where b is behind a, is just as conceivable for a
as the state of the game where b is not behind a.

Player a also sees player c right in front of himself. Player c is in his own team; a
passes the ball to c to prevent b from intercepting it. Now, what? The targeted player
indeed gets the ball, only it was player d instead of c, fortunately of the same team, who
received the ball. Player a believed player d to be c, but must now revise the previous
assumption he made.

In yet another scenario c fails to capture the ball, because a and c do not have eye-
contact at the moment of a’s pass: they do not have common knowledge of the situation
leading to this pass.

6.2 Motivation — Modelling the Uncertainty of Agents
Example 6.2 You are holding three different cards in your hands. These cards are red,
white and blue. Turn them around. The backsides are indistinguishable. Shuffle the cards.
Now draw a card. Suppose this is the red card. From the two remaining cards you put
one on the table in front of you on the left side, upside down, and the other card you put
on the right side, also upside down. Which of these two is the white card? And which the

6.2. MOTIVATION — MODELLING THE UNCERTAINTY OF AGENTS 6-3

blue card? Let p stand for the proposition ‘the left card is the white card’. Then there are
now two possibilities: p is true, or p is false. If p is false the left card is the blue card and
the right card the white one. If p is true, it is the other way round. In fact p is true: the left
card is the white card. The two possibilities are your ‘epistemic alternatives’.

The example does not say anything about which of the two situations is in fact the case.
A possible state of affairs can be identified with a valuation of propositional variables.
There are two different states of affairs. If p is true then we have the valuation V such that
V (p) = 1 and if p is false then we have the valuation V ′ such that V ′(p) = 0. Before you
have picked up the cards on the table, you consider it possible that the left card is white
and you also consider it possible that the left card is blue. The proposition ‘I consider it
possible that the left card on the table is blue’ is rather peculiar: its truth-value depends
on the truth-value of the proposition ‘the left card on the table is blue’ in two different
situations. Therefore we cannot formalize the term ‘possible’ by simple truth-tables as
we have done for the propositional connectives in Chapter 2. These are all so-called truth
functional operations. For connectives such as ‘and’ and ‘if ... then’ the truth of the entire
proposition can be computed from the truth of its constituents, e.g. for conjunction we
need that both conjuncts are true.

The logic in which we can model ‘it is possible that’ explicitly is a modal logic, and the
sentential construct ‘it is possible that’ is called a modality, or modal operator. There are
various brands of modal logic. In this chapter we present the modal logic of knowledge,
also known as epistemic logic. In all these modal logics a crucial part is that given some
actual situation, there may also be other situations that play a part. In epistemic logic we
speak of epistemic alternatives. In general in modal logic, we speak of possible worlds.

Accessible Consider example 6.2 again. The uncertainty about the real card deal can
be represented as a relation between situations. The actual situation is w. Given that
situation, it is conceivable that w′ is the real one. ‘w′ is conceivable given w’ can also be
represented as the pair (w,w′) is in the relation R, where R is the relation of accessibility.
This relation may of course contain several other pairs. For example, you also consider it
possible that w itself is the real world, so (w,w) is also in that accessibility relation. Also,
in case w′ had been the actual situation, both w and w′ are accessible: (w′, w) and (w′, w′)
are also in R. We can visualize such models by creating pictures of possible worlds with
an associated valuation, connected by links, the accessibility relation, which captures the
uncertainty of the agent. This time, let us be completely explicit about the accessibility
relation. The uncertainty about cards on the table in front of you can be visualized as:

(6.1)

6-4 CHAPTER 6. KNOWLEDGE AND INFORMATION FLOW

Here we have drawn all the accessibilities as arrows: each world is accessible from itself,
and the two worlds are accessible from each other.

Example 6.3 I am sitting in a bar, and I am in no doubt that the bespectacled bartender
in front of me is wearing glasses, for I can see his specs clearly and distinctly on his nose.
Now suppose a stranger walks into the bar, behind me and outside my range of vision,
shouting ‘Hi folks’, I certainly consider it possible that she is not wearing glasses, even
when in fact she is wearing them.

This sort of uncertainty about the actual states of affairs is often described in terms of
propositions expressing knowledge and ignorance: ‘I don’t know if the white card is the
one on the left or the one on the right’, ‘I know that one of the cards in front of me is
white’, ‘I don’t know if the newcomer is wearing glasses’. We will now formalize this
epistemic modality in the logical language. Write Kϕ for ‘I know that ϕ’. The letter K
is the k in knowledge.

We can freely combine this operator with the propositional connectives that have al-
ready been introduced. For example, we write ¬Kϕ for ‘it is not the case that I know
ϕ’ (I don’t know that ϕ). The form ¬K¬ϕ is literally ‘I do not know that not ϕ’. This
is more commonly phrased as ‘I consider it possible that ϕ.’ There are other standard
phrasings that in fact are abbreviations (from our current perspective) such as ‘I do not
know whether the person I hear entering the room behind me is wearing glasses’ that is
standardly taken to mean ‘I do not know that the person I hear entering the room behind
me is wearing glasses and I also do not know that the person I hear entering the room
behind me is not wearing glasses’. In other words, if p stands for ‘the lady behind me is
wearing glasses’ ¬Kp ∧ ¬K¬p.

The language of epistemic logic is interpreted on structures consisting of a domain
of worlds, with an accessibility relation between worlds, and with each world a valuation
determining the truth-value of atomic propositions (the proposition letters). A proposition
Kϕ is true in a given world w if and only if ϕ is true in all worlds w′ that are accessible
from w.

Example 6.4 Let ‘the left card is white’ in example 6.2 be represented by p. Assume that
this is indeed true. The actor whose knowledge we model is ‘I’, the first person singular.
Some formalizable statements over the real situation w are:

• I know that the left card is white: Kp.
This is false if the real state is w, because I consider a state w′ possible wherein the
left card is blue (so that ¬p is true).

• I do not know whether the left card is white: ¬Kp ∧ ¬K¬p.
This is true in the real state w. I consider the state w′ possible wherein the left card
is blue, but I also consider the state w possible where the left card is white.

• I know that I don’t know whether the left card is white:

K(¬Kp ∧ ¬K¬p)

6.2. MOTIVATION — MODELLING THE UNCERTAINTY OF AGENTS 6-5

This is also true in state w. The formula ¬Kp ∧ ¬K¬p that is bound by the first
(and main) K operator is true in every state accessible from w, namely it is true in
w and it is also true in w′.

Example 6.5 Here is a soccer example again, this time involving belief rather than knowl-
edge. I am standing in the field. I don’t have eyes in the back of my head, but I am pretty
sure that Jan from the other team is standing behind me. In fact, it is Liza who is standing
behind me. Let proposition p stand for ‘Jan is standing behind me’. We can represent the
situation as follows:

(6.2)

Proposition p is only true inw′. The real situation isw, and inw proposition p is false. The
only other conceivable (accessible) situation is the one in w′: therefore, there is an arrow
from w to w′, and no other outgoing arrow from w. I therefore ‘know’ that Jan is standing
behind me. We quote the word know. The use of ‘know’ is restricted to bind propositions
that are in fact true. Otherwise, we rather speak of ‘think to know’ or ‘believe’. Jan in not
standing behind me: Liza is behind me. But in the current modelling I do not consider
this an option! (In English we might then say that we are convinced that Jan is standing
behind me. This suggests a strong belief that we are unwilling to give up.)

There is also an arrow from w′ to itself. This is because, despite this concerns belief
instead of knowledge, I am still aware of what I believe and what I don’t believe. Because
of that arrow we can also compute, using the structure, that KKp is true in state w: “I
believe that I believe that Jan is behind me.”

History
Epistemic logic has been introduced as a modal logic in 1962 by Jaakko Hin-
tikka, a Finnish philosopher and logician. In his logic both knowledge and
belief are introduced as two separate concepts. His logic had two modal op-
erators K and B (for belief) to represent the two ‘attitudes’ separately.

Jaakko Hintikka

6-6 CHAPTER 6. KNOWLEDGE AND INFORMATION FLOW

Now let us extend this to the case of multiple agents. What sort of models are common
for multiple agents? Remember that agents need not be human. An agent may also be
a processor in a computer. A fairly common situation is where every agent only knows
its local state (the local state can e.g. be the value of a state variable stored locally), and
where this is common or background knowledge between all processes. Such a set-up is
known as an interpreted system or also as a distributed system.

Example 6.6 (Interpreted systems) Given are two processes a and b. Propositional vari-
able p describes the state of process a. If it is true, its value is 1, and when false the state of
a is 0. Propositional variable q describes the state of process b. Both processes only know
their own state. This corresponds to the following model. We have named the states in the
model in revealing ways: write 10 when p is true and q is false, etc. A connection labelled
with a or b means that the connected states are indistinguishable for a, and b, respectively.
Again, we picture arrows in two directions as single links, and we omit reflexive arrows.

(6.3)

In state 11 of this model it holds thatKap (process a knows that its value is 1), it holds that
Ka¬Kbp (a knows that b does not know that), and also holds that ¬Ka¬Kbq (a considers
it possible that b knows that its local value is 1). We describe that processes a and b only
know their own state by p → Kap and ¬p → Ka¬p, and by, respectively, q → Kaq and
¬q → Ka¬q.

Example 6.7 (Card deals) Three players, Alice, Bob and Carol, each draw a card from
a stack of three cards. The cards are red, white and blue and their backsides are indis-
tinguishable (as before). Let rwb stand for the deal of cards where Alice holds the red
card, Bob the white card, and Carol the blue card, etc. There are six different card deals.
These are therefore the possible situations. Players can only see their own card, but not
the cards of other players. They do see that other players only hold a single card, and that
this cannot be their own card, and they do know that all the players know that, etcetera (it
is an interpreted system). The players’ knowledge can be represented as in the following

6.3. LANGUAGE OF EPISTEMIC LOGIC 6-7

model. All states are accessible from themselves, we have therefore not drawn the reflex-
ive arrows. We use solid lines to picture Alice’s accessibilities, dotted lines for those of
Bob and dashed lines for those of Carol.

(6.4)

Let propositional variable ra stand for ‘Alice holds the red card’, etc. In situation rwb it is
the case that: Kara (Alice knows that she holds the red card) and that Ka(wb ∨ bb) (Alice
knows that Bob must hold the white card or the blue card).

Example 6.7 is related to the three-cards Example 6.2. In that case, the (anonymous)
agent is Alice, the card on the left side of the table is Bob’s card, and the card on the
table’s right side is Carol’s card. Tables can’t think, but agents can, therefore the situation
is now much more complex. The proposition p previously standing for ‘the left card is
white’ is now named wc.

6.3 Language of Epistemic Logic

It is time to get a bit more precise. Before, our set of formulas was given by:

ϕ ::= p | ¬ϕ | (ϕ1 ∧ ϕ2) | (ϕ1 ∨ ϕ2) | (ϕ1 → ϕ2) | (ϕ1 ↔ ϕ2)

We now extend this with operations for ‘i knows that ϕ’, where i is an agent. We use Ki

for “i knows that . . . ”. This gives us the following language for the logic of knowledge,
or epistemic logic.

Definition 6.8 (Language of epistemic logic)

ϕ ::= p | ¬ϕ | (ϕ1 ∧ ϕ2) | (ϕ1 ∨ ϕ2) | (ϕ1 → ϕ2) | (ϕ1 ↔ ϕ2) | Kiϕ.

6-8 CHAPTER 6. KNOWLEDGE AND INFORMATION FLOW

6.4 Semantics of Epistemic Logic – Possible Worlds Se-
mantics

The language of epistemic logic is apparently a simple extension of the language of propo-
sitional logic. It took only a single additional operator. The interpretation of this language,
as we have seen in the previous examples, requires quite a bit more then the relatively sim-
ple truth tables for propositional logic. The reason is that the evaluation of formulas given
a situation depends on the state of affairs in other situations, the aforementioned epistemic
alternatives or possible worlds. Moreover, the configuration of those possible worlds by
means of individualized accessibility relations makes it even more complicated. Let us
start with the definition of the intended class of models well-equipped for evaluation of
the epistemic language.

Definition 6.9 (Possible world model or epistemic model) A possible world model M
consists of three basic ingredients:

• a non-empty set of worlds W ,

• for each agent an accessibility relation Ra, that is a set of pairs of worlds, and

• for each world a valuation functions Vw.

The definition of truth for formulas with respect to a world in such a model looks more
complicated, but this is partly due to the extended format. In propositional logic we
mostly wrote V (ϕ) = 1 for ϕ is true in situation/valuation V , but we also wrote V |= ϕ
for that. Here the situations are worlds in a model containing a set of possible worlds,
and so evaluation of a formula also depends on the ‘location’ in the model. Similarly to
the notation already introduced in propositional logic, but with an additional label for the
location, we write M |=w ϕ to say that ϕ is true at w in M and M 6|=w ϕ to express that
ϕ is false at w in M .

Definition 6.10 (Evaluation of formulas) To begin with, the evaluation of proposition
letters is taken care of by the local valuation functions.

M |=w p if and only if Vw(p) = 1

Evaluation of the propositional connectives runs — of course — in the same way as in
the case of propositional logic as presented in the previous chapter.

M |=w ¬ϕ if and only if M 6|=w ϕ

M |=w ϕ ∧ ψ if and only if M |=w ϕ and M |=w ψ

M |=w ϕ ∨ ψ if and only if M |=w ϕ or M |=w ψ

Evaluation of formulas of the form Kaϕ, expressing that agent a knows that ϕ, requires
the evaluation of ϕ in all epistemic alternatives for a as given by the accessibility relation

6.4. SEMANTICS OF EPISTEMIC LOGIC – POSSIBLE WORLDS SEMANTICS 6-9

Ra. If ϕ holds in all those worlds the agent a is certain about ϕ and so Kaϕ would be true
in such a case:

M |=w Kaϕ if and only if M |=v ϕ for all v with 〈w, v〉 ∈ Ra

Kaϕ is false — that is a does not know that ϕ — if there is at least one world accessible
to a where ϕ does not hold.

Example As an example, consider this situation. A coin gets tossed under the cup. It
lands heads up. Alice and Bob are present, but neither of them can see the outcome, and
they both know this. Now Bob leaves the room for an instant. After he comes back, the
cup is still over the coin. But Bob realizes that Alice might have taken a look. She might
even have reversed the coin! Alice also realizes that Bob considers this possible. This can
be pictured as below. In the visualization, states that are indistinguishable for an agent
are linked with a label for that agent; therefore, all four worlds are indistinguishable for
b, w0 and w1 are indistinguishable for a, and from a’s point of view both w2 and w3 stand
by themselves (they only have a reflexive accessibility arrow). Call this model M . In
the section on information update we will explain how this situation can come about, in
Example 6.17.

(6.5)

Kah expresses “Alice knows that the coin is facing heads up”. Is this true in world w0?
No, it is not. The truth definition of Kah says that h has to be true in every world that is
a-accessible to world w0. We have (w0, w1) in Ra, so w1 is a-accessible to w0, moreover
M 6|=w1 h and therefore

M 6|=w0 Kah

Is Kah true in world w2? Yes it holds in w2, since the only world that is a-accessible to
w2 is w2 itself, so from M |=w2 h it follows that

M |=w2 Kah

6-10 CHAPTER 6. KNOWLEDGE AND INFORMATION FLOW

The formula KbKah expresses the higher order information that Bob knows that Alice
knows that the coin shows heads up. Is this true in world w0? No it is not, for we have
just seen that Kah is not true in world w0, and w0 is b-accessible to itself, so we get

M |=w0 ¬KbKah

If we evaluate KbKah in world w2, we get the same result. In this case, we have M |=w2

Kah, but since w0 is b-similar, we still get

M |=w2 ¬KbKah

Let us try something different. Does Bob know that Alice does not know that the coin is
facing heads up, in world w0? The formula for this is Kb¬Kah. This is false in w0, since
¬Kah holds in w0, there is a b-accessible world w2 where, as we have seen, Kah holds.

Finally, we check whether Alice knows that Bob does not know whether Alice knows
which face the coin is showing. The formula for “Alice knows whether the coin shows
heads up or tails up” is Kah ∨ Ka¬h. The complete formula whose truth-value we are
looking for is

Ka¬Kb(Kah ∨Ka¬h).

Is this true in world w0? This would be the case if

¬Kb(Kah ∨Ka¬h)

holds in every world that is a-accessible to w0. The two a-accessible worlds to w0 are w0

itself and w1. For w0 we have indeed:

M |=w0 ¬Kb(Kah ∨Ka¬h)

Yes we do, for both Kah and Ka¬h are false in w0, so Kah ∨ Ka¬h is false in w0, and
therefore Kb(Kah ∨Ka¬h) is also false in w0. In fact, we also have

M |=w1 ¬Kb(Kah ∨Ka¬h)

Both Kah and Ka¬h are false in w1, so Kah ∨ Ka¬h is false in w1, and therefore
Kb(Kah ∨Ka¬h) is also false in w1. Altogether, this settles

M |=w0 Ka¬Kb(Kah ∨Ka¬h)

In world w0 it is indeed the case that Alice knows that Bob does not know whether Alice
knows which side the coin is showing.

Exercise 6.11 In Example 6.6, check that the schema ¬Ka¬Kbϕ → Kb¬Ka¬ϕ is a validity on
the entire model of example 6.6.

Exercise 6.12 In Example 6.7, check that it is that ra → ¬KcKa(wb ∨ bb) in all worlds of the
model (if Alice has the red card, then Carol does not know that Alice knows that Bob has the white
or the blue card).

6.5. VALID CONSEQUENCE 6-11

6.5 Valid Consequence
Now that we defined under which circumstances a formula of our extended language is
true, we can adopt the general notion of valid inference as has been defined in the previous
chapter. A formula ψ is a valid consequence of a set of premisesϕ1, ..., ϕn if for all models
M and worlds w in M

if M |=w ϕi for all i, then also M |=w ψ

In other words, there exists no model M containing a world w such that

M |=w ϕi for all i and M 6|=w ψ

If ψ is a valid consequence of ϕ1, ..., ϕn then we write, as in the previous chapter,

ϕ1, ..., ϕn |= ψ

Logical closure of knowledge As we stated at the beginning of this chapter, the defi-
nition of valid inference may as well be defined in terms of knowledge. A valid conse-
quence ψ of a set of premises ϕ1, ..., ϕn is indeed known by our agent once he knows that
the premises are all true. Formally, this looks as follows

if ϕ1, ..., ϕn |= ψ then Kaϕ1, ..., Kaϕn |= Kaψ (6.6)

This is called the logical closure of knowledge, and in general it holds in every normal
modal logic as a result of how we have interpreted our only modal logical operaror. To
see this, consider the case that the conclusion in (6.6) is invalid:

Kaϕ1, ..., Kaϕn 6|= Kaψ

This would mean that there exists a possible world model M such that

M |=w Kaϕi for all i and M 6|=w Kaψ

for a certain world w in M . Falsification of Kaψ at w in M means that there exists a
world v in M which is a-accessible from w and that ψ is false at v in M :

M 6|=v ψ

But since all formulas Kaϕi are true in w we also have

M |=v ϕi for all i

But then this world v in M is also a counter-example showing that ψ is not a valid conse-
quence from ϕ1, .., ϕn:

ϕ1, ..., ϕn 6|= ψ

6-12 CHAPTER 6. KNOWLEDGE AND INFORMATION FLOW

Deriving valid principles By means of the logical closure of knowledge we can derive
other valid principles of epistemic logic.

To start with we show that knowing the conjunction of two proposition, Ka(ϕ∧ψ), is
logically equivalent with knowing both conjuncts, Kaϕ ∧Kaψ.

1. ϕ, ψ |= ϕ ∧ ψ propositional logic

2. Kaϕ,Kaψ |= Ka(ϕ ∧ ψ) 1 + logical closure of Ka

3. Kaϕ ∧Kaψ |= Ka(ϕ ∧ ψ) 2 + propositional logic

To show that the reverse also is valid we need another five steps:

4. ϕ ∧ ψ |= ϕ propositional logic

5. Ka(ϕ ∧ ψ) |= Kaϕ 4 + logical closure of Ka

6. ϕ ∧ ψ |= ψ propositional logic

7. Ka(ϕ ∧ ψ) |= Kaψ 6 + logical closure of Ka

8. Ka(ϕ ∧ ψ) |= Kaϕ ∧Kaψ 5,7 + propositional logic

For the disjunction this surely does not work. Take the model consisting of two worlds w
and w′ in Example 6.2, with the proposition p standing for ‘the left card is white’. In the
actual world we have ¬(Kap ∨Ka¬p): the agent does not know whether the white card
is on the left or on the right. But surely Ka(p ∨ ¬p) is true. The formula p ∨ ¬p is even
a tautology, and therefore, Ka(h ∨ ¬h) is always true (valid without premises). On the
other hand, for the disjunction we have validity in one direction:

Kaϕ ∨Kaψ |= Ka(ϕ ∨ ψ)

This can be shown quite easily by using the logical closure property of knowledge:

1. ϕ |= ϕ ∨ ψ propositional logic

2. Kaϕ |= Ka(ϕ ∨ ψ) 1 + logical closure Ka

3. ψ |= ϕ ∨ ψ propositional logic

4. Kaψ |= Ka(ϕ ∨ ψ) 3 + logical closure Ka

5. Kaϕ ∨Kaψ |= Ka(ϕ ∨ ψ) 2,4 + propositional logic
To give you one more example we show that we may distribute the Ka-operator over im-
plications:

1. ϕ→ ψ, ϕ |= ψ propositional logic

2. Ka(ϕ→ ψ), Kaϕ |= Kaψ 1 + logical closure Ka

3. Ka(ϕ→ ψ) |= Kaϕ→ Kaψ 2 + propositional logic

6.5. VALID CONSEQUENCE 6-13

The reverse of this principle is not valid. We leave it to the reader to find a simple model
M containing a world w such that M |=w Kap→ Kaq and M 6|=w Ka(p→ q).

Restricting the class of models In epistemic logic we need firm restrictions of the class
of models. For example, in the illustrations of the previous sections we assumed that
models are reflexive, that is each world in a model should have access to itself. Formally
speaking, for all worlds w in M and all agents a:

〈w,w〉 ∈ Ra

This means that our agents take the actual world always as one of their alternatives. If this
were not the case then it may happen that an agent has false information. This seems very
natural, but if this information is real knowledge then it is unacceptable. You cannot know
something that is actually false, because then it is not knowledge but belief or expectation
or some other ‘weaker’ attitude. In reflexive models the formula Kaϕ → ϕ is true in all
worlds for every proposition ϕ. Moreover, every non-reflexive accessibility relation can
be dressed up with local valuations such that Kaϕ→ ϕ is not true for some formula ϕ.

Another restriction for knowledge, which is often accepted for weaker attitudes also,
is that it is fully introspective. The agent may be very doubtful and uncertain, and there-
fore also ignorant. Nevertheless, he will always be certain about his uncertainty. The
uncertainty is represented by the set of accessible worlds, this set should be the same as
the set of accessible worlds in accessible worlds: the agent is not uncertain about this set
representing his own uncertainty. Expressing this in a more formal way, we get that for
all agents a, for all world pairs 〈w, v〉 in Ra and for all worlds u in M :

〈w, u〉 ∈ Ra if and only if 〈v, u〉 ∈ Ra

The corresponding principles for epistemic logic are Kaϕ → KaKaϕ and ¬Kaϕ →
Ka¬Kaϕ. The former is called positive introspection since it says that if you know some-
thing, then you know that you know this. The latter is called negative introspection be-
cause it tells us that if there is something you don’t know then you know that you don’t
know this. These principles always hold on the restricted class of models that we have
defined here.

The principle of positive introspection is in fact a valid consequence of negative in-
trospection if we combine this with the earlier principle saying that knowledge is always
true. Just for sake of illustration we give a derivation here below:

6-14 CHAPTER 6. KNOWLEDGE AND INFORMATION FLOW

1. |= Kaϕ→ ϕ knowledge is true

2. |= ¬ϕ→ ¬Kaϕ 1 + propositional logic

3. |= ¬Kaϕ→ Ka¬Kaϕ negative introspection

4. |= ¬ϕ→ Ka¬Kaϕ 2,3 + propositional logic

5. |= ¬¬ϕ→ Ka¬Ka¬ϕ 4 + replacing ϕ by ¬ϕ
6. |= ϕ→ Ka¬Ka¬ϕ 5 + propositional logic

7. |= Kaϕ→ Ka¬Ka¬Kaϕ 6 + replacing ϕ by Kaϕ

8. |= ¬Ka¬Kaϕ→ Kaϕ 3 + propositional logic

9. ¬Ka¬Kaϕ |= Kaϕ 8 + propositional logic

10. Ka¬Ka¬Kaϕ |= KaKaϕ 9 + logical closure of Ka

11. |= Ka¬Ka¬Kaϕ→ KaKaϕ 10 + propositional logic

12. |= Kaϕ→ KaKaϕ 7,11 + propositional logic

It is a much longer derivation as the ones we have seen earlier. Just try to check the
individual steps for yourself.

6.6 Proof
Just as for propositional logic, there is also an axiomatic proof system for epistemic logic.
We recall that a proof is a finite sequence of one or more steps, where each step is either
an axiom, or follows from previous steps in the proof by a (deduction) rule, and that
a formula is a theorem if it occurs in a proof; where a set of axioms and rules defines
an axiomatization for a given logic. In the case of epistemic logic, we have some extra
axioms and also an extra rule. Further recalling propositional logic, the three axioms and
one rule that we presented were:

(1) (ϕ→ (ψ → ϕ))

(2) ((ϕ→ (ψ → χ))→ ((ϕ→ ψ)→ (ϕ→ χ)))

(3) ((¬ϕ→ ¬ψ)→ (ψ → ϕ))

(4) from ϕ and (ϕ→ ψ), infer ψ

As we have already seen there, proofs in this system can be quite cumbersome. One
the main functions of a Hilbert-style proof system is to show that in principle, we have
covered all valid principles of the logic and not forgotten any: this is the issue of com-
pleteness, that all true principles (validities) are also derivable (theorems). How these
valid principles can then be derived, is certainly of interest but almost an aside. From that
point of view, now that we know that all tautologies in propositional logic can be derived
by the system above, we might as well forget about it and in further axiomatic extensions

6.7. INFORMATION UPDATE 6-15

take that for granted. Therefore, in the axiomatization for epistemic logic now to follow
it simply says that ‘all instances of propositional tautologies’ are axioms.

Definition 6.13 (Axiomatization of epistemic logic)

(1) all instances of propositional tautologies

(2) Ki(ϕ→ ψ)→ (Kiϕ→ Kiψ)

(3) Kiϕ→ ϕ

(4) Kiϕ→ KiKiϕ

(5) ¬Kiϕ→ Ki¬Kiϕ

(6) from ϕ and (ϕ→ ψ), infer ψ

(7) from ϕ, infer Kiϕ

Several of these axioms we have already seen as valid principles, in the previous
section, e.g., the axiom Kiϕ→ KiKiϕ called positive introspection.

Example 6.14 This is derivation of the theorem Ki¬p → ¬Kip (if you know that p is
false, you don’t know that p):

1 Kip→ p
2 (Kip→ p)→ (¬p→ ¬Kip)
3 ¬p→ ¬Kip
4 Ki(¬p→ ¬Kip)
5 Ki(¬p→ ¬Kip)→ (Ki¬p→ Ki¬Kip)
6 Ki¬p→ Ki¬Kip
7 Ki¬Kip→ ¬Kip
8 (Ki¬p→ Ki¬Kip)→ ((Ki¬Kip→ ¬Kip)→ (Ki¬p→ ¬Kip))
9 (Ki¬Kip→ ¬Kip)→ (Ki¬p→ ¬Kip)
10 Ki¬p→ ¬Kip

Can you find out which axioms and rules have been applied and where?

6.7 Information Update
The models with possible worlds and accessibility links for each agent provide com-
plete description of the knowledge of agents, including all that agents know about the
knowledge of the other agents. In this section we will show how relatively simple update
scenarios can be modelled as modifications of these models.

6-16 CHAPTER 6. KNOWLEDGE AND INFORMATION FLOW

Example 6.15 You have to finish a paper, and you are faced with a choice: do it today,
or put it off until tomorrow. You decide to play a little game with yourself. You will flip a
coin, and you promise yourself: “If it lands heads I will have to do it now, if it lands tails
I can postpone it until tomorrow. But wait, I don’t have to know right away, do I? I will
toss the coin in a cup.” And this is what you do. Now the cup is upside down on the table,
covering the coin. You know: if it has heads up, it is off to work. Better postpone looking
for a while.

This state of affairs can be pictured as follows:

(6.7)

There are two situations, one in which h is the case (situationw, where the coin has landed
heads up) and one where h is not the case (situation w′, where the coin has landed tails
up). The situation that is actually the case is shaded grey. But I do not know this.

Now consider what happens when you summon up your courage and take a look. The
picture simplifies, as follows:

(6.8)

To see how the epistemic analysis can be extended to the multi-agent case, let us
complicate the coin toss situation from example 6.15 a bit.

Example 6.16 Suppose there are two people present, you and me. Or, let us say, Alice
and Bob. We will use a for Alice and b for Bob. The result of a hidden coin toss with the
coin heads up is now pictured like this. We leave out the reflexive arrows, and use link
labels to indicate agents:

(6.9)

This is quite similar to the picture of example 6.15. The only difference is that now there
is a similarity link for both a and b.

Assume that Alice is taking a look under the cup, while Bob is watching. Then we get
a quite subtle situation. Alice knows whether the coin shows heads or tails. Bob knows

6.7. INFORMATION UPDATE 6-17

that Alice knows the outcome of the toss, but he does not know the outcome himself. Here
is a picture:

(6.10)

The picture shows that Alice knows the outcome of the coin toss: if it is h, she does not
confuse this with ¬h, if it is ¬h she does not confuse this with h. But Bob does not know.
He still cannot make up which of the two situations is the actual one. Bob also knows that
Alice knows. Bob takes situations w and w′ to be possible, but in situation w Alice is not
uncertain about the toss outcome, and in situation w′ neither. This means that Bob knows
that Alice knows the toss outcome, without Bob himself knowing it.

Example 6.17 Now imagine a slightly different situation. The coin gets tossed under
the cup. It lands heads up. Alice and Bob are present, but neither of them can see the
outcome, and they both know this. Now Bob leaves the room for an instant. After he
comes back, the cup is still over the coin. But Bob realizes that Alice might have taken a
look. She might even have reversed the coin! Alice also realizes that Bob considers this
possible. The picture gets a bit more complicated:

(6.11)

Let us analyze this state of affairs carefully. We see that three of the four situations in the
picture are shaded. This means that each of these three can be the actual situation. To see
that this is reasonable, observe that Alice might have done three things while Bob was
away:

• Alice might have done nothing. In that case w0 is the actual situation. But Bob does
not know that she has done nothing. So Bob confuses w0 with situation w1 where

6-18 CHAPTER 6. KNOWLEDGE AND INFORMATION FLOW

the outcome is tails, but Alice has not looked, with situation w2 where the outcome
is heads, and Alice has looked, and with situation w3 where the outcome is tails and
where Alice has reversed the coin.

• Alice might have taken a look. In that case w2 is the actual situation. But again,
Bob does not know this. He confuses w2 with situations w0 and w1 where Alice has
not looked, and with situation w3 where Alice has changed the outcome.

• Alice might have reversed the coin. In that case w3 is the actual situation. But Bob
does not know this, and he confuses this with the other possible situations.

Again, the situation is quite subtle. For Alice knows that Bob considers all these possibili-
ties, so Alice knows that Bob does not know the outcome. But also, Alice knows that Bob
does not know whether Alice knows the outcome. This is called higher order knowledge
or knowledge about knowledge.

One particular form of such informative developments is what is known as a public
announcement. A public announcement is spoken information, such that all agents hear
what is being said, and also observe and assume that all others hear what is being said, and
so on (I know that you hear what I hear, etcetera). Public announcement can be processed
in the model in a fairly straightforward way: restrict the model to all states where the
publicly announced formula is true, just like new incoming information was dealt with in
the previous chapter. These changes can be considered more elementary than the model
changes in the previous example, where (e.g., in the transition where Alice is taking a look
under the cup, while Bob is watching) the states remain the same but the links change.

Example 6.18 Consider again the model of Example 6.7, and state rwb in that model.

(6.12)

Alice says: “I have the red card.” This corresponds to an update with ra. We restrict the
model to situations in which Alice holds red. These are the states wherein ra is true, i.e.,
rwb and rbw. The result is depicted below. It is clear that Alice is the only one who is left

6.7. INFORMATION UPDATE 6-19

ignorant about the actual state of affairs.

(6.13)

In this structure it holds that both Bob and Carol know what the card deal is. They have
no alternatives for the actual state rwb. Bob learnt the card deal because deal bwr is no
longer possible. Carol learnt the card deal because deal wrb is no longer possible.

At first sight it seems that ‘publicly announcing that ϕ’ is rather much like ‘making ϕ
true’. But this may be misleading. You can announce something that is true, but at the
same time by conveying the meassage make it become false. This seems implausible. It
is possible though by making statements about one’s own ignorance or the ignorance of
others. Consider the following example:

Example 6.19 In state rwb of the model of Example 6.7 Alice says: “Bob does not know
that I have the red card.” Literally, this statement is formalized as ¬Kbra but in practice
such an announcement is only informative if it means “I have the red card and Bob does
not know that.” Which is an update with ra ∧¬Kbra. This statement is only true in states
rwb and rbw. The resulting model is therefore again the one above. In that model Bob
knows that Alice has the red card: Kbra. Therefore, after the update with ra ∧ ¬Kbra its
negation is now true: ¬(ra ∧ ¬Kbra) is logically equivalent with ¬ra ∨Kbra, which is a
simple valid inference from the information Kbra.

Example 6.20 Suppose Alice said “I do not have the white card.” instead. This statement
is true in the four sitations rwb, rbw, brw, and bwr. The resulting model is:

(6.14)

In this model it holds that in state rwbCarol knows what the card deal is, but Bob still does
not know. This makes sense, as Bob holds the white card himself, so he already knew that
Alice does not hold white. Still, Bob has learnt something from Alice’s announcement,
namely that Carol now knows what the card deal is.

Formally speaking, public announcements change knowledge states, so their seman-
tics can be given as a function from our possible world models to new models. An update

6-20 CHAPTER 6. KNOWLEDGE AND INFORMATION FLOW

with ϕ changes M to M | ϕ, where M | ϕ is the result of removing all worlds from M
where ϕ is false. So the update map is:

M 7→M | ϕ

Exercise 6.21 Call a public announcement ϕ unsuccessful in a world in a model if ϕ ∧ [!ϕ]¬ϕ is
true in that world in that model. In other words: ϕ is true, but a public announcement of ϕ makes
ϕ false. Give a model, a world and a formula ϕ (other than in the example above!) such that public
announcement of ϕ in that world in that model is unsuccessful.

Exercise 6.22 The formula p → Ki¬Ki¬p is a theorem of epistemic logic. Build a proof of it
using the axiomatization given in Definition 6.13.

Exercise 6.23 Consider the epistemic situation described in the following scenario: “Three stu-
dents Ann, Bob and Cath send their request for a certain logic textbook to the library server in the
same day at 9am, 10am and 11am, respectively, without knowing this about each other. Because
the library has only one copy of the book, the librarian replies by e-mail to everyone informing
them that the loan will be given to whoever filed the request first, without any further detail.”

(a) Represent the knowlege of the students in an epistemic model.
(b) Check in the model built for (a) if any of the students knows that (s)he will receive the

book.
(c) Anxious to find out who will receive the book, Bob writes an e-mail to everione saying: “I

filed my request at 10am.” Compute the effect of this announcement on the epistemic model from
(a).

(d) Check in this new model if any of the students knows that (s)he will get the book on loan.
(e) After this Cath sends a “reply-all” to Bob’s previous message saying: “Bob, I think that

you might get the book on loan.” Compute the effect of this announcement on the epistemic model
from (c).

(f) Check in this new model if any of the students knows that (s)he will get the book on loan.

6.8 Expressive Power
A whole lot of knowledge and relations between knowledge can be specified in the epis-
temic logic of this chapter. To express updates in the language, and such puzzling phe-
nomena as formulas becoming false because they are announced (as when we announce
p ∧ ¬Kp), we also need an update operator to formalize informational transitions. This
will be presented in the outlook section, next. An interesting observation is that such
an operator does not in fact increase the expressive power of the logical language! That
means, technically, that if we have an formal description for “after announcing that p is
true and you don’t know, you know that p” then we have an equivalent formula in the epis-
temic language without the update operator. Really equivalent, in all models where one
formula is true, the other must be true as well. If it does not increase expressive power,
what’s the use of doing that, then? Convenience and succinctness! In propositional logic
you would not like to be forced to be precise about every formula employing the Sheffer
stroke only (the single connective wherein all others can be defined). The formalizations

6.9. OUTLOOK — COMMON KNOWLEDGE 6-21

would become very long, and although it is fixed what they mean that would not at all
be clear from their appearance. Similarly, in epistemic logic formalizations with update
operators often appear more natural than those without.

Another epistemic concept that we introduce in the outlook section is that of common
knowledge. Something is common knowledge if I know that you know that I know it, and
so on. (Details are of course given fully in the next section only.) Now the interesting
aspect is that if we extend epistemic logic with such a common knowledge operator, the
expressive power of the language really increases, unlike in the case of adding the update
operator. Combining such different extensions may also affect expressivity in yet other
unexpected ways. We will not digress into such matters.

In the outlook sections that follow we focus on two common extensions of epistemic
logic: with operators for common knowledge, and with operators for public announce-
ments. There are more complex extensions than that, e.g., the action wherein Alice looks
at the coin without Bob being able to see the result, requires yet another extension.

6.9 Outlook — Common Knowledge
Example 6.24 Imagine two generals who are planning a coordinated attack on a city.
The generals are on two hills on opposite sides of the city, each with their armies, and
they know they can only succeed in capturing the city if the two armies attack at the same
time. But the valley that separates the two hills is in enemy hands, and any messengers
that are sent from one army base to the other run a severe risk of getting captured. The
generals have agreed on a joint attack, but they still have to settle the time.

So the generals start sending messengers. General A sends a soldier with the message
“We will attack tomorrow at dawn”. Call this message p. Suppose his messenger gets
across to general B at the other side of the valley. Then Kbp holds, but general A does not
know this because he is uncertain about the transfer of his message. Now general B sends
a messenger back to assure A that he has recieved his message. Suppose this messenger
also gets across without being captured, then KaKbp holds. But general B does not know
this being uncertain about the success of transfer: ¬KbKaKbp. General A now sends a
second messenger. If this one also safely delivers his message we have KbKaKbp. But
general A does not know this ... etcetera, etcetera. In this way, they’ll continue sending
messages infinitely (and certainly not attack tomorrow at dawn).

The point of the example is that this procedure will never establish genuine common
knowledge between the two generals. They share the knowledge of p but that is surely
not enough for them to be convinced that they will both attack at dawn. In case of real
common knowledge every formula of the infinite set

{Kap,Kbp,KaKbp,KbKap,KaKbKap,KbKaKbp, . . .}

holds.

Common knowledge is a very important epistemic concept in communication systems
especially when the information that is transfered demands for risk-bearing actions.

6-22 CHAPTER 6. KNOWLEDGE AND INFORMATION FLOW

Let us draw some pictures of how the situation as given in the previous example de-
velops after each messenger delivers his message. Initially, general A settles the time of
the attack. He knows that p but he also knows that general B does not know:

(6.15)

After the first messenger from A to B gets safely across we have:

(6.16)

After the message of B to A is safely delivered we get:

(6.17)

Successful transfer of the second message from A to B amounts to

(6.18)
Note that in world w1 it does not hold that KbKaKbp, and therefore ¬KaKbKaKbp is true
in the actual world w.

The example makes it seem that achieving common knowledge is an extremely com-
plicated or even impossible task. This conclusion is too negative, for common knowledge
can be established immediately by public announcement. Suppose the two generals take
a risk and get together for a meeting. Then general A simply says to general B “We will
attack tomorrow at dawn”, and immediately we get:

(6.19)

6.9. OUTLOOK — COMMON KNOWLEDGE 6-23

Still, we cannot express common knowledge between a and b by means of a single formula
of our language. What we want to say is that the stacking of knowledge operators goes
on indefinitely, but we have no formula for this.

In epistemic logic common knowledge cannot be defined by means of knowledge
operators, and therefore we need to extend the language with an additional modal operator
C, where Cϕ means that ϕ is commonly known by the whole group of agents. In order
to set up a logical system for this extended language we also need a truth condition in
terms of possible worlds models. To provide a satisfactory evaluation we need to define a
new accessibility relation by using the accessibility relations of the individual agents. Say
we have a model M with accessibility relations Ra for every agent a, then we define the
desired new accessibility relation R∗ as the set of pairs of worlds 〈w, v〉 such that there
is a path of accessibility links from w to v. Each link in such a path may belong to any
agent. The truth condition for Cϕ-formulas is then

M |=w Cϕ if and only if M |=v ϕ for all v such that 〈w, v〉 ∈ R∗

To see that this condition is the right one is given by the following result:

M |=w Cϕ if and only if M |=w Ka0 ...Kanϕ for all sequences a0...an of agents

Epistemic logic with this additional operator is a bit more difficult than the systems with
individual knowledge operators that we have discussed so far. This is due to the infinite
nature of common knowledge.

One way to describe that ϕ is common knowledge is by saying that ϕ is true and in
addition to this everybody knows that ϕ is common knowledge. This is indeed one of the
principles of the logic of common knowledge:

|= Cϕ→ ϕ ∧ ECϕ. (6.20)

where ECϕ is an abbreviation for ‘everybody knows’. For example, if a, b, c are the
agents, then ECϕ is shorthand for KaCϕ ∧KbCϕ ∧KcCϕ.

Just as in the case of individual knowledge, we have the following for common knowl-
edge:

if ϕ1, ..., ϕn |= ψ then Cϕ1, ..., Cϕn |= Cψ (6.21)

Exercise 6.25 To convince yourself that (6.21) is true, carry out the reasoning for principle (6.6)
for the case of common knowledge.

Finally, if it is common knowledge that ϕ implies Eϕ, then from ϕ it follows that ϕ is
common knowledge:

|= C(ϕ→ Eϕ)→ (ϕ→ Cϕ). (6.22)

Think of a situation where it is common knowledge that if ϕ gets announced then everyone
will hear the announcement and thus get to know ϕ. Then it is clear that if indeed ϕ gets
announced, ϕ becomes common knowledge.

6-24 CHAPTER 6. KNOWLEDGE AND INFORMATION FLOW

Exercise 6.26 Describe an epistemic situation with two agents a and b where (i) p implies that
both agents know that p and (ii) where p is actually true, but still (iii) p is not common knowledge.
Hint: imagine that p is true, that a and b both know it, but that a does not know that b knows . . .

Many social rituals are designed to create common knowledge. A prime example is
cash withdrawal from a bank. You withdraw a large amount of money from your bank
account and have it paid out to you in cash by the cashier. Typically, what happens is
this. The cashier looks at you earnestly to make sure she has your full attention, and
then she slowly counts out the banknotes for you: one thousand (counting ten notes while
saying one, two, three, . . . , ten), two thousand (counting another ten notes), three thousand
(ten notes again), and four thousand (another ten notes). This ritual creates common
knowledge that forty banknotes of fifty euros were paid out to you.

To see that this is different from mere knowledge, consider the alternative where the
cashier counts out the money out of sight, puts it in an envelope, and hands it over to you.
At home you open the envelope and count the money. Then the cashier and you have
knowledge about the amount of money that is in the envelope. But the amount of money
is not common knowledge among you. In order to create common knowledge you will
have to insist on counting the money while the cashier is looking on, making sure that you
have her full intention. For suppose you fail to do that. On recounting the money at home
you discover there has been a mistake. One banknote is missing. Then the situation is as
follows: the cashier believed that she knew there were forty banknotes. You now know
there are only thirty-nine. How are you going to convince your bank that a mistake has
been made, and that it is their mistake?

Exercise 6.27 Consider the situation where cash is paid out to you by an ATM. The machine
counts the money, dispenses it, and you can count it afterwards. Does this create common knowl-
edge between you and the machine that an X amount was paid out to you? Why (not)?

6.10 Outlook — Public Announcement Logic
There is a close connection between public announcements and common knowledge, for
common announcement of propositional facts has the effect that those facts become com-
mon knowledge.

Example 6.28 If Hans send a group email with a party invitation to Alice, Bob and Carol,
then the invitation becomes common knowledge.

Therefore, it is quite reasonable to study public announcements and common knowl-
edge together, by studying a system that has expressions of the form Cϕ (“it is common
knowledge that ϕ”) and expressions of the form [!ϕ]ψ (public announcement of ϕ has the
effect that ψ holds.

Still, it is interesting to study the effect of public announcements in a setting where
individual knowledge is all one can reason about. Here is the language of this:

ϕ ::= p | ¬ϕ | (ϕ1 ∧ ϕ2) | Kiϕ | [!ϕ1]ϕ2.

6.10. OUTLOOK — PUBLIC ANNOUNCEMENT LOGIC 6-25

Note that we have left out (ϕ1 ∨ ϕ2), (ϕ1 → ϕ2) and (ϕ1 ↔ ϕ2).

Exercise 6.29 Show that leaving out (ϕ1 ∨ ϕ2), (ϕ1 → ϕ2) and (ϕ1 ↔ ϕ2) from the language
definition has no effect on what we can say, by showing how such formulas can be defined from
¬ and ∧.

Now it turns out that the following principles hold:

[!ϕ]p ↔ (ϕ→ p) (6.23)
[!ϕ]¬ψ ↔ (ϕ→ ¬[!ϕ]ψ) (6.24)

[!ϕ](ψ1 ∧ ψ2) ↔ [!ϕ]ψ1 ∧ [!ϕ]ψ2) (6.25)
[!ϕ]Kiψ ↔ (ϕ→ Ki[!ϕ]ψ) (6.26)

[!ϕ1][!ϕ2]ψ ↔ [!(ϕ1 ∧ [!ϕ2]ϕ2)]ψ (6.27)

What is remarkable about this is that these principles about public announcements are all
equivalences. Also, on the left-hand sides the public announcement operator is the prin-
cipal operator, but on the righthand sides it is not. What this means is that the principles
can be used to ‘translate’ a formula of individual public announcement logic to a formula
of the logic of individual knowledge. In other words: every statement about the effects
of public announcement on individual knowledge is equivalent to a statement about just
individual knowledge.

Exercise 6.30 Blissful ignorance about a set of facts is a situation where you don’t know whether
the facts are true or not, but you know there is no reason to worry for it is common knowledge that
nobody knows about the truth of these facts. Give a model for a situation with agents a, b, c that
are in blissful ignorance about the truth values of p and q.

The logic of common knowledge and public announcement has the following lan-
guage:

ϕ ::= p | ¬ϕ | (ϕ1 ∧ ϕ2) | Kiϕ | Cϕ | [!ϕ1]ϕ2.

We now turn to a famous example where public announcements of ignorance can
create (common) knowledge.

Example 6.31 A group of children has been playing outside and are called back into the
house by their father. The children gather round him. As one may imagine, some of them
have become dirty from the play and in particular: they may have mud on their forehead.
Children can only see whether other children are muddy, and not if there is any mud on
their own forehead. All this is commonly known, and the children are, obviously, perfect
logicians. Father now says: “At least one of you has mud on his or her forehead.” This is
a public announcement. And then: “Will those who know whether they are muddy please
step forward.”

Suppose we have a situation where Alice, Bob and Carol have been playing outside.
As it turns out, Bob and Carol are muddy, but Alice is not. Then, when Bob hears father

6-26 CHAPTER 6. KNOWLEDGE AND INFORMATION FLOW

ask the question, he sees that Carol is muddy. So he knows that if he is muddy, he is not
the only one. So he does not step forward. And he observes that Carol, who reasons like
he does, does not step forward. But knowing that Carol is a perfect reasoner, he can draw
his conclusion: Carol does not step forward because she sees the mud on his forehead.
So when father asks again “Will those who know whether they are muddy please step
forward,” both Carol and Bob step forward.

Exercise 6.32 Suppose that there are four children, Alice, Bob, Carol and Dave. The situation is
like in the example, but now Bob, Carol and Dave have mud on their foreheads. Father makes his
announcement “At least one of you is muddy,” and then starts repeating the question “Will those
who know whether they are muddy please step forward.” What will happen?

Summary In multi-agent epistemic logic we can describe what an agent knows and
what agents know about each other. The logic has modal operatorsKa, whereKaϕmeans
that ‘agent a knows ϕ’, and the logic is interpreted on epistemic models or possible world
models. Such a model consists of a domain, a set of accessibility relations, one for each
agent, and a valuation of atomic propositions. Due to informative developments, these
models may change. You have to be able to model knowledge and ignorance of agents
in simple scenarios, formalize their knowledge and ignorance in epistemic logic, and
you have to be able to make simple informational transitions of these models based on
descriptions of such information change in English.

Further Exercises

Exercise 6.33 Which of the following formulas are valid (you can assume that there are only two
agents a and b):

(1) ((Kaϕ ∧Kbϕ)→ (KaKbϕ ∧KbKaϕ))→ Cϕ

(2) Cϕ→ KaCϕ

(3) Cϕ→ CCϕ

(4) ¬Cϕ→ C¬Cϕ

Build a counterexample for the invalid formulas and a proof for the valid ones.

6.10. OUTLOOK — PUBLIC ANNOUNCEMENT LOGIC 6-27

Exercise 6.34 Consider the following two epistemic models:

Model 1

1 : ϕ ϕ ϕ ϕ ¬ϕ

2 : ϕ ϕ ϕ ϕ ϕ

a ab b

a ab b

a

Model 2

1′ : ϕ ϕ ϕ ϕ ¬ϕ

2′ : ϕ ϕ ϕ ϕ

a ab b

a ab

(1) In the first model, can you find am formula of epistemic logic that is true in world 1 and
false in world 2?

(2) In the second model, can you find a formula of epistemic logic that is true in world 1′ and
false in world 2′?

(3) Can you find a formula that, when announced, changes the first model into the second one?

(4) Can you find a formula of public announcement logic that is true in world 1 and false in
world 2 of the first model?

6-28 CHAPTER 6. KNOWLEDGE AND INFORMATION FLOW

Chapter 7

Logic and Action

Overview In this chapter you will learn how you can combine actions with static de-
scriptions of the world. Actions can be communicative actions, facts changing in the
world, and calculations. You will learn various operations that combine different actions,
such as a sequence of actions and non-deterministic choice between actions. The logic of
actions is also related to the logic of information change presented in the chapter ‘Knowl-
edge and information flow’.

7.1 Motivation — Actions in General
Sitting quietly, doing nothing,
Spring comes, and the grass grows by itself.

From: Zenrin kushu, compiled by Eicho (1429-1504)

Action is change in the world. Change can take place by itself (see the poem above),
or it can involve an agent who causes the change. You are an agent. Suppose you have a
bad habit and you want to give it up. Then typically, you will go through various stages.
At some point there is the action stage: you do what you have to do to effect a change.

Actions can be of various kinds. First and foremost there are actions in the world, such
as preparing breakfast, cleaning dishes, or spilling coffee over your trousers. Such actions
change the state of the world. Another type of action is that of communicative actions,
such as reading an English sentence and updating one’s state of knowledge accordingly,
engaging in a conversation, sending an email with cc’s, telling your partner a secret. These
actions typically change the cognitive states of the agents involved. A third kind of actions
are computations, i.e., actions performed on computers. Examples are computing the
factorial function, computing square roots, etc. Such actions typically involve changing
the memory state of a machine. Of course there are connections between these categories.
A communicative action will usually involve some computation involving memory, and
the utterance of an imperative (‘Shut the door!’) is a communicative action that is directed
towards action in the world.

7-1

7-2 CHAPTER 7. LOGIC AND ACTION

There is a very general way to model action and change, a way that we have in fact
seen already. The key is to view a changing world as a set of worlds linked by labeled arcs.
In the context of epistemic logic we have looked at a special case of this, the case where
the arcs are epistemic accessibility relations: agent relations that are reflexive, symmetric,
and transitive. Here we drop this restriction.

A labelled transition system (or LTS) over atoms P and agents A consists of a set S
of states, a binary relation a→ (typically written in infix notation) between these states,
and a valuation of atomic propositions, such that every atom is mapped to a subset of the
domain of states, representing those where it is true. Let us illustrate the idea of an LTS
by a few simple examples.

Example 7.1 A simple illustration of how LTSs can be used to model action is when one
interprets labelled transitions as actions on the state of the world. In that case LTSs model
changes in the world itself:

open window

The action of window-opening changes a state in which the window is closed into one in
which it is open.

Another kind of action is a change in the epistemic states of a number of agents.

Example 7.2 On the left is an epistemic situation where p is in fact the case (indicated by
a double circle), but a and b cannot distinguish between p and ¬p. If in such a situation
a receives the message that p is the case, while b is not informed of this, the epistemic
situation changes to what is pictured on the right.

p

a,b

-pab

a,b

pM a p

a,b

p
b -p

b

a,b

a,b

a,b

In the new situation, a knows that p, and a also is aware of the fact that b does not know,
while b still does not not know, and b still assumes that a does not know.

Finally, here is computational example.

Example 7.3 If one interprets the labelled transitions as the changes in the memory state
of a computer, LTSs model computations, for example the simple assignment x := y:

7.1. MOTIVATION — ACTIONS IN GENERAL 7-3

x 3

y 2

z 4

x 2

y 2

z 4

x:=y

The command to put the value of register y in register x makes the contents of registers x
and y equal.

Example 7.4 Here is an example of an LTS with several transitions. The example models
a traffic light that can turn from green to yellow to red and again to green. The transitions
indicate which light is turned on (the light that is currently on is switched off). The state
is the state with the green light on, the state ? the state with the yellow light on, and the
state • the state with the red light on.

∗

•

-y

@
@
@
@

I

g
�
�
�
�	

r

These examples illustrate that it is possible to approach a wide variety of kinds of
actions from a unified perspective. In this chapter we will show that this is not only
possible, but also fruitful.

In fact, much of the reasoning we do in everyday life is reasoning about change. If you
reflect on an everyday life problem, one of the things you can do is run through various
scenarios in your mind, and see how you would (re)act if things turn out as you imagine.
Amusing samples are in the Dutch ‘Handboek voor de Moderne Vrouw’ (The Modern
Woman’s Handbook).

See http://www.handboekvoordemodernevrouw.nl/.

Example 7.5 Here is a sample question from ‘Handboek voor de Moderne Vrouw’: ‘I
am longing for a cosy Xmas party. What can I do to make our Xmas event happy and
joyful?’ Here is the recommendation for how to reflect on this:

Are you the type of a ‘guest’ or the type of a ‘hostess’?
If the answer is ‘guest’: Would you like to become a hostess?

If the answer is ‘not really’ then
your best option is to profile as an ideal guest
and hope for a Xmas party invitation elsewhere.

If the answer is ‘yes’ then here are some tips on how to become a great hostess: . . .
If the answer is ‘hostess’, then ask yourself:

Are your efforts truly appreciated?
If the answer is ‘Yes, but only by my own husband’ then

7-4 CHAPTER 7. LOGIC AND ACTION

probably your kids are bored to death.
Invite friends with kids of the same age as yours.

If the answer is ‘Yes, but nobody lifts a finger to help out’ then
Ask everyone to prepare one of the courses.

If the answer is ‘No, I only gets moans and sighs’ then
put a pizza in the microwave for your spouse and kids
and get yourself invited by friends.

Exercise 7.6 Construct a so-called flow diagram for the recommendations in the preceding exam-
ple. The questions should be put in 3 boxes, the answers should labels outgoing arrows of the 3
boxes, and the actions should be put in 2 boxes.

7.2 Motivation — Composition, Choice, Repetition, Con-
verse

In the logic of propositions, the natural operations are not, and and or. These operations
are used to map truth values into other truth values. When we want to talk about action,
the repertoire of operations gets extended. What are natural things to do with actions?

When we want to talk about action at a very general level, then we first have to look
at how actions can be structured. Let’s assume that we have a set of basic actions. We
will assume that basic actions do not have internal structure. How can basic actions be
combined to more complex actions? In the first place we can perform one action after
another: first eat breakfast, then do the dishes. Also, a complex action can consist of a
choice between simpler actions: either drink tea or drink coffee. Finally, actions can be
repeated: lather, rinse, repeat.

Repeated actions usually have a stop condition: repeat the lather rinse sequence until
your hair is clean. The phrase ‘lather, rinse, repeat’ is used as a joke at people who take
instructions too literally (the stop condition is omitted). There is also a joke about an
advertising executive who increases the sales of his client’s shampoo by adding the word
‘repeat’ to its instructions.

Some actions can be undone by reversing them: the reverse of opening a window is
closing it. Other actions are much harder to undo: if you smash a piece of china then it
is sometimes hard to mend it again. So here we have a choice: do we assume that basic
actions can be undone? If we do, we need an operation for this, for taking the converse
of an action. If we assume that undoing an action is generally impossible we should omit
the converse operation.

Exercise 7.7 Suppose ˇ is used for reversing basic actions. So ǎ is the converse of action a, and
b̌ is the converse of action b. Let a; b be the sequential composition of a and b, i.e., the action that
consists of first doing a and then doing b. What is the converse of a; b?

Since we are taking an abstract view, the basic actions can be anything. Still, there
are a few special cases of basic action that are special. The action that always succeeds is

7.3. MOTIVATION — OPERATIONS ON RELATIONS 7-5

called SKIP. The action that always fails is called ABORT.
A test to see whether some condition holds can also be viewed as a basic action.

Notation for the action that tests condition ϕ is ?ϕ. The question mark turns a formula
(something that can be true or false) into an action (something that can succeed or fail).

Exercise 7.8 Using the operation for turning a formula into a test, we can first test for p and next
test for q by means of ?p; ?q. Show how this can be turned into a single test.

Exercise 7.9 The choice between two tests ?p and ?q can be written as ?p∪?q. Show how this
can be turned into a single test.

Exercise 7.10 The SKIP action is the action that always succeeds and does not change anything.
Show how this can be expressed as a test.

Exercise 7.11 The ABORT action is the action that always fails. Show how this can be expressed
as a test.

7.3 Motivation — Operations on Relations
We will represent actions as binary relations. A binary relation on a state set S is a set of
pairs (s, s′) with s and s′ taken from S.

The set of all pairs taken from S is called S × S, or S2.
Important operations on binary relations are the common Boolean set operations of

taking unions R1 ∪R2, taking intersections R1 ∩R2, and taking complements R.

Example 7.12 The union of the relations ‘mother’ and ‘father’ is the relation ‘parent’.

Example 7.13 The intersection of the relations ⊆ and ⊇ is the equality relation =.

A notation that is often used for the equality relation (or: identity relation is I . The
binary relation I on S is by definition the set of pairs given by:

I = {(s, s) | s ∈ S}.

The Relational composition of binary relationsR1 andR2 on S, notationR1 ◦R2, is given
by:

R1 ◦R2 = {(t1, t2) ∈ S2 | ∃t3 ∈ S ((t1, t3) ∈ R1 ∧ (t3, t2) ∈ R2)}.

Example 7.14 The relational composition of the relations ‘mother’ and ‘parent’ is the
relation ‘grandmother’.

Exercise 7.15 What is the relational composition of the relations ‘father’ and ‘mother’?

Another important operation is relational converse. The relational converse of a bi-
nary relation R, notation R ,̌ is the relation given by:

Rˇ = {(y, x) ∈ S2 | (x, y) ∈ R}.

7-6 CHAPTER 7. LOGIC AND ACTION

Example 7.16 The relational converse of the ‘parent’ relation is the ‘child’ relation.

Exercise 7.17 What is the relational converse of the ⊆ relation?

There exists a long list of logical principles that hold for binary relations. To start
with, there are the usual Boolean principles that hold for all sets:

Commutativity R1 ∪R2 = R2 ∪R1, R1 ∩R2 = R2 ∩R1,

Idempotence R ∪R = R, R ∩R = R.

Laws of De Morgan R1 ∪R2 = R1 ∩R2, R1 ∩R2 = R1 ∪R2.

Next, there are obvious principles of relational composition:

Associativity R1 ◦ (R2 ◦R3) = (R1 ◦R2) ◦R3.

Distributivity R1 ◦ (R2 ∪R3) = (R1 ◦R2)∪ (R1 ◦R3), (R1 ∪R2) ◦R3) = (R1 ◦R3)∪
(R2 ◦R3).

There are also many principles that seem plausible but that are invalid. To see that a
putative principle is invalid one should look for a counterexample.

Example 7.18 R ◦ R = R is invalid, for if R is the ‘parent’ relation, then the principle
would state that ‘grandparent’ equals ‘parent’, which is false.

Exercise 7.19 Show by means of a counterexample thatR1∪ (R2 ◦R3) = (R1∪R2)◦ (R1∪R3)
is invalid.

Exercise 7.20 Check from the definition that Řˇ = R is valid.

Exercise 7.21 Check from the definitions that (R1 ∪R2)̌ = R1̌ ∪R2̌ is valid.

Recall that I is the identity relation on S. Then the n-fold composition of a binary
relation R on S with itself is defined by recursion, as follows:

R0 = I

Rn = R ◦Rn−1

The reflexive transitive closure of R is by definition the smallest relation S that contains
R and that is both reflexive and transitive. The reflexive transitive closure of R is given
by:

R∗ =
⋃
n∈N

Rn.

7.4. LANGUAGE — COMBINING PROPOSITIONAL LOGIC AND ACTIONS: PDL7-7

7.4 Language — Combining Propositional Logic and Ac-
tions: PDL

If one combines propositional logic with actions one gets a basic logic of change called
Propositional Dynamic Logic or PDL. Propositional dynamic logic abstracts over the set
of basic actions, in the sense that basic actions can be anything. In the language of PDL
they are atoms. This means that the range of applicability of PDL is vast. The only thing
that matters about a basic action a is that it is interpreted by some binary relation on a
state set.

Dynamic logics have two basic syntactic categories: formulas and action statements.
Formulas are used for talking about states, action statements are used for classifying tran-
sitions between states. The same distinction between formulas and action statement can
be found in all imperative programming languages. The statements of C or Java are the
action statements. Basic actions in C are assigning a value to a variable. These are in-
structions to change the memory state of the machine. The so-called Boolean expressions
in C behave like formulas of propositional logic. They appear as conditions in conditional
expressions. Consider the following C statement:

if (y < z)
x = y;

else
x = z;

This is a description of an action. But the ingredient (y<z) is not a statement (description
of an action) but a Boolean expression (description of a state).

Propositional dynamic logic is an extension of propositional logic with action state-
ments, just like epistemic logic is an extension of propositional logic with epistemic
modalities. Let a set of basic propositions P be given. Then appropriate states will con-
tain valuations for these propositions. Let a set of basic actions A be given. Then every
basic action corresponds to a binary relation on the state set. Together this gives a labeled
transition system with valuations on states as subsets from P and labels on arcs between
states taken from A.

Definition 7.22 (Language of PDL — propositional dynamic logic) Let p range over
the set of basic propositions P , and let a range over a set of basic actions A. Then the
formulas ϕ and action statements α of propositional dynamic logic are given by:

ϕ ::= > | p | ¬ϕ | ϕ1 ∨ ϕ2 | 〈α〉ϕ
α ::= a | ?ϕ | α1;α2 | α1 ∪ α2 | α∗

> is the formula that is always true. From this, we can define ⊥, as shorthand for ¬>.
Similarly, ϕ1∧ϕ2 is shorthand for ¬(¬ϕ1∨¬ϕ2), ϕ1 → ϕ2 is shorthand for ¬ϕ1∨ϕ2,

ϕ1 ↔ ϕ2 is shorthand for (ϕ1 → ϕ2) ∧ (ϕ2 → ϕ1), and [α]ϕ is shorthand for ¬〈α〉¬ϕ.

7-8 CHAPTER 7. LOGIC AND ACTION

Exercise 7.23 Suppose we also want to introduce a shorthand αn, for a sequence of n copies of
action statement α. Show how this can be defined by induction. (Hint: use α0 := ?> as the base
case.)

Let’s get a feel for the kind of things we can express with PDL. For any action state-
ment α,

〈α〉>

expresses that the action α has at least one successful execution. Similarly,

[α]⊥

expresses that the action fails (cannot be executed in the current state).
The basic actions can be anything, so assume for a moment that basic actions are

public announcements. Then
〈α〉ϕ

expresses that a public announcement of α may have the effect that ϕ holds.
If the basic actions are changes in the world, such as spilling milk S or cleaning C,

then [C;S]d expresses that cleaning up followed by spilling milk always results in a dirty
state, while [S;C]¬d expresses that the occurrence of these events in the reverse order
always results in a clean state.

7.5 Semantics of propositional dynamic logic
The semantics of PDL over atoms P and agents A is given relative to a labelled transition
system.

Definition 7.24 (Labelled transition system) Let P be a set of basic propositions and A
a set of labels for basic actions. Then a labelled transition system (or LTS) over atoms P
and agents A is a triple M = 〈S,R, V 〉 where S is a set of states, V : S → P(P) is a
valuation function, and R = { a→⊆ S × S | a ∈ A} is a set of labelled transitions, i.e., a
set of binary relations on S, one for each label a.

The formulas of PDL are interpreted in states of the labeled transition system, and the
actions a of PDL as binary relations on the domain S of the LTS, with the interpretation
of basic actions a given as a→.

Definition 7.25 (Semantics of PDL) Given is a labelled transition systemM = 〈S, V,R〉
for P and A.

M |=s > ⇐⇒
M |=s p ⇐⇒ p ∈ V (s)
M |=s ¬ϕ ⇐⇒ M 6|=s ϕ
M |=s ϕ ∧ ψ ⇐⇒ M |=s ϕ and M |=s ψ
M |=s 〈α〉ϕ ⇐⇒ ∃t, (s, t) ∈ [[α]]M and M |=t ϕ

7.5. SEMANTICS OF PROPOSITIONAL DYNAMIC LOGIC 7-9

where the binary relation [[α]]M interpreting the action α in the model M is defined as

[[a]]M =
a→M

[[?ϕ]]M = {(s, s) ∈ SM × SM | s ∈ [[ϕ]]M}
[[α1;α2]]M = [[α1]]M ◦ [[α2]]M

[[α1 ∪ α2]]M = [[α1]]M ∪ [[α2]]M

[[α∗]]M = ([[α]]M)∗

These definitions specify how formulas of PDL can be used to make assertions about PDL
models. The formula 〈a〉>, when interpreted at some state in a PDL model, expresses that
that state has a successor in the a→ relation in that model. A PDL formula ϕ is true in a
model if it holds at every state in that model, i.e., if [[ϕ]]M = SM . Truth of the formula
〈a〉> in a model expresses that a→ is serial in that model. A PDL formula ϕ is valid if it
holds for all PDL models M that ϕ is true in that model, i.e., that [[ϕ]]M = SM .

Exercise 7.26 Show that 〈a; b〉> ↔ 〈a〉〈b〉> is an example of a valid formula.

As was note before, ? is an operation for mapping formulas to action statements.
Action statements of the form ?ϕ are called tests; they are interpreted as the identity
relation, restricted to the states satisfying the formula.

Exercise 7.27 Let the following PDL model be given:

pq pq

pq pq

b

b

a a

Give the interpretations of ?p, of ?(p ∨ q), of a; b and of b; a.

Converse Letˇ (converse) be an operator on PDL programs with the following interpre-
tation:

[[α̌]]M = {(s, t) | (t, s) ∈ [[α]]M}.

Exercise 7.28 Show that the following equalities hold:

(α;β)̌ = β ;̌ α̌
(α ∪ β)̌ = α̌ ∪ βˇ

(α∗)̌ = (α̌)∗

7-10 CHAPTER 7. LOGIC AND ACTION

Exercise 7.29 Show how the equalities from the previous exercise, plus atomic converse ǎ , can
be used to define α̌ , for arbitrary α, by way of abbreviation.

It follows from Exercises 7.28 and 7.29 that it is enough to add converse to the PDL
language for atomic actions only. To see that adding converse in this way increases ex-
pressive power, observe that in state 0 in the following picture 〈ǎ 〉> is true, while in state
2 in the picture 〈ǎ 〉> is false. On the assumption that 0 and 2 have the same valuation,
no PDL formula without converse can distinguish the two states.

0

1

a

2

7.6 Axiomatisation

The logic of PDL is axiomatised as follows. Axioms are all propositional tautologies, plus
the following axioms (we give box ([α])versions here, but every axiom has an equivalent
diamond (〈α〉) version):

(K) ` [α](ϕ→ ψ)→ ([α]ϕ→ [α]ψ)

(test) ` [?ϕ1]ϕ2 ↔ (ϕ1 → ϕ2)

(sequence) ` [α1;α2]ϕ↔ [α1][α2]ϕ

(choice) ` [α1 ∪ α2]ϕ↔ [α1]ϕ ∧ [α2]ϕ

(mix) ` [α∗]ϕ↔ ϕ ∧ [α][α∗]ϕ

(induction) ` (ϕ ∧ [α∗](ϕ→ [α]ϕ))→ [α∗]ϕ

and the following rules of inference:

(modus ponens) From ` ϕ1 and ` ϕ1 → ϕ2, infer ` ϕ2.

(modal generalisation) From ` ϕ, infer ` [α]ϕ.

The first axiom is the familiar K axiom from modal logic. The second captures the ef-
fect of testing, the third captures concatenation, the fourth choice. These axioms together
reduce PDL formulas without ∗ to formulas of multi-modal logic.

Exercise 7.30 Show how this reduction works for the formula 〈(a; b) ∪ (?ϕ; c)〉ψ.

7.7. EXPRESSIVE POWER — ABBREVIATIONS DEFINING PROGRAMMING CONSTRUCTS7-11

The fifth axiom, the so-called mix axiom, expresses the fact that α∗ is a reflexive and
transitive relation containing α, and the sixth axiom, the axiom of induction, captures the
fact that α∗ is the least reflexive and transitive relation containing α.

All axioms have dual forms in terms of 〈α〉, derivable by propositional reasoning. For
example, the dual form of the test axiom reads

` 〈?ϕ1〉ϕ2 ↔ (ϕ1 ∧ ϕ2).

The dual form of the induction axiom reads

` 〈α∗〉ϕ→ ϕ ∨ 〈α∗〉(¬ϕ ∨ 〈α〉ϕ).

Exercise 7.31 Give the dual form of the mix axiom.

7.7 Expressive power — abbreviations defining program-
ming constructs

With the PDL action operation we can define a number of well-known programming
constructs. The following abbreviations illustrate how PDL expresses the key constructs
of imperative programming:

SKIP := ?>
ABORT := ?⊥

IF ϕ THEN α1 ELSE α2 := (?ϕ;α1) ∪ (?¬ϕ;α2)

WHILE ϕ DO α := (?ϕ;α)∗; ?¬ϕ
REPEAT α UNTIL ϕ := α; (?¬ϕ;α)∗; ?ϕ.

The definitions show how SKIP and ABORT can be viewed as particular kinds of tests.
The definitions make the difference clear between the WHILE and REPEAT state-

ments.
A REPEAT statement always executes an action at least once, and next keeps on per-

forming the action until the stop condition holds. A WHILE statement checks a continue
condition and keeps on performing an action until that condition does not hold anymore.

If WHILE ϕ DO α gets executed, it may be that the α action does not even get exe-
cuted once. This will happen if ϕ is false in the start state.

7.8 Expressive power — Epistemic PDL
Now we return to the idea of seeing actions as epistemic transitions. Given a set of action
labels, we give some of those a very special meaning, namely these are the ‘consider
possible’ actions of agents named by that label. If in state w agent a considers state v
possible, we can see this as a possible a-transition in the model form w to v. It is an

7-12 CHAPTER 7. LOGIC AND ACTION

action, and the dynamics of that action represents the mental energy involved to shift
your position to that particular state of affairs, and subsequently reason about what is true
and false there, instead of here (the actual state).

Of course, in the chapter on epistemic logic we have already seen that these mental
shifts obey very specific rules, laid down in the relational properties of reflexivity, sym-
metry, and transitivity: together they guarantee that the accessibility relations associated
with the knowledge of a given agent are equivalence relations, such that the usual prop-
erties of knowledge are satisfied: what you know is true, you know what you know (you
are aware of what you know), and you know what you don’t know (you are aware of what
you don’t know).

In PDL we can also derive these structural conditions by program operations. Let a
again stand for the action representing the mental power of an agent, then: a∪?> is the
reflexive closure of the action, a∪ ǎ is the symmetric closure, a∗ is the reflexive transitive
transitive closure, and a; a∗ is the transitive closure. Therefore, (a∪ ǎ)∗ is an equivalence
relation associated with this particular a, namely the reflexive symmetric transitive clo-
sure: the smallest relation that contains the a relation and that is also reflexive, symmetric
and transitive. In other words, we have expressed in PDL (with converse) what it means to
be in the smallest equivalence relation containing the a relation. In other words, we have
built an epistemic operation from a primitive ‘imaginability’ action, instead of assuming
such an action to have these particular structural properties already.

In the set of action labels we thus have some action labels that label epistemic ac-
cessibility relations, encoding what the agents with that name know, and the remaining
labels can stand for what such agents do. We have created a version of PDL that combines
knowledge with action.

Example 7.32 This is the famous chicken game, known from game theory and from
movies like Rebel Without a Cause with James Dean.

Consider Jim and Buzz driving toward each other at high speed in fabulous racing
cars, trying to impress the ladies. The one who bows out to the side of the road to let the
other pass is a chicken (a wimp; Dutch: ‘een watje’). Problem is that if both stubbornly
continue in the straight line they crash and both die. Another problem is that if Buzz bows

7.8. EXPRESSIVE POWER — EPISTEMIC PDL 7-13

out last split-second to the left but Jim last split-second to the right they still crash and
both die. We now want to formalize that:

• If Buzz sees Jim swerve to the right he continues straight.

• If they simultaneously swerve to the left they will not die.

• Buzz considers it possible that Jim will swerve to the left, but just as well that Jim
will swerve to the right.

Buzz is agent B and Jim is agent J , with corresponding operators [B] and [J]. We will
assume that B and J denote epistemic accessibility relations. Bowing out left is lB for
Buzz and lJ for Jim. Next, we have atomic action statements for bowing out right and
going straight rB, rJ , sB, sJ . Note that we view going straight on as a conscious action,
not as absence of acting. Crashing and dying are for simplicity identified with each other;
this is the action d. To refer to the execution of an action x without reference to any of
its postconditions is formalized as 〈x〉>. The formalization of the above descriptions is
therefore:

• [B]〈rJ〉 → 〈rJ〉〈sB〉> (The action of Buzz going straight follows that of Jim going
right, the sequential execution is expressed by the word ‘continues’.)

• PDL has no way to express that lJ and lB are concurrent actions, so we need a bit of
a trick modelling. We will assume such actions when immediately following upon
one another still have the desired effect:

〈(lB; lJ) ∪ (lJ ; lB)〉[d]⊥

It is also reasonable to say that this is common knowledge among Buzz and Jim:

[(B ∪ J)∗]〈(lB; lJ) ∪ (lJ ; lB)〉[d]⊥

The [d]⊥ part says explicitly that every successful execution of dying results in a
state where the false proposition holds. As this is never the case, there is no such
execution, in other words, they will not die. Formula [d]⊥ is also equivalent to
¬〈d〉>: it is not the case that a successful execution of d can be done.

• 〈B〉(〈lB〉> ∧ 〈rJ〉>); this is equivalent to 〈B〉〈lB ∪ rJ〉>. (But we do not have in
general that 〈x〉ϕ ∧ 〈y〉ϕ is equivalent to 〈x ∪ y〉ϕ. The right is weaker than the
left.)

Compared to the approach of the previous chapter that takes epistemic logic as a
primitive to which informational and other dynamics can be added, the new PDL approach
has a number of advantages:

7-14 CHAPTER 7. LOGIC AND ACTION

• It provides a very clear and transparent way to define interaction of different agents
in group operators such as general knowledge and common knowledge. Given a set
of agents {a, b, c}, general knowledge is defined as a∪ b∪ c. This seems strange, as
this represents that one of a, b, c ‘takes a step’, not necessarily all. But consider the
box (necessity) version of the model operator. The formula [a∪b∪c]p expresses that
after every execution of the program a∪b∪c the atomic proposition p should be true.
In other words, it should hold after every execution of a and after every execution
of b and after every execution of c. To get closer to our epistemic interpretation:
p should hold in every state accessible for a, in every state accessible for b, and in
every state accessible for c. But that means that p is known by a, and by b, and by
c: general knowledge. Common knowledge for a, b, c is definable as the program
(a ∪ b ∪ c)∗: iteration of the general knowledge program.

• It is very natural to combine ‘true’ action operators with the ‘epistemic PDL’ op-
erators. Consider the following actions: (a; ?p) ∪ (b; ?p) ∪ (c; ?p): this also de-
scribes that one of a, b, c considers it possible that p. The program is equivalent to
(a∪ b∪ c); ?p and we have that 〈(a∪ b∪ c); ?p〉> is equivalent to 〈a∪ b∪ c〉p. The
box-version has the general knowledge meaning again: let d stand for the action
of the stockmarket crashing, and p for the proposition that outstanding credit is a
zillion dollars, then [(a ∪ b ∪ c); ?p]〈d〉> says that it is general knowledge between
a, b, c that in all states where outstanding credit is a zillion dollars, the stockmarket
will crash. In this case, there is an equivalent where the test is outside the modal
operator: [a∪b∪c](p→ 〈d〉>). But for more complex constructions this equivalent
cannot always easily be found.

The program α defined as ?p; (a ∪ b ∪ c)∗ describes a guarded sort of common
knowledge: [α]ϕ is true if ϕ is commonly known by a, b, c in every p world. Now
try formalizing this in the epistemic logic with announcements. . . The equivalent is
not that p → Cabcϕ: in this case, p only has to be true in the beginning, but not
necessarily along the chain.

• In PDL it is much more natural to combine factual change and informational change
than in a dynamic epistemic logic. In the dynamic epistemic logic of the previous
chapter it may even seem impossible to do this, for all the changes are purely in-
formational changes. While it is in fact possible to extend dynamic epistemic logic
with factual change, this involves extending the language. It does not come for free,
as in PDL.

7.9 Outlook

7.9.1 Programs and Computation
If one wishes to interpret PDL as a logic of computation, then a natural choice for inter-
preting the basic actions statements is as register assignment statements. If we do this,

7.9. OUTLOOK 7-15

then we effectively turn the action statement part of PDL into a very expressive program-
ming language.

Let v range over a set of registers or memory locations V . A V -memory is a set of
storage locations for integer numbers, each labelled by a member of V . A V -state s is a
function V → Z. We can think of a V -state as a V -memory together with its contents. If
s is a V -state, s(v) gives the contents of register v in that state.

Let i range over integer names, such as 0,−234 or 53635 and let v range over V . Then
the following defines arithmetical expressions:

a ::= i | v | a1 + a2 | a1 ∗ a2 | a1 − a2.

It is clear that we can find out the value [[a]]s of each arithmetical expression in a given
V -state s.

Exercise 7.33 Provide the formal details, by giving a recursive definition of [[a]]s.

Next, assume that basic propositions have the form a1 ≤ a2, and that basic action
statements have the form v := a. This gives us a programming language for comput-
ing with integers as action statement language and a formula language that allows us to
express properties of programs.

Determinism To say that program α is deterministic is to say that if α executes suc-
cessfully, then the end state is uniquely determined by the initial state. In terms of PDL
formulas, the following has to hold for every ϕ:

〈α〉ϕ→ [α]ϕ.

Termination To say that program α terminates (or: halts) in a given initial state is to
say that there is a successful execution of α from the current state. To say that α always
terminates is to say that α has a successful execution from any initial state. Here is a PDL
version:

〈α〉>.
In fact, many more properties can be expressed, and in a very systematic way.

7.9.2 Hoare Correctness Reasoning
Consider the following problem concerning the outcome of a pebble drawing action.

A vase contains 35 white pebbles and 35 black pebbles. Proceed as follows
to draw pebbles from the vase, as long as this is possible. Every round, draw
two pebbles from the vase. If they have the same colour, then put a black
pebble back into the vase, if they have different colours, then put the white
pebble back. You may assume that there are enough additional black pebbles.
In every round one pebble is removed from the vase, so after 69 rounds there
is a single pebble left. What is the colour of this pebble?

7-16 CHAPTER 7. LOGIC AND ACTION

It may seem that the problem does not provide enough information for a definite an-
swer, but in fact it does. The key to the solution is to discover an appropriate loop invari-
ant: a property that is initially true, and that does not change during the procedure.

Exercise 7.34 Consider the property: ‘the number of white pebbles is odd’. Obviously, this is
initially true. Show that the property is a loop invariant of the pebble drawing procedure. What
follows about the colour of the last pebble?

It is possible to formalize this kind of reasoning about programs. This formalization
is called Hoare logic. One of the seminal papers in computer science is Hoare’s [Hoa69].
where the following notation is introduced for specifying what a computer program writ-
ten in an imperative language (like C or Java) does:

{P} C {Q}.

Here C is a program from a formally defined programming language for imperative pro-
gramming, and P and Q are conditions on the programming variables used in C.

Statement {P} C {Q} is true if whenever C is executed in a state satisfying P and if
the execution of C terminates, then the state in which execution of C terminates satisfies
Q. The ‘Hoare-triple’ {P} C {Q} is called a partial correctness specification; P is called
its precondition and Q its postcondition. Hoare logic, as the logic of reasoning with such
correctness specifications is called, is the precursor of all the dynamic logics known today.

Hoare correctness assertions are expressible in PDL, as follows. If ϕ, ψ are PDL
formulas and α is a PDL program, then

{ϕ} α {ψ}

translates into
ϕ→ [α]ψ.

Clearly, {ϕ} α {ψ} holds in a state in a model iff ϕ → [α]ψ is true in that state in that
model.

The Hoare inference rules can now be derived in PDL. As an example we derive the
rule for guarded iteration:

{ϕ ∧ ψ} α {ψ}
{ψ}WHILE ϕ DO α {¬ϕ ∧ ψ}

First an explanation of the rule. The correctness of WHILE statements is established
by finding a so-called loop invariant. Consider the following C function:

int square (int n)
{

int x = 0;
int k = 0;
while (k < n) {

7.9. OUTLOOK 7-17

x = x + 2*k + 1;
k = k + 1;

}
return x;

}

How can we see that this program correctly computes squares? By establishing a loop
invariant:

{x = k2} x = x + 2*k + 1; k = k + 1; {x = k2}.

What this says is: if the state before execution of the program is such that x = k2 holds,
then in the new state, after execution of the program, with the new values of the registers
x and k, the relation x = k2 still holds. From this we get, with the Hoare rule for WHILE:

{x = k2}
while (k < n) { x = x + 2*k + 1; k = k + 1; }
{x = k2 ∧ k = n}

Combining this with the initialisation:

{>}
int x = 0 ; int k = 0;
{x = k2}
while (k < n) { x = x + 2*k + 1; k = k + 1; }
{x = k2 ∧ k = n}

This establishes that the WHILE loop correctly computes the square of n in x.
So how do we derive the Hoare rule for WHILE in PDL? Let the premise {ϕ ∧

ψ} α {ψ} be given, i.e., assume (7.1).

` (ϕ ∧ ψ)→ [α]ψ. (7.1)

We wish to derive the conclusion

` {ψ}WHILE ϕ DO α {¬ϕ ∧ ψ},

i.e., we wish to derive (7.2).

` ψ → [(?ϕ;α)∗; ?¬ϕ](¬ϕ ∧ ψ). (7.2)

From (7.1) by means of propositional reasoning:

` ψ → (ϕ→ [α]ψ).

From this, by means of the test and sequence axioms:

` ψ → [ϕ;α]ψ.

7-18 CHAPTER 7. LOGIC AND ACTION

Applying the loop invariance rule gives:

` ψ → [(ϕ;α)∗]ψ.

Since ψ is propositionally equivalent with ¬ϕ→ (¬ϕ ∧ ψ), we get from this by proposi-
tional reasoning:

` ψ → [(ϕ;α)∗](¬ϕ→ (¬ϕ ∧ ψ)).

The test axiom and the sequencing axiom yield the desired result (7.2).

7.9.3 Equivalence of programs and bisimulation
PDL is interpreted in labelled transition systems, and labelled transition systems represent
processes. But the correspondence between labelled transition systems and processes is
not one-to-one.

Example 7.35 The process that produces an infinite number of a transitions and nothing
else can be represented as a labelled transition system in lots of different ways. The
following representations are all equivalent, and all represent that process. We further
assume that some atomic proposition p is false in all structures.

0 a 1

2

a

a

3

4

a

5

a

a

To realize such equivalences is important for working with PDL, for the previous
example shows that the PDL action statement a∗; ?⊥ is equivalent to the PDL action
statement a; a∗; ?⊥ which is in turn equivalent to the PDL action statement a; a; a∗; ?⊥.

The structural equivalence that we observe here can be formalized as a binary relation
between points in the first and points in the second structure. This relation is called a
bisimulation, and it is commonly written as infix, with the symbol ↔. Two structures
in such a relation are called bisimilar. A bisimulation connecting the left and the middle
labelled transition structures above is: 0 ↔ 1, 0 ↔ 2. A bisimulation connecting the
middle and the right labelled transition structures above is: 1 ↔ 3, 1 ↔ 4, 2 ↔ 4,
2 ↔ 5. (There may be more — another one is the product of {1, 2} and {3, 4, 5}.) The
bisimulation relation is transitive: the left and the right structure are also bisimilar.

7.9. OUTLOOK 7-19

Example 7.36 For another example, consider the following picture. Atom p is false in
states 0, 2, and 4, and true in states 1, 3 and 5.

0 a

1:p

b

2

3:p

b

4

a

a

5:p

b

In the labelled transition structures of the picture, we have that 0 ↔ 2 and that 2 ↔ 4;
and 1↔ 3 and 1↔ 5.

If two structures are equivalent in this sense (i.e., bisimilar), we cannot distinguish
them by a process. Either it will run on all, or on none. These processes a form part of
the logical language of PDL, in the dynamic modal operators [a]. So this suggests that
bisimilar structures cannot be distinguished from one another in the logical language.
And indeed, that is a basic result. Structures may be indistinguishable in one but distin-
guishable in another language. Again, expressivity lurks around the corner. A somewhat
more detailed and technical introduction to bisimilarity is found in the chapter ‘Logic,
games and information’.

Summary You have to understand the meaning of the following terms: labelled tran-
sition system, PDL, composition, choice, repetition, converse. You have to know the
definition of programming constructs ‘skip’,‘if-then-else’, ‘while-do’, and ‘repeat-until’
in PDL. You have to be able to test if given programs can be executed on simple labelled
transition systems. You have to know the language of PDL and be able to interpret the
language on LTSs.

Exercises

Exercise 7.37 Consider the following process graph with 4 states. The usual conventions apply:
transition relations are indicated by labeled arrows, all proposition letters true at worlds are written
there:

7-20 CHAPTER 7. LOGIC AND ACTION

1 2:p

3:q4:p

a

a

a

b

b
a

(1) List in which states the following formulas are true:

a. ¬p
b. 〈b〉q
c. [a](p→ 〈b〉q)

(2) Give a formula (involving actions) that is true only at state 4.

(3) Give all the elements of the following relations

a. b; b

b. a ∪ b
c. a∗

(4) By using any of the known operations (“;”, “∪”, “∗”, “?”), build an action defining the
relation given by {(1, 3)}. (Hint: use one or more test actions.)

Exercise 7.38 (1) Explain why the following formula is valid (that is, true in all worlds of all
models):

[R; (S ∪ T)]ϕ↔ ([R][S]ϕ ∧ [R][T]ϕ)

(2) The following identity between relations (R ∪ S)∗ = R∗;S∗ is not valid. Explain why not
by giving a counter-example.

Exercise 7.39 Consider the following game, with turns for players A and E as indicated, which
have two moves at each node, ‘left’ and ‘right’, as displayed. The proposition letter q is true at
two of the four endpoints of the game (if you want to, think of q as the proposition “E wins the
game”). The dashed lines represent epistemic uncertainty (indistinguishability relation) and the
continuous lines represent the actions in the game. Remember that, for the undistinguishability
relation, we assume reflexivity (that is, every world is connected to itself).

1:A

2:E

4:¬q

l

5:q

r

l

3:E

6:q

l

7:¬q

r

r

E

7.9. OUTLOOK 7-21

(1) Does player E know the move of player A before the game ends?

(2) But we can also interpret formulas involving both action and knowledge. In which node(s)
are the following formulas true?

a. KEq

b. 〈l〉KEq

c. KE〈l〉q

(3) Write a formula expressing that E knows that she has a move she can play that will lead to
a state with q.

7-22 CHAPTER 7. LOGIC AND ACTION

Chapter 8

Logic, Games and Interaction

Overview In this chapter you will learn that logic is very suitable for analyzing multi-
party rational interactions, or rather, that much of what goes on in logic can be seen as a
game between two players. Both players are making moves trying to get at a favourable
outcome. Reasoning in public is like playing such a game. We will introduce the topic of
logic games by means of examples.

8.1 Motivation — the game of logic, and the logic of games
The game of logic Much in logic can be seen as a game between two players. The
outcomes are ‘true’ and ‘false’, one player is trying to prove his right and the other player
is trying to prove him wrong. Moves in such a game correspond to presenting arguments
for or against a certain conclusion (representing the ‘right’ of the first player). Just like
in rhetorics and in the courtroom it not only matters if you are right but last and least it
matters if you get it right. And also just like in court it matters how often you can move
(how many witnesses you can call, strict rules on interrogation and court procedure) given
the limited time of a court session to prove your point. More-than-two player games are
so far not known in a logical setting.

Argumentation theory is also typical for logic as a game, and this tradition is going
back to Greek logic from the classical period. Following Lorenzen’s work in the 1950s
it became again a flourishing area of research. From that time also date various games to
prove a predicate logical formula ‘right’ when playing against a logical opponent trying
to disprove that formula. An example is the computer program Tarski’s World wherein
the Hintikka game that you can play with a given blocks world is doing exactly that. One
can also play such games with modal logical formulas and Kripke models describing the
uncertainty of agents.

Games Games are already an object of study in themselves. If you are playful enough
you can make any kind of interaction with other people into a game. Driving through
heavy traffic, a conversation with the waitress at the coffee corner, an encounter with

8-1

8-2 CHAPTER 8. LOGIC, GAMES AND INTERACTION

the press, a bet with a friend about who is right about something, a telephone conver-
sation with your bank about the conditions of a loan, the list is endless. Most of these
games have rather vague conditions for winning and losing. Card games and board games
have very precise rules about how the players should behave, and about what counts as
a win. The mathematical investigation of card games started in the 17th century when
Antoine Gombaud, Chevalier de Méré, a flamboyant French gentleman, gambler and am-
ateur mathematician, posed the following question to his mathematician friends: “Sup-
pose two players have agreed to play a certain number of games, say a best of seven
series. They start playing, but they are interrupted before they can finish. How should
the stake be divided among them if, say, one has won three games and the other has won
one?” The challenge of solving this so-called problem of the points was taken up by the
famous mathematicians Blaise Pascal and Pierre de Fermat, and the result was the the-
ory of probability. In the twentieth century the mathematical discipline of game theory
has developed. The aim of game theory is to analyse the full range of situations where
competing rational agents interact, with “being rational” roughly understood as “having a
keen eye for one’s own interest”.

Antoine Gombaud

The logic of games Topics in game theory can also be addressed in logics, and with
logical tools. Concepts such as ‘I have a winning strategy’ have logical formalizations.
This matter we will not address in general in this chapter. Instead, as an interesting exam-
ple we will play a logical game. This is a game of epistemic information, called public
announcement game. The game moves are announcements. As so typical when game
theory and logic interact, in this game we not only can compute the result of different
informative changes, but we can also value one change over another, and based on such
preferences choose a particular change. Logic is often merely descriptive: if you do A,
then B will happen, and if you do C then D will happen. But a game is prescriptive: as
you prefer B over D, you must do A and not C.

8.2 Game of logic — Evaluation games

Consider the following Kripke model, with designated state 1:

8.2. GAME OF LOGIC — EVALUATION GAMES 8-3

1(p) 2(¬p)

3(p)

We can determine the truth of a formula in state 1 in a playful way, as the outcome of a
game, called evaluation game, played between a player called Verifier and another player
called Falsifier. Verifier is trying to establish that a given formula is true in a given model,
and Falsifier is trying to establish the opposite: that it is false. Let us play the game for
some formulas first, before we give the general rules.

Let 3p be the formula. Given that 3p is a diamond-formula, the first move is to Veri-
fier. (3p is a diamond-formula just like 〈p〉q in the action chapter, where 〈p〉q was defined
as ¬[p]¬q; 2p, Kiq, and [p]q are box-formulas.) She has to choose a state accessible from
1. She chooses state 3. The game continues with the formula p and state 3. We have that
p is true in state 3. The game ends. Verifier wins. Suppose that instead of state 3 Verifier
had chosen state 2. Then the game continues with the formula p and state 2. We have that
p is false in state 2. The game ends. Falsifier wins. Verifier seems to have two different
strategies, of which one results in a win and the one in a lose. Of course we know that 3
p is true in state 1 of the model: there is an accessible state where p is true, namely state
3. This now means that Verifier has a winning strategy.

Now consider the formula 32p ∧ 3¬p. This is a conjunction. The game rule is that
therefore Falsifier is the first to move, and has to select one of the conjuncts. (Namely
attempting to falsify it! Indeed, a conjunction is false if one the conjuncts is false, this
reflects the game rule.) Falsifier chooses the first conjunct. This subformula is a diamond
formula, therefore Verifier is now to move. Verifier chooses state 2. The formula bound
by the diamond, 2p, is boxed formula. That means that Falsifier is again to move, now
in state 2. But there is no move to be made in state 2, there are no accessible states! As
Falsifier cannot move, Verifier wins.

Suppose that Falsifier had chosen 3¬p instead in his first move. Again, Verifier pro-
ceeds, and, choosing well, selects state 2 in her move. Now we are stuck with formula ¬p
and state 2. In case of a negation, an interesting game rule applies: whoever is to move
and play the game for given negation ¬ϕ, now switches roles with the other player and
the game continues in the same state but for the other player to play with ϕ instead. So,
instead of Verifier having to win for ¬p, we proceed with Falsifier having to ‘win’ for p
(a win for Falsifier means succeeding in proving the formula false). Indeed, p is false in
state 2. So, again, Verifier wins the game.

The general rules for these games are as follows:
Given a pointed Kripke model (M, s), and a formula ϕ, and two players Verifier and

Falsifier. How to play ϕ in s:

8-4 CHAPTER 8. LOGIC, GAMES AND INTERACTION

• if ϕ = p, Verifier wins if p is true in s, else Falsifier wins.

• if ϕ = ϕ′ ∨ ϕ′′, Verifier chooses a disjunct, say ϕ′. Play ϕ′ in s.

• if ϕ = ϕ′ ∧ ϕ′′, Falsifier chooses a conjunct, say ϕ′. Play ϕ′ in s.

• ϕ = ¬ϕ′, Verifier and Falsifier switch roles. Play ϕ′ in s.

• if ϕ = 3ϕ′, Verifier chooses a state accessible from s, say t. Play ϕ′ in t. (If no
such world exists, Falsifier wins.)

• if ϕ = ϕ′ ∧ϕ′′, Falsifier chooses a state accessible from s, say t. Play ϕ′ in t. (If no
such world exists, Verifier wins.)

By ‘switching roles’ we mean that if Verifier wins the game for ϕ in s, then Falsifier wins
the game for ¬ϕ in s, and that if Falsifier wins the game for ϕ in s, then Verifier wins the
game for ¬ϕ in s.

The formula ϕ is true in (M, s) if and only if Verifier has a winning strategy for the
game. What is a winning strategy? Let us play some other games first, before we answer
that question.

This way to determine the truth of a formula in a game is called game semantics.
Lorenzen was at the origin of this development. Later important contributions were
made by Hintikka, Andreka & van Benthem, and Rahman. See also http://en.
wikipedia.org/wiki/Game_semantics.

Paul Lorenzen

8.3 Game of logic — Bisimulation games
Other games can be played in logic, for example games to compare structures. A well-
known one is the ‘Ehrenfeucht-Fraı̈ssé’ game. Given are two structures consisting of
domains of abstract entities (objects, elements, ...) with binary relations between them.
There are two players: Spoiler and Duplicator. Spoiler tries to prove that the structures
are different, whereas Duplicator tries to prove that they are the same. We will give one
example only of a play of an ‘Ehrenfeucht-Fraı̈ssé’ game.

8.3. GAME OF LOGIC — BISIMULATION GAMES 8-5

Given are two models (structures) Three (left) and Four (right). The game is as fol-
lows. First, the players agree on the duration of the game. For example: two moves each.
Then, Spoiler chooses a model and a point in that model. For example: 3. Then, Duplica-
tor chooses a point in the other model. The idea is that this is the point that he finds most
‘similar’ to the point chosen by Spoiler, as he tries to ‘duplicate’ the structure that is built
up by Spoiler. For example: d.

Now, Spoiler may choose one of the two models again, and a point in that model. For
example, Spoiler choose the same model but now point 1. Then, Duplicator chooses in
the other model yet again a point, for example a.

Both players now have made two moves, and the game is finished. To determine who
has won, we restrict both models to the selected points, including all links between those
points. In other words, on the left we keep 1→ 3 and on the right we keep a→ d.

If there is no structural difference between these substructures, Duplicator wins. Be-
cause this means that Duplicator has effectively duplicated the structure. Otherwise,
Spoiler wins. Because that means that Spoiler has effectively spoiled Duplicator’s efforts
to duplicate the structure.

1 2

3

a b

c d

We play again. The players now may make four moves each. The play of the game is as
follows:

S : 1−D : a ;S : d−D : 3 ;S : 2−D : b ;S : 3−D : d

Duplicator wins again. Spoiler would have done better choosing the other model. Let’s
play once more. Now we get

S : 1−D : a ;S : d−D : 3 ;S : 2−D : b ;S : c−D : 3

Now Spoiler wins, because there is an arrow from d to c but no arrow from 3 to 3. Spoiler
should therefore not just do anything, but intelligently conceive a strategy. (We can show
that Spoiler has an winning strategy.)

8.3.1 Logic — Bisimulation
The game can be played with first-order logical models, but also with Kripke models. In
the latter case, the rules of the game change a bit, and matching states should have the
same valuation of atomic propositions. For example, we get:

8-6 CHAPTER 8. LOGIC, GAMES AND INTERACTION

1(p) 2(¬p)

3(p)

a(p) b(¬p)

c(¬p) d(p)

By this game it is determined whether two Kripke models are bisimilar. Bisimilarity
is a technical notion from which it follows that the models are so alike that they cannot
be distinguished from one another in the (modal) logical language. Indeed, the models
above are not bisimilar, which we can e.g. determine by playing the same game S : 1−D :
a ;S : d−D : 3 ;S : 2−D : b ;S : c−D : 3 as before. And again, we have to show that
Spoiler has a winning strategy, not just this ‘accidental’ play of the game that he wins.

No matter how you play the game with the next couple of structures, Duplicator will
always win. They are bisimilar.

1(p) 2(¬p)

self-loop 3(p)

a(p) b(¬p)

c(p) d(p)

Definition 8.1 (Bisimulation) Given possible world modelsM andN , a bisimulation C
between is a relation on SM × SN such that if sCt then the following hold:

atoms VM(s) = VN (t) (the two states have the same valuation),

forth if for some a ∈ S1 s
a→ s′ ∈ RM then there is a t′ ∈ S2 with t a→ t′ ∈ RN and

s′Ct′.

back same requirement in the other direction: if for some a ∈ S2 t
a→ t′ ∈ RN then there

is an s′ ∈ S1 with s a→ s′ ∈ RM and s′Ct′.

The notationM, s ↔ N , t indicates that there is a bisimulation that connects s and t. In
such a case one says that s and t are bisimilar.

Example 8.2 A bisimulation between possible world models is total if all worlds in the
first are in some relation to a world in the second, and vice versa. A total bisimulation
between the possible world models above (a description of the relationC in the definition)
consists of the pairs: (1, a), (2, b), (3, c), (3, d).

8.4. LOGICAL GAME — KNOWLEDGE GAMES 8-7

Exercise 8.3 Stefan

Exercise 8.4 Stefan

We have already discussed the notion of bisimilarity in Chapter ?? on actions. A play
of the game between Spoiler and Duplicator also serves as well to construct a logical
formula that distinguishes the models in case they are not bisimilar. We will not give
the construction here. For example, in the model on the right we can make the formula
333p true, but not on the left. Such a formula is called a difference formula.

8.4 Logical game — Knowledge games
Consider two players Ann and Bill. They both have a secret! Ann knows that Helen is
in love with Bill (p) but is afraid to tell him that, i.e., she probably has not told him but
who knows. Whereas Bill knows that Ann got through her maths exam (q), although he
reckons that she does not know that yet – he is unsure. If we assume that Ann and Bill are
commonly aware of these propositions (not at all a reasonable assumption, but without
that assumption the model would become more complex), this uncertainty about each
other can be visualized as follows (see again the chapter on Knowledge and information
flow). The actual state (with a *) is s.

•p¬q
t

Ann •pq
∗s

Bill •¬pq
u

In this picture we see that Anne (A) knows p and is uncertain about q, but in case
that q is false she believes that Bill (B) knows that – to be more precise, she considers it
possible that q is false, in which case Bill knows that q is false, but she also considers it
possible that q is true, and in that case Bill does not know whether q is true. On the other
hand, Bill knows that q is true but does not know whether p, and beyond that he considers
it possible that either Anne knows that p is false or Ann does not know whether p.

The thing with secrets is that your prefer to keep them secret, but that in order to learn
more secrets, you need to give some of your own away in exchange. In other words,
you may be willing to share privileged information in return for learning more privileged
information. Your ultimate goal is to learn as many secrets as possible. Ann wants to
learn about her Maths exam, and Bill wants to learn about Helen’s true feelings for him.
Ann’s goal is to prevent Bill from learning the truth about p unless she learns the truth
about q first. We can capture this condition in the formula

(KBp ∨KB¬p)→ (KAq ∨KA¬q)
Bill’s goal is, analogously, to prevent Ann from learning the truth about q unless he

learns the truth about p first. This can be captured by

8-8 CHAPTER 8. LOGIC, GAMES AND INTERACTION

(KAq ∨KA¬q)→ (KBp ∨KB¬p)
We can see this as a game, where the moves in the game (the actions) are announce-

ments.1 In the setting above, Ann and Bill can both choose between two moves, being
more or being less informative: Ann can either say p or nothing, and Bill can either say
q or nothing. To say nothing means making the trivial announcement >. We also assume
that the players make their announcements simultaneously – to avoid scenarios of simul-
taneously shouting to make yourself understood, we can also imagine Ann and Bill to
write the secret on a sheet of paper, fold it, and then exchange the sheets and read the one
you received. As usual in the logic of public announcements, the announced formulas are
supposed to be true and the only way for Ann or Bill to know that what they announce
is true, is indeed to know the formula: when Ann announces a formula ϕ we need to
interpret this as the public announcement of KAϕ, and similarly for Bill.

There are four possible outcomes of this process. That Ann plays p means that she
checks whether p is true and if so announces that she knows that p, and otherwise she
announces that she doesn’t know p. Similarly for Bill and q. If Ann plays p and Bill plays
q, this is the public announcement of KAp ∧KBq and the resulting model (i) is

•pq
∗s

Note that the goals of both players are now realized. But of course, there are three
other outcomes of this game. The models resulting from the announcement of KAp,
KBq, and > (e.g., KAp ∧KB> is equivalent to KAp ∧ >, and KAp ∧ > is equivalent to
KAp), are respectively the following (ii), (iii), and (iv):

•p¬q
t

Ann •pq
∗s

•pq
∗s

Bill •¬pq
u

•p¬q
t

Ann •pq
∗s

Bill •¬pq
u

1These knowledge games have been studied by Ågotnes and van Ditmarsch in recent work called ‘What
will they say? — Public announcement games’, presented at the Logic, Game theory and Social Choice
conference in Tsukuba, 2009.

8.5. GAMES — WINNING STRATEGIES 8-9

Ann’s goal is realized in i, iii and iv but not in ii. Bill’s goal is realized in i, ii, and
iv but not in iii. These four are all possible outcomes. What should Ann and Bill do,
given that they can choose what to do, in other words, what are good strategies to win this
game? And, just to mention another complication: even if we were to know a strategy to
win the game in state s, what use is that to Ann and Bill, given that they do not know that
s is the actual state?

Before we can answer in full these questions, we need to be more precise about what
strategies are, what winning is, and how one’s choices in a game affect those of the other
players. Therefore we first start with some real game theory.

8.5 Games — Winning strategies
Example 8.5 (The Obstruction Game) Given is a network consisting of nodes repre-
senting cities and links representing ways to travel between them. Also, there is a starting
position. There are two players: ‘Runner’ and ‘Chaser’. Runner moves first, and must try
to visit all nodes in the network by making moves along existing connections. From his
current node he chooses another one one step away. Chaser’s move consists of removing
links from the network, as he prefers, one link at the time. Runner and Chaser move in
turn. The game ends if a player cannot make a move anymore. A finished game is a win
for Runner if every node has been visited. Otherwise, Chaser has won.

It is easy to imagine Runner being the average low-cost air traveller, trying to criss-
cross Europe by way of the cheapest flights available, whereas Chaser represents the joint
airline companies, cancelling and adding connections between cities all the time. Let us
have a look at an example play of this game.

3 4

1 2

One possible play of the game is

Runner moves from x to y Chaser removes connection between x and y
1 – 3 3 – 2
3 – 4 4 – 2
4 – 3 1 – 2

etc. It will be clear that Runner has lost the game now, as node 2 has become unreachable
from his current position.

8-10 CHAPTER 8. LOGIC, GAMES AND INTERACTION

Instead, now consider the following different play of this game:

Runner moves from x to y Chaser removes connection between x and y
1 – 2 2 – 3
2 – 4 4 – 3
4 – 3

Now, Runner has won. In most games both players can win or lose, depending on how
they play. But that’s not all that there is to say. Because for this game we can observe
that:

Chaser can always win, no matter how Runner plays!

We can see this as follows. If Runner goes to 3, then Chaser has enough time to ‘isolate’
node 2 in three moves. If, instead, Runner first goes to node 2, then the following is
effective for Chaser. Let Chaser remove in his first two moves the links between 3 and 4.
Then Runner is forced to return either from 3 to 4 or from 4 to 3. Chaser can then isolate
one of these nodes from the other one in subsequent moves.

Strategy and winning strategy In the previous example, Chaser has a fitting response
to each possible move of his opponent. This is called a strategy. A strategy is a sequences
of moves (actions) where every next move is one of the possible choices that the player
can make in that state of the game. A strategy guaranteeing that a player wins, no matter
what his opponent(s) do, is a winning strategy.

Example 8.6 Let us now investigate which of the two players has a winning strategy in
the Obstruction game with the following initial configuration:

3 4

1 2

Runner (instead of Chaser) has now a winning strategy! We sketch the argument. In order
to win, Runner first has to go to node 2. It now does not serve Chaser to cut a 2–3 or a
2–4: Runner can still access 3 or 4! And removing the two links between 3 and 4 does
not help either, as before. Runner has just enough time first to go to 4 and then by way of
2 also to get to 3. And wins the game . . .

Exercise 8.7 Show that in Example 8.6 Runner has no winning strategy where his initial move is
a step from node 1 to node 3.

8.6. GAMES — ZERMELO’S THEOREM AND BACKWARD INDUCTION 8-11

8.6 Games — Zermelo’s theorem and backward induc-
tion

A game tree is a tree such that: (a) the root of the tree is the initial game state, (b) every
node wherein a given player is at move has children that stand for all the game states
resulting from the different moves possible for that player, and (c) as leaves the end states
of the game. A zero-sum game is a game where in every terminal state there is one winner
and one loser. Another important concept is ‘determined’. A game is determined if we
can determine who can win before we actually start to play. According to a theorem from
1913 by the mathematician Ernst Zermelo, in every finite game of a type called ‘zero-
sum’ exactly one player must have a winning strategy, in other words, zero-sum games
are determined.

Ernst Zermelo

We now proceed to prove Zermelo’s Theorem. This is a quite strong result. It is easy
to prove. In the proof, we will use formal terminology in order to illustrate the precise
details of the proof. We introduce that first.

A game of game tree G is a finite process graph of the form 〈P, S, s0,M, T,W 〉, with

P : This is the set of players.

S: This is the set of game states.

s0: This is the initial state, where s0 ∈ S.

M : This is the set of moves. A move m is a partial function from S to S. I.e., for each
s ∈ S and each m ∈ M either m cannot be applied (a leaf or terminal state of the
tree), or there is a uniquely determined successor m(s) ∈ S of s: This is the new
game state that is created as a result of the move m in game state s.

T : This is a function T : S → P that determines whose turn it is in any given game
state.

W : This is a subset of the set of the terminal states, indicating what are the winning
states. (Typically, seen as a function from the set of players to the set of terminal
states.)

8-12 CHAPTER 8. LOGIC, GAMES AND INTERACTION

A game is finite is there is no cycle of moves after which we get back to a previous
state of the game:

There is no s ∈ S and sequence of movesm1, ...,mn such thatmn(mn−1(..m1(s)...)) =
s.

Theorem 8.8 (Zermelo’s Theorem) Every finite zero-sum game is determined.

Proof: Let G = 〈P, S, s0,M, T,W 〉 be a game. The proof is by induction on |S|. If
|S| = 1 then |S| = s0. As the game is finite, s0 must be an end state. The winner is
W (s0) (and the winning strategy is ‘do nothing’).

Let now |S| = n+ 1 > 1. Consider all successor states S1 of s0:

S1 = {s | ∃m ∈M : m(s0) = s}

For each successor state s we can define a new game Gs:

Gs = 〈P, S − {s0}, s,Ms, Ts,Ws〉

where Ms, Ts and Ws are the restrictions to S − {s0} of their corresponding versions in
G. We now have, obviously, that |S − {s0}| = n. Therefore, we can apply the induction
hypotheses to each such game Gs. From that follows that for each such game there must
be a player ps with a winning strategy σs. We now face two possibilities, resulting in a
different player having a winning strategy for G:

(1) T (s0) 6= ps for all successor states s ∈ S1. Then, the player starting the game has
no winning strategy for any of the successor games Gs. Then the other player has
a winning strategy for G, namely as follows. For each game Gs he has a winning
strategy σs. Therefore, his winning strategy for G is then:

Let initial player T (s0) make her move m and then execute strategy
σm(s0).

(2) T (s0) = ps for some s ∈ S1. Now the initial player has a winning strategy, which
is:

Choose a move m ∈ M such that sm(s0) = T (s0) and then execute
σm(s0).

Either way, there is a player with a winning strategy. Q.E.D.

We can illustrate Zermelo’s result by building the game tree for the Nim-game.

Example 8.9 (The Game of Nim) The Nim game is about matches. The initial game
state is a number of stacks of matches. There are two players, A and B. Player A starts
the game. The player at move has to select one of the stacks and remove at least one
match from that stack. The last player removing a match wins the game. To determine a
winning strategy we simply draw the entire game tree. This is the game tree for the initial
situation | || | (four matches, in stacks of 1, 2, and 1 match(es) each).

8.6. GAMES — ZERMELO’S THEOREM AND BACKWARD INDUCTION 8-13

A | || |

B || | B | | | B | |

A || A | | A | A | | A |

B • B | B | B • B | B •

A ◦ A ◦ A ◦

In every state of the game is indicated whose turn it is. Therefore, in every terminal state
of the game the player at move is the loser. The winning end states for A are in black en
the winning end states for B are in white. We can now also colour the parents of those
terminal states with black or white! If the player at move in a parent state can select a
winning state (for that player) then the winning strategy is to select that move. But that
means that we can colour that parent as a win for that player! Unless of course none of
the possible moves results in a win, and we colour the parent in that case as a winning
state for the opponent.

Having done that, we can assume this parent state to be some kind of terminal state
with a winner and a loser. Of course this assumes that the players do not play moves
contrary to their interests — but this is indeed assumed! Now we proceed this colouring
procedure with the parents of those now coloured states, and so on, until we have coloured
the initial state of the game. If that is now black, player A has a winning strategy, and if
it is now white, player B has a winning strategy.

In the 1–2–1 game player A has a winning strategy: she can choose to remove the
stack with two matches, after which we end up in one of two ‘end games’ (pictured as a
single transition in the figure) both resulting in a win for A.

8-14 CHAPTER 8. LOGIC, GAMES AND INTERACTION

A • | || |

B ◦ || | B ◦ | | | B • | |

A • || A ◦ | | A • | A ◦ | | A • |

B • B ◦ | B ◦ | B • B ◦ | B •

A ◦ A ◦ A ◦

Having coloured the game tree, the strategy of the winning player is therefore always to
select a descendent with his own colour. In other words: we have not merely determined
who can win the game, but we even have a winning strategy, a procedure that when
executed will result in a win.

Zermelo’s Theorem has not much practical significance. The problem is that the game
tree can be rather large, and colouring the entire tree may then be intractable. Zermelo’s
own interests were in games like chess wherein apart from win and lose one also can
have a draw: neither win, nor lose. Zermelo’s Theorem in that case becomes: one of the
players has a strategy to avoid losing (although no player may have a winning strategy).

Each position of the chess game belongs either to the set of winning positions of
White, GW , or to the set of winning positions of Black, GB, or it belongs to the set D
of draw positions, i.e. positions where both White and Black can avoid a loss by using
an appropriate non-losing strategy. For each position which belongs to GW (GB), there
is a winning strategy gW (bB) by which player White (Black) can force a win. For each
position which belongs to D, there is a non-losing strategy dW (dB) by which White
(Black) can avoid a loss.

The difference between the theory and practice of chess playing is unbridgeably large,
up to date. We are now one century after Zermelo’s original result but it is still not known
for chess if the starting player has a strategy to avoid losing the game. This is because
the computational complications are simply far too large to tackle. There are roughly 20
possible moves per game position, an average game of chess take 30 to 50 moves, and the
total number of legal positions of chess pieces on the chess board is about 10120. This is
the same order of magnitude as the number of particles in the universe!

8.6. GAMES — ZERMELO’S THEOREM AND BACKWARD INDUCTION 8-15

Example 8.10 In the case of the game of Nim there is an elegant shortcut to determine
who will win the game. Let n1, n2, . . . be the numbers of matches in each stack. We now
write these numbers in binary notation, below one another in different rows. This is an
example. Suppose we begin with three stacks containing n1 = 5, n2 = 9 and n3 = 4
matches each. In binary notation that is n1 = 101, n2 = 1001 and n3 = 100. We now
count the number of 1s in nth position of these binaries. We get

n1 1 0 1

n2 1 0 0 1

n3 1 0 0

1 2 0 2

1, 2, 0 and 2 of such 1s. A game is called balanced if for every position in binary notation
the number of 1s is even or 0. Otherwise, the game is unbalanced. The 1–2–1 game is
unbalanced because there is just a single 1 on fourth position. The concept of balance is
useful to analyze the game:

• A balanced game will always become unbalanced after a legal move. The number
of matches will change in one stack. Therefore, in one row at least one 1 will change
into a 0, and vice versa. If the number of 1s in each column was even, this therefore
can no longer be the case after that move.

• An unbalanced game can always be made a balanced game with a move. Take
the leftmost (highest) position p having an odd number of 1s. Let ni be a number
having a 1 on that position. We will now remove a number of matches from this
stack of ni matches. To determine this number we look at the binary representation
of ni from position p onwards, to the right (lower digits). Start by replacing the 1
in pth position by 0. Go one position to the right. If this is a column with an even
number of 1s, do nothing. Otherwise, if it’s a 1 make it a 0 and if it’s a 0 make it
a 1. Now repeat the procedure until the rightmost/smallest binary value. We have
thus constructed an number n′i in binary notation. In order to get that amount, the
player has to remove ni − n′i from the stack with ni, thus making the game state
balanced.

• A player at move in a balanced game cannot win in that move, because a balanced
game state consists of at least two stacks.

The winning strategy for Nim is therefore to make an unbalanced game into a balanced
game. After that, the opponent cannot finish the game (and win). Therefore, if the initial
game state is unbalanced, the player who begins has a winning strategy.

Exercise 8.11 Consider the following initial state of the Nim game (see Example 8.9).

8-16 CHAPTER 8. LOGIC, GAMES AND INTERACTION

n1 1 0 1

n2 1 0 0 1

n3 1 1 0

Is this a balanced game state? Who can win? Give a play of the game.

8.7 Games — Equilibrium strategies

8.7.1 Preferences in games

In zero-sum games, the only possible outcomes are win and lose. This is like in the
logical games, where the only possible outcomes are true and false. Human preferences
tend to be more complex than ‘winning’ and ‘losing’ only: there can be more than two
possible outcomes, and the players may have more complex preferences among them.
The knowledge games that we already introduces could serve as an example: instead of a
single goal, the players may have several goals, some of which are more important than
others. An appealing example from standard game theory is about ‘strategic voting’.

Example 8.12 (Elections) Mary, Nathasha, and Ophelia have a spare ticket for a perfor-
mance of the Soundproof Ensemble. They are allowed to vote between Michael, nobody,
and Otto. Their preferences are as follows:

Mary Natasha Ophelia

1 Michael nobody Otto

2 nobody Michael Michael

3 Otto Otto nobody

First they vote on Michael or Otto, then they vote on the remaining candidate or nobody.
What should their votes be? Consider the tree visualizing the options:

8.7. GAMES — EQUILIBRIUM STRATEGIES 8-17

Michael or Otto

Michael Otto

Michael or nobody Otto or nobody

Michael nobody nobody Otto

If everyone votes according to their preferences, Michael wins the first round with two to
one, and subsequently Michael also wins the second round, against nobody, with two to
one again. Natasha can anticipate this! Therefore, she may change her voting behaviour
in round 1 and can even consider voting against her preference. Suppose she is doing
that: in round 1 she votes for Otto instead of for her prefered Michael. Now Otto is
chosen in round 1. Then, given majority vote along preferences, nobody wins. Which
was Natasha’s preference anyway! Great.

Unfortunately, both other players can also make this argument, and adapt their voting
behaviour consequently... Does this lead anywhere? Yes it does.

Just as in Example 8.9 we can start down below in the game tree and reason back-
wards. (This is called, indeed, ‘backwards induction’.) In the second round of the voting
procedure every player knows what will happen, so that deviating from preference makes
no sense. For example, given the choice between nobody and Otto, nobody will be cho-
sen, and given the choice between nobody and Michael, Michael will be chosen. That
means we can give those parent nodes the value of the finally realized choice:

Michael or Otto

Michael Otto

Michael Otto

This also determines the rational choice in the first round of voting: A player should
vote for Michael in round 1 (and not for Otto) if she prefers Michael over nobody (but
regardless of whether she prefers Michael over Otto!). A player should vote for Otto in
round 1 if she prefers nobody over Otto (but regardless of whether she prefers Otto over

8-18 CHAPTER 8. LOGIC, GAMES AND INTERACTION

Michael!). Rational players therefore initially vote as follows — note that both Natasha
and Ophelia vote against their ‘real’ preference:

Mary Natasha Ophelia

Michael Otto Michael

And the conclusion of all that is that Michael will accompany them to the concert.

8.7.2 Strategic equilibrium

Consider a two-person game. Given a strategy for both players, there is a unique outcome
of the game (a pair of values) that is brought about by both players simply executing these
strategies when playing against each other. This outcome can be evaluated by the players,
in relation to all other possible outcomes achieved by different strategies.

Definition 8.13 (Nash equilibrium) Two strategies are in Nash equilibrium if neither
player can improve his outcome by changing his strategy, assuming that the other player
does not change strategy.

The definition does not rule out that both players change their strategy at the same
time. Which may result in an outcome better for both. We will give some examples
of that. Such a Nash equilibrium in principle corresponds to the stable and prescribed
behaviour for rational players. For more than two players, the concept is essentially the
same. For example, in the election game above one can simply verify that the finally
prescribed voting behaviour for the three players is a Nash equilibrium.

The election game is a very different sort of game from the Obstruction Game or the
game of chess. Players have to make a move simultaneously, without knowing what the
other players will do in that move. Many examples in game theory are of that kind, mainly
so-called ‘strategic games’. Strategic games can be represented by a matrix of outcomes.
For two players, the rows stand for the strategies of player 1 and the column stand for
the strategies of player 2. A pair (i, j) stands for the outcomes for the row player and the
column player, respectively. We proceed with a number of famous 2 × 2 examples: two
players and two strategies only, and both strategies consisting of a single move.

Example 8.14 (Prisoners’ Dilemma) Consider two prisoners, suspect 1 and suspect 2.
There is not enough evidence for a long-term prison sentence. If both deny the crime they
will only get one year in prison. If one confesses to it but not the other, that prisoner will
go free and the other one will get ten years in prison. If they both confess, they both get
five years in prison. This is a matrix of the game.

8.7. GAMES — EQUILIBRIUM STRATEGIES 8-19

deny admit

deny (−1,−1) (−10, 0)

admit (0,−10) (−5,−5)

The Nash equilibrium is (admit,admit). This is Nash because: if suspect 2 admits, then
for suspect 1 the output −5 (first argument) in (−5,−5) is better than the output −10 in
(−10, 0), therefore also for suspect 1 it is better to stick to the choice ‘admit’. Similarly,
if suspect 1 chooses ‘admit’, it is better for suspect 2 to stick to his choice, because
similarly for 2 it holds that the output −10 in outcome (0,−10) is worse then the output
−5 in (−5,−5). Of course, the situation is symmetrical for 1 and 2. This does not always
have to be the case.

In this example the pair (admit, admit) is the only Nash equilibrium. The pair (deny,
deny) is not a Nash equilibrium, because is 2 chooses deny then for 1 it is better to choose
admit. Output 0 instead of −1. The pair (confess, deny) is also not a Nash equilibrium,
because if 1 admits then for 2 it is better to change his choice and also to admit: output
−5 instead of −10. Similarly, (deny, confess) is also not a Nash equilibrium.

So they end up being five years in jail both. The players have no rational incentive for
cooperation. If they had cooperated they could have agreed both to deny, which would
have meant only a single year in prison for both!

In the previous example it is always better for suspect 1 to deny, no matter what 2 chooses.
If a player has a strategy that is always better no matter what the other players do, this is
called a dominant strategy. Player 1 has a dominant strategy. Also player 2 has a dominant
strategy, the same: ‘deny’.

Example 8.15 We now get to some variations of Example 8.14. Consider non-cooperative
behaviour between Coca Cola and Pepsi Cola. First, they agree to sell their sodas at a high
price. The gain is then 6 for each company — assume some unity of gain, like a billion
dollars. Of course, both can decide not to honour the agreement and sell at a lower price.
In that case, assume that the one with the lower price earns 8 units (less profit, but far
more sales), whereas the one that keeps the agreement makes 2 only. If both sell at that
lower price they will both make 3 units of profit only... We get

high low

high (6, 6) (2, 8)

low (8, 2) (3, 3)

The non-cooperative pair (low,low) is the equilibrium. Rational behaviour therefore pre-
dicts that both parties will break the agreement. A kartel would have given a better result
for both companies. Customers are better served by competition.

8-20 CHAPTER 8. LOGIC, GAMES AND INTERACTION

Example 8.16 Now consider this third version. Two students, Alice and Bob, collaborate
when writing a report. There are, as always, two options: work very hard and see to it
that everything is finished on time, or take it easy and see where the buck stops. If both
work hard, the outcome is (6, 6). If both are lazy, the outcome is (3, 3). The best option
for Alice (8) is to do nothing and let Bob do all of the work, with much extra effort on his
part (so that he get the reward of 2 only), and vice versa. Again, we get the matrix above.
Nash equilibrium therefore predicts that collaboration should fail.

Still, this is not true: collaboration often works. Why? This is because you tend
to play such games more than once, and you remember the previous behaviour of your
opponent / partner in crime and collaboration. Explaining that in detail would make an
entirely different story, namely that of repeated games. It would define another game. In
the infinitely repeated game, collaborate is after all a Nash equilibrium.

In all these cases communication (apart from repetition) is a way to come to collabora-
tion. If the the two prisoners can exchange information and trust each other sufficiently,
they can agree to keep silent and keep their promise. For companies such agreements
(collusion!) are illegal. Although the same game, it all depends on your perspective.
Agreements between companies are illegal because the equilibrium (low, low) is most in
the interest of the consumers.

Example 8.17 A version on Prisoners’ Dilemma is known as Arms Race, where the
strategies are ‘disarm’ and ‘arm’. An example is

disarm arm

disarm (3, 3) (0, 4)

arm (4, 0) (1, 1)

The Nash equilibrium is ‘arm’, even though both parties have an interest in disarma-
ment. A variation of the game is as follows:

disarm arm

disarm (3, 3) (0, 4)

arm (4, 0) (−10,−10)

In this version, the outcome for (arm,arm) is strongly negative (MAD: ‘mutually assured
destruction’). Now (arm,arm) is not a Nash equilibrium. Note that (arm, disarm) and
(disarm,arm) are now also Nash equilibria.

8.8 Logical game — Equilibria in knowledge games
Reconsider the game where Ann knows p and Bill knows q and where they both can
choose between two different announcements. The initial model was

8.8. LOGICAL GAME — EQUILIBRIA IN KNOWLEDGE GAMES 8-21

•p¬q
t

Ann •pq
∗s

Bill •¬pq
u

and the goals were

(KBp ∨KB¬p)→ (KAq ∨KA¬q)

(KAq ∨KA¬q)→ (KBp ∨KB¬p)

Both players could choose between two possible moves, and there were four resulting
models i, ii, iii, and iv. Let us say that a player who realizes his goal gets payoff 1, and
that otherwise the payoff is 0. This results in the following payoff matrix.

•p¬q
t

Ann •pq
∗s

Bill

�
�
�

•¬pq
u

> q
> 11 10
p 01 11

This game has therefore two Nash equilibria, namely (p, q) and (>,>). This does not
help Ann to choose between playing p and playing >, as she does not know what Bill is
going to do.

But we even have another problem: Ann does not know that the actual state is s, and
that therefore the game that is played is the one above. For all she knows, the actual state
could be t. In that case a different game would be played, namely one wherein Ann again
can choose between announcing p or >, but Bill can choose between announcing ¬q or
> – instead of knowing q Bill now knows the opposite, but we see as the same q-move,
that consists of observing whether q is known and if so, announce it, and if not, announce
that you don’t know q. The latter is in this particular model equivalent to knowing ¬q, so
one might as well announce that. If a player does not know what game is being played,
this is called an imperfect information game.

The situation for Bill is different from the situation for Ann, as he cannot distinguish
state s from state u. So in fact we are facing three different games with different payoff
matrices, as follows:

•p¬q
t

Ann

�
�
�

•pq
∗s

Bill

�
�
�

•¬pq
u

�
�
�

> ¬q
> 01 11
p 01 11

> q
> 11 10
p 01 11

> q
> 10 10
¬p 11 11

8-22 CHAPTER 8. LOGIC, GAMES AND INTERACTION

The remainder of this subsection is merely to illustrate a further complication, and does
not belong to the core of this chapter. If the players do not know which game is being
played, how should they choose between these three games? Can we define a single
imperfect information game that incorporates this uncertainty? This is indeed, and of
course, possible. It is possible to associate a payoff matrix with the model, independent
from which of the three states s, t, u is the case. This we do by redefining game moves
conditional to the state that a player finds him- or herself in, and for each condition listing
the different moves. There are now many more moves – let ai

A be move i for Ann and aj
B

be move j for Bill:

• a1
A: if Ann knows p then she announces >, else she announces >

• a2
A: if Ann knows p then she announces >, else she announces ¬p

• a3
A: if Ann knows p then she announces p, else she announces >

• a4
A: if Ann knows p then she announces p, else she announces ¬p

• a1
B: if Bill knows q then he announces >, else he announces >

• a2
B: if Bill knows q then he announces >, else he announces ¬q

• a3
B: if Bill knows q then he announces q, else he announces >

• a4
B: if Bill knows q then he announces q, else he announces ¬q

In order to compute the payoffs, we need to check the payoffs for each state and
combination of game moves / strategies. We have the following:

ax
A, a

y
B t s u

1, 1 01 11 10
1, 2 11 11 10
1, 3 01 10 10
1, 4 11 10 10
2, 1 01 11 11
2, 2 11 11 10
2, 3 01 10 11
2, 4 11 10 11
3, 1 01 01 10
3, 2 11 01 10
3, 3 01 11 10
3, 4 11 11 10
4, 1 01 01 11
4, 2 11 01 11
4, 3 01 11 11
4, 4 11 11 11

8.9. OUTLOOK — THE LIMITS OF RATIONALITY 8-23

On various additional assumptions, such as that a priori each initial state of the three states
is equally likely to be the case, and that a posteriori – after noticing where in the model you
live – each state in your equivalence class is equally likely, we get the following payoff
matrix. The payoffs are now expected payoffs, and for convenience of presentation we do
not divide the payoffs by the number of states (the equilibria do of course not depend on
this):

a1
B a2

B a3
B a4

B

a1
A 22 32 21 31

a2
A 23 32 22 32

a3
A 12 22 22 32

a4
A 13 23 23 33

The Nash equilibria are underlined. For example, When Ann plays strategy a2
A and Bill

plays strategy a2
B the outcome in the matrix is (23), which means that Ann can expect

a payoff of 2
3

and that Bill can expect a payoff of 3
3

= 1, etc. Note that the strategies
are indeed independent from states: Anne’s strategy p consists of observing whether she
knows p, if so, announce p (‘I know p’), if not, announce ¬p (‘I don’t know p, in the
model equivalent to ‘I know ¬p’).

In game theory, the area of imperfect information games such as the above is full
of pitholes and complexities, that we will not diverge into; but the applications of these
games to ‘knowledge games’ as the above example seem numerous and promising.

8.9 Outlook — The limits of rationality
We now reach the limits of game theory and its applications. Humans do not always take
rational decisions—and the challenge for logic and logicians, in collaboration with cog-
nitive science, is to find precise and formal explanations for this. Consider the following
ultimatum game that has received wide-spread attention.

The ultimatum game is a game between two players. Player 1 is given the amount of
100.000 euro, and may distribute this amount over the two players. Then, player 2 may
decide whether the players can keep their allocated sums, or not. To be precise: if player
2 agrees to the distribution, he gets the amount player 1 has attributed to him, and 1 gets
the amount allocated to himself. Otherwise, both players get nothing. The game is played
once only, the players are total strangers to each other, and will never meet each other
again.

Rational choice predicts that player 2 must accept any allocated amount larger than
zero. Even if player 1 allocates a single euro to player 2 and keeps 99.999 himself, it is
rational to accept the allocation because 1 euro is more than 0 euros, the alternative. But
experiment shows that player 2 will turn down any distributed allocation that he considers
‘too low’ and ‘unfair’. A ‘reasonable’ distribution allocates at least 30% to player 1...

How come? A possible explanation is that humans are hardwired to take long-term
consequences of their decisions into account. (And of course, although we present the
ultimatum game here as a one-shot game, the reality is that we face the other players that

8-24 CHAPTER 8. LOGIC, GAMES AND INTERACTION

we treated unfairly again and again.) How about our ‘reputation’ if we accept a very low
amount? We could be called cheap! And that would be, obviously, disastrous. We are
now getting into the areas where game theory and logic overlap with cognitive science and
psychology, an ever shifting boundary for further logical enterprises into areas possibly
benefiting from formalization.

Further Exercises

Exercise 8.18 Stefan

Exercise 8.19 Stefan

Exercise 8.20 Stefan

Summary After having finished this chapter you should have mastered the following
concepts and techniques:

• playing verifier and falsifier in Kripke models, given a formula (know the rules of
the game);

• playing bisimulation games with spoiler and duplicator, difference formula;

• the concept of bisimulation, and constructing simple bisimulation relations;

• compute equilibrium from pointed knowledge game (non-pointed version, with ex-
pected payoff matrix, not required);

• game theory terminology: game tree, move, zero-sum game, Zermelo’s Theorem,
winning strategy, Nash equilibrium, determined game;

• proof of Zermelo’s Theorem.

Methods

8-25

Chapter 9

Validity Testing

In the first three chapters various methods have been introduced to decide the validity
of different sorts of inferences. We have discussed truth-tables and the update method
for propositional logic, and also a method using Venn-diagrams for syllogistic reasoning.
In this chapter we will introduce a uniform method to decide validity for the logics of
the first part of this book. This method has been introduced for propositional logic and
predicate logic by the Dutch philosopher and logician Evert Willem Beth (1908-1964) in
the fifties of the previous century.

The basic idea behind this method comes down to the following principle which we
have stressed at earlier occasions. ref

An inference is valid if and only if there exists no counter-examples, i.e.,
there is no situation in which the premises hold and the conclusion is false.

The method consists of a rule-based construction of a counter-example for a given infer-
ence. Each step of the construction is given account of in a tree-like structure which is
called a tableau. During this construction it may be that, due to conflicting information,
the system detects that no counter-examples can be constructed. We speak of a closed
tableau in such a case, and it implies that no counter-examples exist. We may then safely
conclude that the inference which we are analyzing must be valid.

9-1

9-2 CHAPTER 9. VALIDITY TESTING

Evert Willem Beth (left). TABLEAUX is a large bian-
nual conference where computer scientists and logicians
meet to present and discuss the latest developments on
tableau methods and their application in automated rea-
soning systems.

The tableau method is a very powerful method. It is complete for propositional and predi-
cate logical reasoning. This means that in case of a valid inference the validity can always
be proved by means of a closed tableau, that is, the exclusion of counter-examples. More-
over, the tableau method can be implemented quite easily within computer programs, and
is therefore used extensively in the development of automated reasoning systems.ref

In the case of propositional logic the tableau method we will discuss here can generate
all counter-models for invalid inferences. In this respect, the situation in predicate logic is
quite different. If an inference is invalid a counter-model must exist, but it may be that it
can not be constructed by means of the rules of the tableau system. In this chapter we will
introduce two tableau systems for predicate logic of which one is better (but a bit more
difficult) than the other in finding counter-models for invalid inferences, but still this more
advanced system is not able to specify infinite counter-models, which means that invalid
inferences with only infinite counter-models — we will see one example in the section
on predicate logic — their invalidity can not be demonstrated by this system. In fact, a
perfect tableau system does not exist for predicate logic. Since the thirties of the previous
century, due to the work of Alonzo Church and Alan Turing, we know that there exists
no decision method in general which detects invalidity for all invalid predicate logical
inferences.ref

9.1 Tableaus for propositional logic

But let us first start with the propositional logical case. For checking the validity of a
propositional logical inference we can use the method of truth-tables (Chapter 2). If we
have an inference ϕ1, ..., ϕn/ψ then we need to set up truth-tables for all the formulas
ϕ1, ..., ϕn, ψ and then see whether there is one row, at which the formulas ϕ1, ..., ϕn are
all true (1) and ψ is false (0). If this is the case we have detected a counter-model, and

9.1. TABLEAUS FOR PROPOSITIONAL LOGIC 9-3

then the inference must be invalid. If such a row can not be found then the inference must
be valid since it does not have counter-models in this case.

The tables are built up step by step, assigning truth-values to the proposition letters,
who represent some atomic bit of propositional information, and then assigning truth-
values to all the formulas following the grammatical structures of the formulas. It is
therefore called a bottom up method.

The tableau method works exactly in the opposite direction: top-down. It starts with
the original inference and then tries to break it down into smaller pieces. If it arrives at the
smallest parts, the proposition letters, and has not run into contradictions then this atomic
information can be used to specify a counter-model and invalidity for the given inference
has then been proved. If it does not succeed to do so then the tableau is a proof that no
counter-model exists, and in this case, the inference must be valid.

Let us get more specific and take a simple valid inference:

p ∧ (q ∨ r) |= (p ∧ q) ∨ r (9.1)

We start with a simplistic representation of a candidate counter-example. It depicts a
world with two hemispheres of which the true information is contained in the upper half,
and the false information in the lower part.

p ∧ (q ∨ r)
(p ∧ q) ∨ r

(9.2)

The truth-conditions of the propositions, as defined by the connectives they contain, de-
termine whether this potential counter-example can be realized. As the only true formula
is a conjunction, we know that the two conjuncts must be true. The only false proposition
is a disjunction, and therefore both these disjuncts must also be false. This leads to the
following further specification of our potential counter-example:

p q ∨ r
p ∧ q r

(9.3)

We know now that our candidate counter-example must at least support p and falsify r.
The exclusion of six other valuations has already taken place by this simple derivation.
Still it is not sure whether the picture in (9.3) captures a real counter-example since q ∨ r
must be true and p ∧ q must be false. The first formula is a disjunction and because it is
true, the formula itself does not give us accurate information about the truth-values of the
the arguments q and r. The only thing we know is that at least one of them must be true.
This makes our search more complicated. The following two candidates are then both
potential counter-examples.

9-4 CHAPTER 9. VALIDITY TESTING

p q

p ∧ q r
p r

p ∧ q r

The world on the right hand can not be a counter-example because it requires r to be
both true and false. This can never be the case in one single world, and therefore this
possibility has to be canceled as a counter-model. The candidate on the left contains a
false conjunction, p ∧ q. Again, this gives us no precise information, since the falsity of
a conjunction only claims the falsity of at least one of the conjuncts. As a consequence,
this world must be separated into the following two possibilities.

p q

p r

p q

q r
(9.4)

The first of these two possibilities can not represent a real world because p is both true
and false there. The second can not be realized either since q is both true and false in this
case. Real counter-examples for this inference do not exist! The inevitable conclusion is
that (p ∧ q) ∨ r must be true whenever p ∧ (q ∨ r) is true.

For sake of notation, we will not continue to use the encircled representations as in
this first example. We will use a little circle ◦ instead and write the true formulas on its left
side, and the false formulas on the right side of this circle. Doing so, we can summarize
our search for a counter-example for the inference p ∧ (q ∨ r)/(p ∧ q) ∨ r as a tree in the
following way.

p ∧ (q ∨ r) ◦ (p ∧ q) ∨ r

p, q ∨ r ◦ (p ∧ q) ∨ r

p, q ∨ r ◦ p ∧ q, r

p, q ◦ p ∧ q, r

p, q ◦ p, r p, q ◦ q, r

p, r ◦ p ∧ q, r

(9.5)

Each node in the tree is called a sequent. A tree of sequents is called a tableau. A branch
of such a tableau is closed if its end node contains a sequent with a formula which appears
both on the left (true) and on the right (false) part of the sequent. It means that this branch
does not give a counter-example for the sequent as given at the top of the tableau. If
all branches are closed then the tableau is also closed, and it says, just as in the earlier
example, that the top-sequent represents in fact a valid inference. A branch of a tableau is

9.1. TABLEAUS FOR PROPOSITIONAL LOGIC 9-5

called open if its final node is not closed and contains no logical symbols. In this case we
have found a counter-example since there are only propositional letters left. A valuation
which assigns the value 1 to all the proposition letters on the left part of such a sequent
in this end node and 0 to those on the right side will be a counter-model for the inference
with which you started the tableau. To illustrate this we can take the earlier example and
interchange premise and conclusion. The inference (p ∧ q) ∨ r/p ∧ (q ∨ r) is an invalid
inference, and by using the tableau method we should be able to find a counter-model.

(p ∧ q) ∨ r ◦ p ∧ (q ∨ r)

p ∧ q ◦ p ∧ (q ∨ r) r ◦ p ∧ (q ∨ r)

r ◦ p r ◦ q ∨ r (9.6)

In the first step we have removed the disjunction on the left which led to two possibilities.
Then in the second resulting sequent we have removed the conjunction on the right part
of the sequent, which led to two new possibilities. The final node with the sequent r ◦ p
represents a real counter-example. This branch is open. A valuation V with V (p) = 0
and V (r) = 1 is a counter-model indeed: V ((p ∧ q) ∨ r) = 1 and V (p ∧ (q ∨ r)) = 0. In
fact, this open branch represents two counter-examples since the truth-value of q does not
matter in this case. The situations pqr and pqr are both counter-examples.

The reader may check for himself that the other branches do not give other counter-
models. They all close eventually. This means that there are only two counter-models.
The tableau as given in (9.6) suffices as a proof of invalidity here. As soon as an open
branch has been constructed it is not needed to inspect the other branches.

9.1.1 Reduction rules

A proper tableau needs to be set up according precise reduction rules. A reduction rule is
specified by the logical symbol that is to be removed, and the truth-value of the formula as
indicated by the sequent (left or right of the truth-falisity separation symbol ◦). Such a rule
is defined by the truth-conditions for the logical symbols. The following schema depicts
the rules for conjunction and disjunction, which we already have used in the previous

9-6 CHAPTER 9. VALIDITY TESTING

p ∧ (q ∨ r) ◦ (p ∧ q) ∨ r

∧L

p, q ∨ r ◦ (p ∧ q) ∨ r

∨R

p, q ∨ r ◦ p ∧ q, r

∨L

p, q ◦ p ∧ q, r

∧R

p, q • p, r p, q • q, r

p, r • p ∧ q, r

(p ∧ q) ∨ r ◦ p ∧ (q ∨ r)

∨L

p ∧ q ◦ p ∧ (q ∨ r) r ◦ p ∧ (q ∨ r)

∧R

r � p r ◦ q ∨ r

Figure 9.1: Complete tableaus for the earlier examples.

examples.

∧L ϕ ∧ ψ ◦

ϕ, ψ ◦

∧R ◦ ϕ ∧ ψ

◦ ϕ ◦ ψ

∨L ϕ ∨ ψ ◦

ϕ ◦ ψ ◦

∨R ◦ ϕ ∨ ψ

◦ ϕ, ψ
(9.7)

The rules ∧L and ∨L tell us what to do with a conjunction and disjunction, respectively,
when it appears on the left side of a sequent. We use a green background here to make it
explicit that when we apply such a rule, we are working on a formula which is claimed to
be true. The R-rules are rules which deal with false conjunctions and disjunctions. The
background color red is used to stress that we are reducing a formula which is claimed to
be false.

In figure 9.1 the earlier examples are given once more, but extended with specifica-
tions of the rules we use in each step. As to distinguish open and closed branches we
replace the truth-falsity separation symbol ◦ by � and • respectively. We will continue to
use this way of indication in the sequel of this chapter.

For the other connectives rules can be given quite straightforwardly by using the truth-
conditions which have been defined in the introductory chapter on propositional logic.
The negation rules are the most simple ones. A negation switches truth-values, so the

9.1. TABLEAUS FOR PROPOSITIONAL LOGIC 9-7

¬p ∧ ¬q ◦ ¬(p ∧ q)

∧L

¬p,¬q ◦ ¬(p ∧ q)

¬L

¬R

¬q, p ∧ q ◦ p

∧L

¬q, p, q • p

¬(p ∧ q) ◦ ¬p ∧ ¬q

¬L

◦ p ∧ q,¬p ∧ ¬q

∧R

◦ p,¬p ∧ ¬q ◦ q,¬p ∧ ¬q

∧R

◦ q,¬p

¬R

p� q

◦ q,¬q

Figure 9.2: Two tableaus with negations. The left tableau shows that ¬p ∧ ¬q |= ¬(p ∧ q). The right
tableau shows that the converse of this inference is not valid ¬(p∧q) 6|= ¬p∧¬q. The counter-model which
has been found in the open branch is the valuation which assigns 1 to p and 0 to q. This suffices to show the
invalidity of the inference. If we would have worked out the left branch as well we would have found the
other counter-example pq.

proper way to remove a negation is to transfer its argument from one side of the sequent
to the other.

¬L ¬ϕ ◦

◦ ϕ

¬R ◦ ¬ϕ

ϕ ◦
(9.8)

In Figure 9.2 two simple tableaus are given with occurences of negations. The rules for
implication and equivalence are the following:

→L ϕ→ ψ ◦

◦ ϕ ◦ ψ

→R ◦ ϕ→ ψ

ϕ ◦ ψ

↔L ϕ↔ ψ ◦

ϕ, ψ ◦ ◦ ϕ, ψ

↔R ◦ ϕ↔ ψ

ϕ ◦ ψ ψ ◦ ϕ
(9.9)

The rules for equivalence are quite easy ato understand. An equivalence is true if the
truth-values of the two arguments are the same. In terms of reductions this means that

9-8 CHAPTER 9. VALIDITY TESTING

if the equivalence appear on the left hand side of the sequent the two arguments remain
on the left hand side (both true) or they switch both to the right hand side (both false). If
an equivalence is false the two truth-values of the arguments differ, which gives the two
possibilities as captured by↔R-rule as shown in the schema (9.9).

The R-rule for implication captures the only possibility for an implication to be false.
The antecedent should be true (moves to the left) and the consequent should be false (stays
on the right). The L-rule captures the other possibilities: ϕ is false (moves to the right) or
ψ is true (stays on the left).

Exercise 9.1 Define appropriate reduction rules for the exclusive disjunction t. Remember that
ϕ t ψ is true if and only if exactly one of the arguments ϕ or ψ is true.

Exercise 9.2 Show that ¬(ϕ t ψ) is logically equivalent with ¬ϕ t ψ using the rules that you
have defined for t in the previous exercise. You will need two tableaus here, one for proving that
¬(ϕ t ψ) |= ¬ϕ t ψ and one for proving that ¬ϕ t ψ |= ¬(ϕ t ψ).

Below in (9.10) two tableaus are given of which the first shows that p ↔ (q → r) |=
(p↔ q)→ r. The second demonstrates that the converse is invalid.

p↔ (q → r) ◦ (p↔ q)→ r

→R

p↔ q ◦ r

↔L

p, q ◦

↔L

p, q → r ◦

→L

• q r •

• p, q → r

◦ p, q

↔L

p, q → r • ◦ p, q → r

→R

q • r

(p↔ q)→ r ◦ p↔ (q → r)

→L

◦ p↔ q r ◦
↔R

p ◦ q → r q → r ◦ p

→L

� q r �

(9.10)
For sake of shorter notation we have left out the repetition of formulas, and only kept track
of new formulas. This makes it bit harder to read the tableau, but it may be worth the effort
to get used to this shorter notation since tableaus, especially in the case of predicate logic
as we will see in the next section, tend to get very large.

In order to conclude closure of a branch we need to scan it for contradiction in back-
ward direction. This also is the case for defining a counter-model for an open branch. For
example, the counter-examples as given in the right-most branch in the second tableau
of (9.10) are those who falsify p and verify r. About the proposition letter q no informa-
tion is given in this open branch.

Exercise 9.3 Use tableaus to test the validity of the following inferences.

9.2. TABLEAUS FOR PREDICATE LOGIC 9-9

(1) p ∨ (q ∧ r)/(p ∨ q) ∧ (p ∨ r)

(2) p→ q, q → r/¬r → ¬p

Exercise 9.4 Use the tableau method to find out whether the following sets of formulas are con-
sistent (satisfiable), i.e., check whether there is a valuation which makes all the formulas in the
given set true.

(1) {p↔ (q ∨ r),¬q → ¬r,¬(q ∧ p),¬p}

(2) {p ∨ q,¬(p→ q), (p ∧ q)↔ p}

Exercise 9.5 Check, using the tableau method, whether the following formulas are tautologies or
not.

(1) (p→ q) ∨ (q → p)

(2) ¬(p↔ q)↔ (¬p↔ ¬q)

9.2 Tableaus for predicate logic
A tableau system consists of the rules for the connectives as given in the previous section
and four rules for the quantifiers, two rules for each of the two quantifiers ∀ and ∃.1 These
rules are a bit more complicated because the quantifiers range over the individual objects
in the domain of the models. Beforehand, however, we do not know how many of those
individuals are needed to provide real counter-models. The domain has to be constructed
step by step. This makes it harder to process universal information adequately because it
need to be applied to all the objects, and it may be that it will not be clear at that stage
what the required set of objects is to provide a counter-example. In simple cases this can
be avoided by dealing with the existential information first. Let us have a look at such an
easy going example:

∀x (Px ∨Qx)/∀xPx ∨ ∀xQx (9.11)

It may be clear that this an invalid inference. Every integer is even or odd (P ∨ Q) but it
is surely not the case that all integers are even (P) or that all integers are odd (Q). Let us
see what happens if we want to demonstrate this with a tableau. At first we can apply the
∨R-rule as we have defined in the previous section:

∀x (Px ∨Qx) ◦ ∀xPx ∨ ∀xQx

∨R

∀x (Px ∨Qx) ◦ ∀xPx,∀xQx (9.12)

1For sake of keeping things simple, we will not deal with the equality sign = and function symbols here.
Moreover, we assume that all formulas contain no free variables.

9-10 CHAPTER 9. VALIDITY TESTING

For the potential counter-model this means the following. All individuals are P ∨ Q-s
but not all of them are P -s and not all of them are Q-s, since ∀xPx and ∀xQx must
be falsified. They occur on the right side of the last sequent. A universally quantified
formula ∀xϕ on the right hand side of a sequent conveys an existential claim, we need at
least one non-ϕ-er within the candidate counter-model. As we said earlier, it is better to
deal with this existential information first. Removal of the formula ∀xPx can be done by
replacing it by Pd1 where d1 is some additional name for the object which does not have
the property P . We do not know who or what this non-P -object is, and therefore we need
a neutral name to denote it. So our next step is:

∀x (Px ∨Qx) ◦ ∀xPx,∀xQx

∀R

∀x (Px ∨Qx) ◦ Pd1,∀xQx (9.13)

Elimination of the last universal quantifier on the right hand side requires a non-Q-object.
This object may be different from d1 and therefore we choose a new neutral name d2.2

∀x (Px ∨Qx) ◦ Pd1, ∀xQx

∀R

∀x (Px ∨Qx) ◦ Pd1, Qd2 (9.14)

At this stage we have to eliminate the universal quantifier on the left hand side of the
sequent. We need to apply the property Px ∨ Qx to all the objects in the domain. This
far we only have objects called d1 and d2 and therefore we only apply it to those objects,
which brings two new formulas on the stage Pd1 ∨ Qd1 and Pd2 ∨ Qd2. In this case we
are sure that no other objects may be needed because all the existential information has
been dealt with in the two steps before.

∀x (Px ∨Qx) ◦ Pd1, Qd2

∀L

Pd1 ∨Qd1, Pd2 ∨Qd2 ◦ Pd1, Qd2 (9.15)

2Note that we do not exclude the possibility that d1 and d2 are equal here. In predicate logic it is possible
that one object carries two names.

9.2. TABLEAUS FOR PREDICATE LOGIC 9-11

∀x (Px ∨Qx) ◦ ∀xPx ∨ ∀xQx

∨R

∀x (Px ∨Qx) ◦ ∀xPx,∀xQx

∀R

∀x (Px ∨Qx) ◦ ∀xPx,Qd1

∀R

∀x (Px ∨Qx) ◦ Pd2, Qd1

∀L

Pd1 ∨Qd1, Pd2 ∨Qd2 ◦ Pd2, Qd1

∨L

Pd1, Pd2 ∨Qd2 • Pd1, Qd2 Q1, Pd2 ∨Qd2 ◦ Pd1, Qd2

∨L

Q1, Pd2 � Pd1, Qd2 Q1, Qd2 • Pd1, Qd2

Figure 9.3: The full tableau demonstrating that ∀x (Px ∨Qx) 6|= ∀xPx ∨ ∀xQx. The counter-example
contains a P who is not Q and a Q who is not P .

The last two steps deal with the two disjunctions.

Pd1 ∨Qd1, Pd2 ∨Qd2 ◦ Pd1, Qd2

∨L

Pd1, Pd2 ∨Qd2 • Pd1, Qd2 Q1, Pd2 ∨Qd2 ◦ Pd1, Qd2

∨L

Q1, Pd2 � Pd1, Qd2 Q1, Qd2 • Pd1, Qd2 (9.16)

Finally, we have found a counter-model. The open branch tells us that we need a model
with two objects. The first one needs to be a Q-object which does not have the property
P , and the second has to be a P -object which does not have the propertyQ. This is indeed
a counter-model for the original inference as given in (9.11). In Figure 9.3 the full tableau
is given.

9-12 CHAPTER 9. VALIDITY TESTING

Exercise 9.6 Show with a tableau that ∃x (Px ∧Qx) |= ∃xPx ∧ ∃xQx.

Exercise 9.7 Show with a tableau that ∃xPx ∧ ∃xQx 6|= ∃x (Px ∧Qx).

Exercise 9.8 Show with a tableau that ∀x (Px ∨Qx) |= ∀xPx ∨ ∃xQx.

In the last example it we dealt with existential information before we used the universal
information. This is not always possible. Here is a short but more complicated case.

∃x (Px→ ∀y Py) (9.17)

The formula says that there exists an object such that if this object has the property P
then every object has the property P . We do not know which object is meant here so let
us give it a neutral name. The formula then reduces to Pd1 → ∀y Py. Such an object
can then always be chosen. If all objects have the property P then it does not matter
which object you choose, since the consequent is true in this case. If, on the other hand,
not all objects have the property P then you can pick one of the non-P -objects for d1.
The antecedent is then false and therefore the implication Pd1 → ∀y Py holds. In other
words, ∃x (Px→ ∀y Py) is valid.

In order to prove that (9.17) is valid by means of a tableau we have to show that it
never can be false. Putting it on the right side of the top-sequent, we then should be able
to construct a closed tableau. Here is a first try in three steps.

◦ ∃x (Px→ ∀y Py)

∃R

◦ Pd1 → ∀y Py

→R

Pd1 ◦ ∀y Py

∀R

Pd1 ◦ Pd2 (9.18)

Foremost, we need to explain the first step. An existential quantified formula on the right
yields a universal claim. If ∃xϕ is false it means that there exists no ϕ-er: ϕ is false
for all individuals in the domain. Since there are no objects introduced so far the reader
may think that this leads to an empty sequent. But in predicate logic we have a minimal
convention that every model has at least one object.This means that if we want to fulfillref
a universal claim, that is, a true formula of the form ∀xϕ or a false formula of the form
∃xϕ, and there are no objects introduced so far then we introduce one. This is what has
been done in the first step in (9.18).

The second and the third step are as before. Now, it may seem as if we have an open
branch here since there is no contradictory information and there are no logical symbols

9.2. TABLEAUS FOR PREDICATE LOGIC 9-13

left. But we made a logistic mistake here. We removed the false formula ∀y Py here
by introducing a new non-P -object called d2. The universal claim by the false formula
∃x (Px→ ∀y Py) however has been applied to d1 only, whereas Px→ ∀y Py has to be
false for all objects, and therefore, also for d2! In tableau-systems for predicate logic this
means that whenever a new name is to be introduced the formulas which have universal
strength which have been removed at an earlier stage in the tableau will become active
again, and then need to be dealt with at a later stage. So the last step of (9.18) need to be
extended in the following way:

Pd1 ◦ ∀yPy

∀R

Pd1 ◦ Pd2,∃x (Px→ ∀y Py) (9.19)

The formula ∃x (Px→ ∀y Py) is supposed to be falsified in the end, and becomes active
again when the new object called d2 is introduced. The next step then is to deny the
property Px → ∀y Py for all objects. Since it has been already denied for d1 in the first
step in (9.18), the only new information is that Pd2 → ∀y Py must be false.

Pd1 ◦ Pd2,∃x (Px→ ∀y Py)

∃R

Pd1 ◦ Pd2, Pd2 → ∀y Py (9.20)

One may think, at first sight, that this leads to an infinite procedure. In this case, things
work out nicely, since the tableau closes in the next step. The implication will be removed,
and then we run into a conflict: Pd2 must be true and false at the same time.

Pd1 ◦ Pd2, Pd2 → ∀y Py

→R

Pd1, Pd2 • Pd2,∀y Py (9.21)

This means that there are no models which falsify ∃x (Px→ ∀y Py). This formula must
be valid.

9.2.1 Rules for quantifiers

In the two examples above we have indicated how we should deal with quantified predi-
cate logical formulas in a tableau. Here we want to give a formal status to the reduction

9-14 CHAPTER 9. VALIDITY TESTING

rules for the quantifiers. Let us start with the universal quantifier.

∀L0 ∀xϕ ◦

ϕ [d/x]
+◦

∀L ∀xϕ ◦

ϕ [d1/x] . . . ϕ [dn/x] ◦

∀R ◦ ∀xϕ

+◦ ϕ [d/x]

(9.22)
There are two left rules for the universal quantifier when it appears on the left part of a
sequent.

∀L0 : The first rule (0) is meant to deal with the exceptional case when no names are
present in the sequent, that is, there are no names to apply the property ϕ to. In this
case we introduce a new name d and replace all free occurences of x in ϕ by d. We
write this as ϕ [d/x]. In addition, the truth-falsity separation symbol ◦ is designated
with a + on top to indicate that a new name has been added within the branch of
the tableau.ref

∀L: If names are present in the input sequent then ∀xϕ can be removed from the left part
of the sequent by applying ϕ to the names d1, ..., dn, all occurring in the sequent
and which ϕ has not been applied to yet.

∀R: A false formula ∀xϕ is removed by applying ϕ to a new name d. This denotes
the object we need as an example of a non-ϕ-er in the counter-model which we
are constructing. In order to show that this name is new we use the additional
+-indication.

In the end we need to distinguish ◦ from
+◦-sequents in which new name are introduced.

+◦: If a new name is introduced then all formulas of the form ∀xϕ appearing on the
left part and those of the form ∃xϕ on the right part of preceding sequents in this
branch re-appear in the output sequent.

The rules for the existential quantifiers are defined analogously to the rules for the univer-
sal quantifier:

∃L ∃xϕ ◦

ϕ [d/x]
+◦

∃R0 ◦ ∃xϕ

+◦ ϕ [d/x]

∃R ◦ ∃xϕ

◦ ϕ [d1/x] . . . ϕ [dn/x]

(9.23)

9.2. TABLEAUS FOR PREDICATE LOGIC 9-15

The following example, which shows that ∃y∀xRxy |= ∀x∃y Rxy, make use of all the
general rules.

∃y∀xRxy ◦ ∀x ∃y Rxy

∃L

∀xRxd1
+◦ ∀x ∃y Rxy

∀R

∀xRxd1
+◦ ∃y Rd2y

∀L

Rd1d1, Rd2d1 ◦ ∃y Rd2y

∃R

Rd1d1, Rd2d1 •Rd2d1, Rd2d2 (9.24)

In this example the quantifiers were in optimal position. We could fulfill the existential
claims (∃L and ∀R) before we dealt with the universal requirements (∀L and ∃R) for the
potential counter-model. As a result of this no reintroduction of universal information
was needed.

In (9.18) we already have seen that this reintroduction can not always be avoided.
Fortunately, this did not lead to an infinite procedure, because the tableau could be closed.
But in other cases we may run into real trouble due to continuing introduction of new
names, and consequently, unstoppable re-appearance of universal information. Below
such an example is given. Let us first look at the first two steps.

∀x ∃y Rxy ◦ ∃y∀xRxy

∀L0

∃y Rd1y
+◦ ∃y∀xRxy

∃L

∀x∃y Rxy,Rd1d2
+◦ ∃y∀xRxy (9.25)

The two formulas in the top-sequent have universal status. The left formula is true and
says that every object is R-related to some object. In a domain of persons, taking the
relation Rxy to represent the relation ‘x loves y’, ∀x∃y Rxy means “Everybody loves
somebody”. The formula ∃y∀xRxy on the right hand should be falsified, and therefore

9-16 CHAPTER 9. VALIDITY TESTING

the claim is that is not the case that there exists an object such that all objects areR-related
to it. In the context mentioned here above, this means that there is no person who is loved
by everybody. So, there is no other option than to apply one of the exceptional universal
rules ∀L0 or ∃R0 . We have chosen to take the former.

In the second step we took the new existential formula on the left since we prefer to
deal with existential information first. Here we introduced a new name, and therefore, the
universal formula which has been removed in the first step pops up again. Repetition of the
same procedure would introduce a third object and a second re-appearance of ∀x∃y Rxy.
If, instead, we would choose to remove the formula ∃y∀xRxy on the right we would then
get the following two successive steps:

∀x ∃y Rxy,Rd1d2 ◦ ∃y∀xRxy

∃R

∀x ∃y Rxy,Rd1d2 ◦ ∀xRxd1,∀xRxd2

∀R

∀x ∃y Rxy,Rd1d2
+◦ Rd3d1,∃y∀xRxy (9.26)

In the last step a third object is introduced, and then ∃x∀y Rxy re-appears on the right
part of the sequent. The sequent in the last node contains the same formulas as in the top
node with two additional atomic formulas who do not contradict each other. Moreover,
we know that this tableau will never close since the top sequent represents an invalid in-
ference. This branch will never end with the desired final sequent free of logical symbols.

Without applying the rules it is not hard to find a simple counter-example. Take the sit-
uation of two persons who love themselves but not each other. In such a case, ∀x∃y Rxy
is true and ∃y∀xRxy is false, since there is no person who is loved by everybody. Ap-
parently, our tableau system is not able to find such a simple counter-model. In fact the
rules guide us towards an infinite counter-example which can never be constructed since
in each step at most one additional object is introduced.

Despite this inability of the system, the rules make up a complete validity testing
method. If an inference ϕ1, ...ϕn/ψ is valid, ϕ1, ..., ϕn |= ψ, then there exists a closed
tableau with ϕ1, ..., ϕn ◦ ψ as the top sequent. We will not prove this completeness result
here, but instead, get into more detail at a later stage.ref

Exercise 9.9 Test the validity of the following syllogisms with tableaus:

(1) ∀x (Ax→ Bx),∃x (Ax ∧ Cx)/∃x (Cx ∧Bx)

(2) ∀x (Ax→ Bx),∃x (Ax ∧ ¬Cx)/∃x (Cx ∧ ¬Bx)

(3) ¬∃x (Ax ∧Bx),∀x (Bx→ Cx)/¬∃x (Cx ∧Ax)

Exercise 9.10 Prove the validity of the following inference with tableaus:

9.2. TABLEAUS FOR PREDICATE LOGIC 9-17

(1) ∀x (Ax→ Bx) ∨ ∀y (By → Ay) |= ∀x ∀y ((Ax ∧By)→ (Bx ∨Ay))

(2) ∀x ∀y ((Ax ∧By)→ (Bx ∨Ay)) |= ∀x (Ax→ Bx) ∨ ∀y (By → Ay)

9.2.2 Alternative rules for finding finite counter-models

In (9.25) and (9.26) we have seen an example of an invalid inference with quite simple
finite counter-models which can not be found by means of the rules for the quantifiers.
In order to find such finite counter-models with a tableau system we need to extend the
rules for the quantifiers a bit. The problem with the earlier rules was the introduction of
new names which caused repetitive reintroduction of formulas. This can be avoided by
facilitating the ‘old’ objects to support existential information. These extended versions
of the ‘existential’ rules ∃L and ∀R have the following general format, where the name d
is some name which occurs in the input node and d′ does not.

∃L+d ∃xϕ ◦

ϕ [d/x] ◦ ϕ [d′/x]
+◦

∀R+d ◦ ∀xϕ

◦ ϕ [d/x] +◦ ϕ [d′/x]

(9.27)
The truth-falsity separation sign ◦ only has a +-sign in the right branch. In the left branch
we have used an old object called d which does not provoke reintroduction of universal
information. We indicate these special try-out branches with a dashed line.

Let us try these extended rules to find a simple finite counter-model for the example
we started with in (9.25). Here are the first two steps.

∀x∃y Rxy ◦ ∃y∀xRxy

∀L0

∃y Rd1y
+◦ ∃y∀xRxy

∃L+d1

Rd1d1 ◦ ∃y∀xRxy ∀x∃y Rxy,Rd1d2
+◦ ∃y∀xRxy (9.28)

The first step is the same as in (9.25). The second step is the application of the extended
version of ∃L. We apply in the left branch the property Rd1y to the only known name d1.
In this branch the true formula ∀x∃y Rxy is not reintroduced. This try-out branch can

9-18 CHAPTER 9. VALIDITY TESTING

then be extended with the following four steps.

Rd1d1 ◦ ∃y∀xRxy

∃R

Rd1d1 ◦ ∀xRxd1

∀R

∀x∃y Rxy,Rd1d1
+◦ Rd2d1,∃y∀xRxy

∀L

∃y Rd2y,Rd1d1 ◦Rd2Rd1,∃y∀xRxy

∃L+d2

Rd2d2, Rd1d1 ◦Rd2d1,∃y∀xRxy ∀x∃y Rxy,Rd2d3, Rd1d1
+◦ Rd2d1,∃y∀xRxy

(9.29)
In the second step we did not apply ∀R+d1 but the old version ∀R instead. A try-out branch
would close immediately because of the true formula Rd1d1. In the last step we have
chosen for ∃Ld2 . The d1-version would have given a closed branch because of the false
formula Rd2d1. Extension of this new try-out branch results into our desired counter-
model in two more steps.

Rd2d2, Rd1d1 ◦Rd2d1,∃y∀xRxy

∃R

Rd2d2, Rd1d1 ◦Rd2d1,∀xRxd2

∀R+d1

Rd2d2, Rd1d1 �Rd2d1, Rd1d2 ∀x ∃y Rxy ◦Rd3d2,∃y∀xRxy (9.30)

In the first step the false formula ∃y∀xRxy results into ∀xRxd2 only because ∀xRxy
has been applied to d1 in the third step of this branch (9.29). In the second step we used
a d1-try-out branch. The d2-variant would have given closure because of the true formula
Rd2d2. This third try-out branch has finally determined a counter-example. The objects
called d1 and d2 are R-related to themselves but are mutually not R-related.

It is not hard to see that the d1-try-out branch in the second step of this tableau (9.28)
can not give any other counter-examples with only two objects. If we would have chosen
for the regular branch after this second step we could have constructed the other two

9.2. TABLEAUS FOR PREDICATE LOGIC 9-19

object counter-model, that consists of two objects who are mutually related but are not
related to themselves. We leave this as an exercise to the reader.

Exercise 9.11 Try to find the other counter-model as mentioned here above using the try-out
branches on other places.

Exercise 9.12 Show the invalidity of the following inference with a tableau dressed up with try-
out branches. Try to keep the final counter-model as small and simple as possible.

(1) ∀x∃y Rxy/∀x∃y Ryx

(2) ∃x∀y Rxy/∃x∀y Ryx

9.2.3 Invalid inferences without finite counter-examples
With these new extended ‘existential’ rules we can always find finite counter-examples,
but this does not mean that every invalid inference can be recognized as such by the
extended tableau system. In predicate logic we can make up invalid inferences with only
infinite counter-models. Here is an example with two premises:

∀x∃y Rxy,∀x∀y∀z ((Rxy ∧Ryz)→ Rxz) 6|= ∃x∃y (Rxy ∧Ryx) (9.31)

Take again the ‘love’-interpretation for the relation R then the inference can be rephrased
as follows:

Everybody loves somebody

Everybody loves all persons who are loved by his loved ones.

There is at least a pair of persons who love each other.

(9.32)

We would expect that the seemingly cautious conclusion would follow from the happy
hippie optimism conveyed by the two premises. And in fact it holds as long as we would
stick to situations with only a finite number of persons.

Exercise 9.13 Show that for finite models which satisfy the two premises as given (9.31) will
always contain a symmetric pair: ∃x∃y (Rxy ∧ Ryx). A finite happy hippie community always
contains a happily loving couple!

In situations with an infinite number of objects we can interpret R in such a way that the
two premises are true and the conclusion is false. For example, take the integers instead
of people with R interpreted as the relation <. The inference then can be recaptured as
follows:

Every integer is smaller than some integer

If one integer is smaller than a second one, then all the integers which
are larger than the second are also larger than the first.

There is at least one pair of integers who are smaller than each other.

9-20 CHAPTER 9. VALIDITY TESTING

Here the premises are clearly true, and the conclusion is false, which proves that the
inference as given in (9.31) is indeed invalid. Such infinite counter-models can never be
constructed by our tableaus, and since the inference of (9.31) has only infinite counter-
examples its invalidity can never be demonstrated by the system, not even with the help
of the extended ‘existential’ rules.

9.2.4 Tableaus versus natural reasoning
Although the tableau systems which we have discussed so far are pretty good computa-
tional methods for testing the validity of inferences, there is also a clear disadvantage.
Each of the individual steps in a tableau can be understood quite easily, but a tableau as a
full line of argumentation is not very transparent, and it seems that it does not reflect the
way ordinary humans reason.

One part of this type of objection against the tableau method is superficial because
there are many small steps in a tableau that are never made explicitly in a ‘normal’ argu-
mentation because they are too trivial to be mentioned. Due to the fact that the tableau
method is a pure symbolic method all the small steps have to be taken into account, and
therefore these steps may look quite artificial.

But there is more to it. In a tableau we reason in a negative way, which tends to
be unnatural. Validity is demonstrated by the exclusion of counter-examples, whereas
humans tend to prove the validity of an inference directly, from the given facts to what
has to be proven. If this does not work, or if uncertainty about the validity of an inference
arises, one tries to use his imagination to think of a counter-example to refute the validity.
Proof and refutation are most often considered to be two different sorts of mental activity.
The tableau method incorporates the two in one computational system by argumentation
in an indirect way.

In one of the next chapters we will discuss another proof system which can only
be used to demonstrate validity and which makes use of rules which are close to the
way humans reason. Therefore, these system are referred to as ‘natural deduction’. The
tableau systems are considered as ‘unnatural deduction’. They are very useful for ‘black
box’ automated reasoning systems, where the users are only interested in a final answer
about the validity of an inference (and maybe also a specification of a counter-example)
but not how it has been computed.

This is quite an exaggerated qualification. It is true that tableau systems may behave
in an unnatural way. We have seen an example of the first tableau system for predicate
logic where the system tried to construct a complicated infinite counter-example for an
invalid inference for which everybody can make a very simple counter-example. We have
also shown how the rules can be ‘tamed’ to perform in a more ‘reasonable’ way. The
development of more natural and more ‘intelligent’ tableau systems is an important issue
of contemporary research of applied computational logic.

Moreover, systems which may perform strangely in certain circumstances may behave
remarkably intelligent in others. Here is an example:

∃x∀y (Rxy ↔ ¬∃z (Ryz ∧Rzy)) (9.33)

9.3. TABLEAUS FOR EPISTEMIC LOGIC 9-21

This is a predicate logical formulation of what is known as the Quine paradox (after the
American philosopher and logician Willard Van Orman Quine). This formula turns out to
be inconsistent. This is not directly obvious. It really takes some argumentation.

Exercise 9.14 The formula ∃x∀y (Ryx ↔ ¬Ryy) is a predicate logical version of the famous
Russell paradox (take R to be the relation ‘element of’ to get the exact version). Show with a
tableau that this formula can never be true (is inconsistent).

The subformula¬∃z (Ryz∧Rzy) of (9.33) means that there is no object which is mutually
related to y. In a domain of persons and by interpretingRxy as that ‘x knows y’ this means
that y has no acquaintances, that is, persons known by y who also know y. Let us say that
such a person without acquaintances is called a ‘loner.’ The full formula as given in (9.33)
says that there exists some person who knows all the loners and nobody else. Let us call
this person the ‘loner-knower’. According to the following infallible argumentation this
loner-knower cannot exist.

• If the loner-knower knows himself, then he has an acquaintance, and therefore he
is not a loner himself. But then he knows a person who is not a loner, which
contradicts the fact that he only knows loners.

• If he does not know himself, then he is not a loner, otherwise he would know him-
self. But if he is not a loner then he must have an acquaintance. This acquaintance
is a loner neither, since he knows the loner-knower and the loner-knower knows
him. So, the loner-knower knows a non-loner, which also contradicts the fact that
the loner-knower only knows loners.

• The inevitable conclusion is that the loner-knower does not exist, because for every
person it must be the case that he knows himself or not. For the loner-knower both
options lead to a contradiction.

In Figure (9.4) on page 9-22 the inconsistency of (9.33) has been demonstrated by
means of a closed tableau. This closed tableau, starting with a sequent with the formula
on the left hand side, shows that the Quine paradox can never be true. If we rephrase
the information in the closing tableau of Figure 9.4 we get in fact quite the same line of
argumentation as have been outlined here above. In Figure 9.5 on page 9-23 the tableau
has been translated back to the interpretation in natural language as has been described
here.

9.3 Tableaus for epistemic logic
The tableau method is used extensively for classical logics such as propositional and pred-
icate logic. It does not have been applied very much in the field of modal logic, such as the
epistemic and dynamic logics that have been introduced in the first part. In modal logic ref
the tradition tends much more towards axiomatic systems and model-checking. Part of

9-22 CHAPTER 9. VALIDITY TESTING

∃x∀y (Rxy ↔ ¬∃z(Ryz ∧Rzy)) ◦

∃L

∀y (R1y ↔ ¬∃z(Ryz ∧Rzy)) ◦

∀L

R11↔ ¬∃z(R1z ∧Rz1) ◦

↔L

R11,¬∃z(R1z ∧Rz1)) ◦

¬L

◦ ∃z(R1z ∧Rz1)

∃R

◦R11 ∧R11

∧R

•R11 •R11

◦R11,¬∃z(R1z ∧Rz1)

¬R

∃z(R1z ∧Rz1) ◦

∃L

∀y (R1y ↔ ¬∃z(Ryz ∧Rzy)), R12 ∧R21 ◦

∧L

R12, R21 ◦

∀L

R12↔ ¬∃z(R2z ∧Rz2) ◦

↔L

R12,¬∃z(R2z ∧Rz2) ◦

¬L

◦ ∃z(R2z ∧Rz2)

∃R

◦R21 ∧R12, R22 ∧R22

∧R

•R21 •R12

•R12,¬∃z(R2z ∧Rz2)

Figure 9.4: A tableau which proves that the Quine-paradox is not satisfiable.

9.3. TABLEAUS FOR EPISTEMIC LOGIC 9-23

There exists a ‘loner-knower’.

∃L

Call this ‘loner-knower’ d1.

∀L

d1 knows himself if and only if d1 is a loner.

↔L

d1 knows himself and d1 is
a loner.

¬L

d1 knows himself and d1

has no acquaintances.

∃R

d1 knows himself and d1 is
not an acquaintance of him-
self.

∧R

d1 knows himself and d1

does not know himself.

d1 does not know himself and d1 is not a loner.

¬R

d1 has an acquantaince.

∃L

d1 has an acquantaince, which we call d2.

∧L

d1 knows d2 and vice versa.

∀L

d1 knows d2 and vv. d1 knows d2 if and only if
d2 is a loner.

↔L

d1 knows d2 and vv. d2 is a loner.

¬L

d1 knows d2 and vv. d2 has no acquaintances.

∃R

d1 knows d2 and vv. d1 nor d2 is an acquaintance of d2.

∧R

d1 knows d2 and
vv. d1 does not
know d2.

d1 knows d2 and
vv. d2 does not
know d1.

d1 knows d2 and vv. d1

does not know d2. d2 is
not a loner.

Figure 9.5: A tableau which proves that the Quine-paradox is not satisfiable.

9-24 CHAPTER 9. VALIDITY TESTING

the underlying reasons are purely cultural, but there are also important technical reasons.
There are many different modal logics using a wide variety of different kind of modal
operators. On top of that, these logics also make use of different classes of possible world
models. Technically, it is just easier to capture these differences by means of axioms. It
is just a matter of replacing some axioms by others in order to skip from one modal logic
to the other. Directed search methods, such as the tableau method, are much harder to
modify appropriately.

We will avoid technical details here. In order to illustrate a tableau method for a
modal system we take the simplest one of which rules look very much like those of the
last system we have presented for predicate logical reasoning. The system we will discuss
here is a validity test for inferences in epistemic propositional logic with only one agent,
that is, propositional logic with a single K operator.

Remember that Kϕ stands for the proposition which says the agent knows that ϕ is
the case, and in terms of possible world semantics, it meant that ϕ is true in all the agent’s
epistemic alternatives. This means that we have to keep track of more worlds in one node
in a tableau, since a counter-model may exist of multiple worlds. In tableau terminology
these are called multi-sequents which are represented by boxes which may contain more
than one sequent.

Below the rules have been given in a brief schematic way. The vertical lines of dots
represent one or more sequents, and ϕ > means that the formula ϕ appears on the left
hand side of at least one of the sequents in the box, and ϕ { means it appears in all of
them. The symbols < ϕ and { ϕ are used to describe analogous situations for formulas
on the right side.

KL Kϕ
〉

...

ϕ
{

...

KR ...
〈
Kϕ

...
+◦ ϕ

KR+ ...
〈
Kϕ

...
〈
ϕ

...
+◦ ϕ

(9.34)

KL: If a formula Kϕ appears on the left part of at least one of the sequents in the box
then remove this formula from those sequents and add ϕ to all the sequents in the
box.

KR: If a formulaKϕ appears in the right part of at least one of the sequents then remove
them and add the sequent ◦ ϕ to the box.

KR+: If a formula Kϕ appears on the right part of at least one of the sequents then add
the sequent ◦ ϕ to the box, and add a try-out branch with the original sequents of
which one is extended with ϕ on the right part of it.

9.3. TABLEAUS FOR EPISTEMIC LOGIC 9-25

The symbol
+◦ means that a new sequent (world) has been added to the box. This also

implies that all formulas Kϕ which were removed in preceding steps becomes active
again. They are to be placed in left part of the first sequent of the sequent box.

Below two relatively simple examples are given. The first demonstrates that K(p →
q) |= Kp→ Kq by means of a closed tableau. As you can see, the two end nodes consist
of sequent boxes of which each contains a contradictory sequent. The second tableau
shows that the converse of this inference is invalid: Kp→ Kq 6|= K(p→ q).

K(p→ q) ◦Kp→ Kq

→R

K(p→ q), Kp ◦Kq

KR

K(p→ q), Kp ◦
◦ q

KL

K(p→ q), p ◦
p ◦ q

KL

p→ q, p ◦
p→ q, p ◦ q

→L

p→ q, p ◦
p • p, q

p→ q, p ◦
q, p • q

Kp→ Kq ◦K(p→ q)

→L

◦Kp,K(p→ q)

KR+

◦ p,K(p→ q)

KR

◦ p
+◦ p→ q

→R

◦ p
p ◦ q

◦K(p→ q)
+◦ p

Kq ◦K(p→ q)

(9.35)
Before we may jump to conclusions we need to be precise about closed and open multi-
sequents. A multi-sequent is closed if it contains an impossible sequent containing con-
tradictory information, i.e., a formula which appears on the left and on the right part of
the sequent. All the worlds as described in a multi-sequent need to be possible to provide
a counter-example. A tableau is closed if it contains only branches with closed multi-
sequents in the terminal nodes. A multi-sequent is open if it is not closed and all of its
sequents are free of logical symbols. A tableau is open if it contains at least one open
multi-sequent. As for propositional and predicate logic, an open tableau detects invalidity
and the open multi-sequent is nothing less than the description of a counter-model. The

9-26 CHAPTER 9. VALIDITY TESTING

first sequent of the open node is then the world at which rejection of the inference takes
place: all the premises are true there, and the conclusion will be false. A closed tableau
tells us that the top sequent represents a valid inference.

The first tableau in (9.35) showed a direct consequence of the logical closure property
of the epistemic operator K, which holds for all ‘necessity’ operators in modal logics
such as the dynamic operator [π]. The second tableau in (9.35) shows the invalidity ofref
the converse by means of the construction of a two worlds counter-model of which one
falsifies p and the other verifies p and falsifies q. We have used the try-out version of KR

in the second step in order to find the smallest counter-model. The third step is a regular
KR-step because an additional try-out branch would close immediately (p • p, q).

If we would have used KR twice we would have end up with a three worlds counter-
model. In other more complicated cases of invalid inference the try-out version of the KR

is really needed to find finite counter-models, just as we have seen for certain predicate
logical inferences.

Exercise 9.15 Show with two tableaus that Kp ∨Kq |= K(p ∨ q) and K(p ∨ q) 6|= Kp ∨Kq.

The following tableau shows a principle which holds specifically for epistemic logic:

9.3. TABLEAUS FOR EPISTEMIC LOGIC 9-27

negative introspection.
¬Kp ◦K¬Kp

¬L

◦Kp,K¬Kp

KR

◦K¬Kp
+◦ p

KR

◦
◦ p

+◦ ¬Kp

¬R

◦
◦ p

Kp ◦

KL

p ◦
p • p
p ◦

(9.36)

The tableau ends with a description of a single ‘impossible’ possible worlds model. In
fact it tells us that a counter-model requires at least one impossible world at which p is
both true and false, and therefore, a counter-model for negative introspection does not
exist.

Exercise 9.16 Show with two tableaus that Kp |= p and p 6|= Kp.

Exercise 9.17 Show with a closed tableau that Kp |= KKp (positive introspection).

Exercise 9.18 Show with a closed tableau that K(Kp ∨ q) |= Kp ∨Kq.

As a last example we demonstrate one other tableau where the try-out version of KR

are required to get a counter-model to compute an invalidity: K¬Kp 6|= K¬p. It says that
if the agent knows that he does not know that p does not imply that he must know that ¬p

9-28 CHAPTER 9. VALIDITY TESTING

is the case. The tableau to find the smallest counter-model requires two applications of
KR+ .

K¬Kp ◦K¬p

KR+

K¬Kp ◦ ¬p

¬R

K¬Kp, p ◦

KL

¬Kp, p ◦

¬L

p ◦Kp

KR

K¬Kp, p ◦
+◦ p

KL

¬Kp, p ◦
¬Kp ◦ p

¬L

¬L

p ◦Kp
◦ p,Kp

KR+

p ◦
◦ p, p

K¬Kp, p ◦
◦ p
+◦ p

K¬Kp ◦
+◦ ¬p

(9.37)

The counter-model which has been found in the left-most branch contains two worlds,
one which verifies p and one which falsifies p. In both worlds the agent does not know
that p and so K¬Kp is true in the first world (and also in the second), but K¬p is false in
this world because p is false in the second.

9.3. TABLEAUS FOR EPISTEMIC LOGIC 9-29

Exercise 9.19 Show with a tableau that K¬K¬p 6|= ¬K¬Kp.

Exercise 9.20 Show with a tableau that ¬K¬Kp |= K¬K¬p.

In many modal logics such as the epistemic and dynamic logic of the first part of this
book the so-called finite model property holds. This means that there exist no inferences
(with a finite set of premises) with only infinite counter-models such as we have seen for
predicate logic in the example (9.31) on page 9-19. This also means that we can always
detect invalidity for invalid inferences in single agent epistemic logic by using the tableau
method with the given rules for the knowledge operator.

Single agent epistemic logic is by far the easiest modal logic when it comes down
to defining a complete tableau system. For other modal logics this is much harder, but
not impossible. Instead of multi-sequents so-called hyper-sequents are needed to search
and specify counter-models by means of reduction rules. A hyper-sequent may not only
contain multiple sequents but also other hyper-sequents. Using the format we have been
using for single agent epistemic logic here this would look like nested boxes which can
be used to capture the accessibility relation of potential counter-models. For multi-modal
logics such as multi-agent epistemic logic and dynamic logic we need in addition labeling
mechanisms for the nested boxes as to keep track of multiple accessibility relations. On
top of that we also need quite complicated rules for ‘path’-operators such as the common
knowledge operator in multi-agent epistemic logic or the iteration operator in dynamic
logic. All these technical complications are the main reason that tableau methods for
advanced modal logics have not been standardized yet. Construction of models, whether
they are realized by means of extended tableau techniques or alternative methods, are in
the field of applied modal logic a very important theme of ongoing research. For sake of
presentation and clarity, we do not want to drag along our readers into the highly technical
mathematics of it.

9-30 CHAPTER 9. VALIDITY TESTING

K¬K¬p ◦ ¬K¬Kp
¬R

K¬K¬p,K¬Kp ◦

KL

K¬K¬p,¬Kp ◦
¬L

K¬K¬p ◦Kp

K+
R

K¬K¬p ◦ p

KL

¬K¬p ◦ p
¬L

◦K¬p, p

KR

K¬K¬p,K¬Kp ◦ p
◦ ¬p

KL

¬K¬p,K¬Kp ◦ p
¬K¬p ◦ ¬p

¬L (2×)

K¬Kp ◦K¬p, p
◦K¬p,¬p

K+
R

K¬Kp ◦ p
◦ ¬p,¬p

KL

¬L (2×)

K+
R

◦ p, p
◦ ¬p,¬p

K¬K¬p,K¬Kp ◦ p
◦ ¬p,¬p

+◦ p

K¬K¬p,K¬Kp ◦ p
◦K¬p,¬p

+◦ ¬p

K¬K¬p,K¬Kp ◦
+◦ p

(9.38)

Chapter 10

Proofs

In the first part of this book we have discussed complete axiomatic systems for proposi-
tional and predicate logic. In the previous chapter we have introduced the tableau systems
of Beth, which was a method to test validity. This method is much more convenient to
work with since it tells you exactly what to do when a given formula has to be dealt with
during such a validity test. Despite the convenience of Beth’s system it does not represent
the way humans argue.

In the late 1930s the German mathematician Gerhard Gentzen developed a system
which het called natural deduction, in which the deduction steps as made in mathematical
proofs are formalized. This system is based not so much on axioms but on rules instead.
For each logical symbol, connectives and quantifiers, rules are given just in the way they
are dealt with in mathematical proofs.

Gerhard Gentzen Dag Prawitz

In this chapter we will demonstrate how this system works. The precise definition of
these rules goes back to the Swedish logician Dag Prawitz, who gave a very elegant
reformulation of Gentzen’s work in the 1960s.1

1The format of the proofs in this chapter has been introduced by the American logician John Fitch.

10-1

10-2 CHAPTER 10. PROOFS

10.1 Natural deduction for propositional logic
In chapter 2 we have introduced an axiomatic system for propositional logic. By means
of the rule of modus ponens one may jump from theorems to new theorems. In addition
we had three axioms, theorems that do not have to be proven, and which may be used
as starting points. Since these axioms are tautologies, and the rule of modus ponens is a
sound rule of inference, a proof is then just a list of tautologies, propositions that are true
under all circumstances.

Although this system is fun to work with for enthusiast readers who like combinatoric
puzzles, it is surely not the way people argue. You may remember that it took us even five
steps to prove that an extremely simple tautology as ϕ → ϕ is valid. This may even be
worse for other trivial cases. It takes almost a full page to prove that ϕ→ ¬¬ϕ is valid (a
real challenge for the fanatic puzzler)!

The pragmatic problem of a purely axiomatic system is that it does not facilitate a
transparent manner of conditional reasoning, which makes it deviate very much from hu-
man argumentation. In an ordinary setting people derive conclusions which hold under
certain circumstances, rather than summing up information which always hold. Espe-
cially when conditional propositions, such as the implicative formulas as mentioned here
above, have to be proven the conditionions are used as presuppositions. Let us illustrate
this with a simple mathematical example.

If a square of a positive integer doubles the square of another positive integer
then these two integers must both be even.

Suppose m,n are two positive integers such that m2 = 2n2. This means m
must be even, because ifm2 is even thenmmust be even as well. So,m = 2k
for some positive integer k. Since m2 = 2n2 we get 2n2 = (2k)2 = 4k2, and
therefore, n2 = 2k2 which means that n must be even as well.

In the proof we presuppose that the antecedent (m2 = 2n2) of the conditional proposition
(m2 = 2n2 → m,n even) that is to be proven holds. This is what is called an hypothesis.
In the proof we derived that the consequent (m,n even) of the proposition holds under the
circumstances that the hypothesis holds. The validity of this type of conditional reasoning
reflects an important formal property of propositional logic (and also of the other logics
which has been introduced in the first part of this book), which is called the deduction
property. Formally it looks as follows: For every set of formulas Σ and for every pair of
formulas ϕ and ψ:

Σ, ϕ |= ψ if and only if Σ |= ϕ→ ψ (10.1)

It says that by means of the implication we can reason about valid inference within the
propositional language explicitly. A conditional proposition ϕ → ψ is a valid inference
within a context Σ if and only if ψ is a valid conclusion from Σ extended with ϕ as an

Prawitz used tree like structures, whereas here, in analogy of Fitch’s presentation proofs are divided into
so-called subproofs.

10.1. NATURAL DEDUCTION FOR PROPOSITIONAL LOGIC 10-3

additional assumption (hypothesis). The deduction property reveals the operational nature
of implication: ϕ leads to the conclusion ψ.

Exercise 10.1 Show that this deduction property holds for propositional logic by making use of
truth tables.

Exercise 10.2 The modus ponens rule and the deduction property are characteristic for the im-
plication in propositional logic. Let c© be some propositional connective which has the modus
ponens and deduction property:

ϕ,ϕ c© ψ |= ψ ϕ |= ψ if and only if |= ϕ c© ψ

Show that c© must be the implication→.

Integration of the deduction property in a deduction system requires accomodation of
hypotheses, i.e., additional assumptions that a reasoner uses in certain parts of his line of
argumentation or proof. A proof of ϕ→ ϕ then becomes trivial. Since assuming ϕ leads
to ϕ we may conclude that ϕ→ ϕ is always true. We may write this as follows:[

ϕ

ϕ repeat

]
ϕ→ ϕ Ded

(10.2)

The first part between square brackets we call a subproof of the full proof. A subproof
starts with an hypothesis (underlined) which is assumed to hold within this subproof.
Proving a conditional proposition ϕ→ ψ requires a subproof with hypothesis ϕ and con-
clusion ψ within this subproof. For our simple example (10.2) this immediately leads to
success, but it may involve much more work for longer formulas. Consider the following
example where we want to prove the second axiom of the axiomatic system as given in
chapter 2: (ϕ→ (ψ → χ))→ ((ϕ→ ψ)→ (ϕ→ χ)).

ϕ→ (ψ → χ)

...

(ϕ→ ψ)→ (ϕ→ χ)

(ϕ→ (ψ → χ))→ ((ϕ→ ψ)→ (ϕ→ χ)) Ded

(10.3)

We have first set up a preliminary format of our proof. The conditional proposition that
we want to prove has been rewritten as a subproof, which we have to establish later on.
We need to show that the antecedent of the proposition indeed leads to the consequent.
Since the desired conclusion of the subproof is an implication again we may follow the

10-4 CHAPTER 10. PROOFS

same procedure and extend our first format in the following way:

ϕ→ (ψ → χ)
ϕ→ ψ

...

ϕ→ χ

(ϕ→ ψ)→ (ϕ→ χ) Ded

(ϕ→ (ψ → χ))→ ((ϕ→ ψ)→ (ϕ→ χ)) Ded

(10.4)

Here we have a subproof within a subproof, in which we need to show that the additional
assumption ϕ→ ψ leads to a conclusion ϕ→ χ. This second hypothesis has been added
to the hypothesis of the first subproof. In order to obtain the desired conclusion we may
therefore use both hypotheses.

Again, the conclusion is a conditional proposition, and so, for the third time, we
squeeze in a new subproof.

ϕ→ (ψ → χ)

ϕ→ ψ
ϕ

...

χ

ϕ→ χ Ded

(ϕ→ ψ)→ (ϕ→ χ) Ded

(ϕ→ (ψ → χ))→ ((ϕ→ ψ)→ (ϕ→ χ)) Ded

(10.5)

Given this reformulation, we need to prove that χ holds given three hypotheseses: ϕ →
(ψ → χ), ϕ→ ψ and ϕ. This is not very hard to prove by making use of our earlier rule
of modus ponens. From the second and the third ψ follows and from the first and the third
ψ → χ. These new propositional formulas can then be combined to establish χ. Here is

10.1. NATURAL DEDUCTION FOR PROPOSITIONAL LOGIC 10-5

our final result:

ϕ→ (ψ → χ)

ϕ→ ψ
ϕ

ψ MP

ψ → χ MP

χ MP

ϕ→ χ Ded

(ϕ→ ψ)→ (ϕ→ χ) Ded

(ϕ→ (ψ → χ))→ ((ϕ→ ψ)→ (ϕ→ χ)) Ded

(10.6)

This result means that we no longer have to use the second axiom of the axiomatic system
as described in chapter 2. It can derived by means of our new deduction rule.

The first axiom of the system, ϕ → (ψ → ϕ), can be established also quite straight-
forwardly by means of the deduction rule. In order to prove ϕ → (ψ → ϕ) we need to
show that ψ → ϕ can be proved from ϕ. This can be shown then by simply concluding
that ϕ follows from ϕ and ψ:

ϕ[
ψ

ϕ rep.

]
ψ → ϕ Ded

ϕ→ (ψ → ϕ) Ded

(10.7)

Exercise 10.3 Prove (ϕ→ (ψ → χ))→ (ψ → (ϕ→ χ)).

10.1.1 Proof by refutation
It seems that we can replace the axiomatic system by a natural deduction system by sim-
ply replacing the axioms by a single rule, the deduction rule. This is not the case, however.
The third axiom of the axiomatic system (¬ϕ → ¬ψ) → (ψ → ϕ), also called contra-
position, can not be derived by deduction and modus ponens only. We need something to
deal with the negations in this formula.

There seems to be a way out by taking ¬ϕ to be an abbreviation of the conditional
formula ϕ→ ⊥. This establishes a procedure to prove negative information by means of
the deduction rule. Proving ¬ϕ requires a proof that the assumption that ϕ holds leads
to a contradiction (⊥). This is indeed a natural way to establish negative information, as
shown in the following example

10-6 CHAPTER 10. PROOFS

√
2 is not a rational number.

Suppose
√

2 were a rational number. This means there are two positive in-
tegers m and n such that (m/n)2 = 2 and, in addition, that m or n is odd,
since we can simply take the smallest pair such that (m/n)2 = 2 (they can-
not both be even since then it would not be the smallest pair for which this
equation holds). But then m2 = 2n2 and therefore m and n must be even, as
we have shown in an earlier example (page 10-2). Clearly, we have derived a
contradiction, and therefore

√
2 must be an irrational number.

A reformulation in natural deduction style looks as follows:

√
2 ∈ Q

(m/n)2 = 2 for certain pair of positive integers
m,n with m or n being odd.

m = 2n2

m and n are both even positive integers

⊥

¬(
√

2 ∈ Q)

(10.8)

This way of proving negative statements suffices to derive certain propositional logical
theorems containing negative information. For example, the converse of the contraposi-
tion axiom can be established in this way;

ϕ→ ψ

ψ → ⊥
ϕ

ψ MP

⊥ MP

ϕ→ ⊥ Ded

(ψ → ⊥)→ (ϕ→ ⊥) Ded

(ϕ→ ψ)→ ((ψ → ⊥)→ (ϕ→ ⊥)) Ded

(10.9)

Replacing→ ⊥ by negations then settles (ϕ → ψ) → (¬ψ → ¬ϕ). Unfortunately, this
simple solution does not work for the axiom of contraposition. To get a complete system
we need an additional rule.

Exercise 10.4 Show, by trying out the procedure which we have used for the previous examples,
that you can not derive the axiom of contraposition by modus ponens and the deduction rule only.

10.1. NATURAL DEDUCTION FOR PROPOSITIONAL LOGIC 10-7

This supplementary rule that we will need is in fact quite close to the deduction rule
for negations. To derive a formula ¬ϕ we prove that ϕ leads to a contradiction, which in
fact says that ϕ can not be true. Our new rule says that ϕ can be proven by showing that
ϕ can not be false. In terms of subproofs, if the hypothesis ¬ϕ leads to a contradiction we
may conclude that ϕ is the case. In this way we can prove the contraposition indeed.

1. ¬ϕ→ ¬ψ

2. ψ
3. ¬ϕ

4. ¬ψ MP 1,3

5. ⊥ MP 2,5

6. ϕ new rule 3-5

7. ψ → ϕ Ded 2-6

8. (¬ϕ→ ¬ψ)→ (ψ → ϕ) Ded 1-7

(10.10)

In step 6 we derived ϕ from the subproof [¬ϕ | . . .⊥]. The hypothesis that ϕ is false has
led to a contradiction. The contradiction in 5 is obtained by a modus ponens, since ¬ψ is
an abbreviation of ψ → ⊥ here.

Exercise 10.5 Prove ((ϕ → ψ) → ϕ) → ϕ. Despite the absence of negations in this formula,
you will need the new rule.

Exercise 10.6 Prove ϕ → ¬¬ϕ and ¬¬ϕ → ϕ. Which of those proofs makes use of the new
rule?

In logic this new rule is also called proof by refutation, or more academically, reductio ad
absurdum. In fact, it captures the same way of reasoning as we have used in the tableau
systems of the previous chapter. Proving the validity of an inference by presenting a
closed tableau we show that the given formula can never be false, and therefore must be
true, under the circumstances that the premises hold.

10.1.2 Introduction and elimination rules

The three rules suffice to obtain a complete system for propositional logic. The tradition
in natural deduction is to separate the treatment of negations and implications which leads

10-8 CHAPTER 10. PROOFS

to the following five rules.

...

ϕ→ ψ

...

ϕ

...

ψ E→

...
ϕ

...
ψ
...

...
ϕ→ ψ I→

...

¬ϕ
...

ϕ

...

⊥ E¬

...
ϕ

...
⊥
...

...
¬ϕ I¬

...

¬ϕ
...

ϕ

...

⊥ E¬

...
¬ϕ

...
⊥
...

...
ϕ E⊥

(10.11)
These rules are called elimination (E) and introduction (I) rules. The modus ponens is
called an elimination rule since it says how to remove an implication ϕ→ ψ and replace
it by its consequent ψ. The rule then obtains the structural name E→. Elimination of
negation, E¬, is then, as a consequence, the derivation of ⊥ from ¬ϕ and ϕ. The intro-
duction rule for implication, I→, is the deduction rule because it puts an implication on
stage. I¬ is defined analogously. The fifth additional rule represents the rule of proof by
refutation and is most often seen as elimination of ⊥ (E⊥).2

Two simpeler versions of the deduction rule and the rule of proof by refutation are
sometimes added to the system such that repetitions, as for example in the proof of ϕ →
(ψ → ϕ) as given in (10.7), can be avoided. If a statement ϕ is true then it also holds
under arbitrary conditions: ψ → ϕ. This is in fact a variation of the deduction rule
(without hypothesis). [

ϕ

ψ → ϕ I→ ‘simple’

]
ϕ→ (ψ → ϕ) I→

(10.12)

For proofs of refutation the anologous simplication is called ex falso. Everything may be
derived from a contradiction. We will use these simplified versions also in the sequel of
this chapter. In general deductive form they look as follows:

...

ψ

...

ϕ→ ψ I→

...

⊥
...

ϕ E⊥

(10.13)

2Sometimes I¬ is used for this rule, and then the introduction rule for negation is called falsum intro-
duction (I⊥).

10.1. NATURAL DEDUCTION FOR PROPOSITIONAL LOGIC 10-9

10.1.3 Rules for conjunction and disjunction
In propositional logic we also want to have rules for the other connectives. We could try
the same procedure as we have done for negation. Find an equivalent formulation in terms
of→ and ⊥ and then derive rules for these connectives.

ϕ ∨ ψ ≡ (ϕ→ ⊥)→ ψ ϕ ∧ ψ ≡ (ϕ→ (ψ → ⊥))→ ⊥ (10.14)

This option does not lead to what may be called a system of natural deduction. The
equivalent conditional formulas are much too complicated. Instead, we use direct rules
for manipulating conjunctive and disjunctive propositions. Below the introduction and
elimination rules are given for the two connectives.

...

ϕ ∧ ψ
...

ϕ/ψ I∨

...

ϕ

...

ψ

...

ϕ ∧ ψ I∧

...

ϕ ∨ ψ
...

ϕ

...
χ
...

...

ψ

...
χ
...

...

χ E∨

...

ϕ/ψ

...

ϕ ∨ ψ I∨

(10.15)

The rules for conjunction are quite straightforward. The elimination of a conjunction
is carried out by selecting one of its arguments. Since we know that they are both true
this is perfectly sound and a natural way of eliminating conjunctions. Introduction of a
conjunction is just as easy. Derive a conjunction if both arguments have already been
derived.

The introduction of a disjunction is also very simple. If you have derived one of the
arguments then you may also derive the disjunction. The rule is perfectly correct but it
is not very valuable, since in general, the disjunction contains less information then the
information conveyed by one of the arguments.

The elimination of the disjunction is the most complicated rule. It uses two subproofs,
one for each of the arguments of the disjunction. If in both subproofs, starting with one

10-10 CHAPTER 10. PROOFS

of the disjuncts (ϕ, ψ) as a hypothesis, the same information can be derived (χ) then
we know that this must also hold in a context in which we are uncertain which of the
arguments in fact holds (ϕ ∨ ψ). Despite the complexity of the rule, its soundness can be
seen quite easily. We leave this to the reader in the next exercise.

Exercise 10.7 Show that Σ, ϕ ∨ ψ |= χ if and only if Σ, ϕ |= χ and Σ, ψ |= χ.

The elimination rule of disjunction reflects a natural way of dealing with uncertainty in
argumentation. Here is an example of a mathematical proof.

There exists two irrational numbers x and y such that xy is rational.

Let z =
√

2
√

2
. This number must be either irrational or rational. Although,

we are uncertain about the status of z we can find in both cases two irrational
x and y such that xy must be rational.

Suppose that z is rational, then we may take x = y =
√

2. We have just seen
earlier that

√
2 is irrational, so this choice would be satisfactory.

Suppose that z is irrational. Then we may take x = z and y =
√

2, because

then xy = z
√

2 =
√

2
√

2·
√

2
=
√

2
2

= 2, and that is a perfect rational number.

In the deduction style we could reformulate our argumentation as follows

√
2
√

2 ∈ Q ∨
√

2
√

2 6∈ Q

√
2
√

2 ∈ Q

x = y =
√

2

xy =
√

2
√

2

xy ∈ Q for certain x, y 6∈ Q

√
2
√

2 6∈ Q

x =
√

2
√

2
, y =

√
2

xy = 2

xy ∈ Q for certain x, y 6∈ Q

xy ∈ Q for certain x, y 6∈ Q

(10.16)

In practical reasoning disjunction elimination is also manifest as a way to jump to conclu-
sions when only uncertain information is available. The following realistic scenario gives
an illustration of this.

I am traveling from A to B by train. If I run to the railway station of my home
town A then I’ll be in time to catch the train to B at 7.45AM, and then in B I

10.1. NATURAL DEDUCTION FOR PROPOSITIONAL LOGIC 10-11

will take the bus to the office and I will be there in time. If I won’t run then
I won’t catch the 7.45AM train, but in this case I could take the train to B at
8.00AM instead. I would then need to take a cab from the railway station in B
to arrive in time at the office. I start running to the railway station, not being
sure whether my physical condition this morning will be enough to make me
catch the first train (last night I have been to the cinema, and later on we
went to the pub, etcetera). But no worries, I’ll be in time at the office anyway
(okay, it will cost me a bit more money if I won’t catch the first train, since
taking a cab is more expensive then taking the bus).

Here is the deductive representation of my reasoning:

Catch 7.45AM-train ∨ Catch 8.00AM-train
Catch 7.45AM-train.

Take the bus in B to the office.

I’ll be in time at the office.

Catch 8.00AM-train.

Take a cab in B to the office.

I’ll be in time at the office.

I’ll be in time at the office.

(10.17)

Exercise 10.8 Can you make up a similar scenario, jumping to safe conclusion while being un-
certain about the conditions, from your personal daily experience? Now, reformulate this as a
deduction such as given for the previous example.

Here is a very simple example of disjunction elimination in propositional logic. We derive
ψ ∨ ϕ from the assumption ϕ ∨ ψ:

1. ϕ ∨ ψ[
2. ϕ

3. ψ ∨ ϕ I∨ 2

]
[

4. ψ

5. ψ ∨ ϕ I∨ 4

]
6. ψ ∨ ϕ E∨ 1,2-3,4-5

(10.18)

The formula ψ∨ϕ can be derived from ϕ and ψ by applying I∨, so we can safely conclude
ψ ∨ ϕ from ϕ ∨ ψ by E∨.

Exercise 10.9 Prove ϕ→ ψ from the assumption ¬ϕ ∨ ψ.

Exercise 10.10 Prove ¬(ϕ ∧ ψ) from ¬ϕ ∨ ¬ψ.

10-12 CHAPTER 10. PROOFS

Exercise 10.11 Prove (ϕ ∨ ψ) ∧ (ϕ ∨ χ) from ϕ ∨ (ψ ∧ χ).

In general, disjunction elimination applies whenever we need to prove a certain for-
mula χ from a disjunctive assumption ϕ ∨ ψ. The strength of the elimination rule for
disjunction is reflected by the equivalence of the inference ϕ ∨ ψ |= χ on the one hand
and the two inferences ϕ |= χ and ψ |= χ on the other (as you may have computed for
yourself when you have made exercise 10.7 on page 10-10).

Disjunctive conclusions are much harder to establish in a deduction because of the
earlier mentioned weakness of the introduction rule for disjunctions. Direct justification
of a conclusion ϕ ∨ ψ by means of I∨ requires a proof of one of the arguments, ϕ or
ψ, which in many cases is simply impossible. Often a refutational proof is needed to
obtain the desired disjunctive conclusion, that is, we show that ¬(ϕ ∨ ψ) in addition to
the assumptions leads to a contradiction (⊥).

A clear illustation can be given by one of the most simple tautologies: ϕ∨¬ϕ. When
it comes to reasoning with truth-values the principle simply says that there are only two
opposite truth-values, and therefore it is also called ‘principle of the excluded third’ or
‘tertium non datur’. From an operational or deductive point of view the truth of ϕ ∨ ¬ϕ
is much harder to see. Since, in general, ϕ and ¬ϕ are not tautologies, we have to prove
that ¬(ϕ ∨ ¬ϕ) leads to a contradiction. Below a deduction, following the refutational
strategy, has been given:

1 ¬(ϕ ∨ ¬ϕ)
2 ϕ

3 ϕ ∨ ¬ϕ I∨ 2

4 ⊥ E¬ 1,3

5 ¬ϕ I¬ 2-4

6 ϕ ∨ ¬ϕ I∨ 5

7 ⊥ E→ 1,6

8 ϕ ∨ ¬ϕ ⊥E 1-7

(10.19)

As you can see ¬ϕ is derived from ¬(ϕ ∨ ¬ϕ) and this gives us finally the contradiction
that we aimed at. In general this is the way to derive a disjunctive conclusion ϕ ∨ ψ for
which a direct proof does not work. We assume the contrary ¬(ϕ ∨ ψ) then derive ¬ϕ or
¬ψ (or both) and show that this leads to a contradiction.

Exercise 10.12 Prove by a deduction that (ϕ→ ψ) ∨ (ψ → ϕ) is a tautogy.

Exercise 10.13 Deduce ¬ϕ ∨ ¬ψ from ¬(ϕ ∧ ψ)

Exercise 10.14 Prove by a deduction that ¬ϕ ∨ ψ follows from ϕ→ ψ.

10.2. NATURAL DEDUCTION FOR PREDICATE LOGIC 10-13

10.2 Natural deduction for predicate logic

The natural deduction system for predicate logic consists of two simple rules and two
more complicated, but at the same time more compelling, rules for the quantifiers ∀ and ∃.
The easy weaker rules are ∀-elimination and ∃-introduction. They are just generalizations
of the earlier elimination rule for ∧ and the introduction rule for ∨.

From ∀xϕ we may derive that ϕ holds for ‘everything’. This means that we substitute
a term for x in ϕ. Substitution only has a small syntactic limitation. A term may contain
variables, and we have to take care that no variable which occurs in such a ‘substitute’
gets bound by a quantifier in ϕ after replacing the occurence of x by this term. If this is
the case we say that this term is substitutable for x in ϕ. As an illustration that things
go wrong when we neglect this limitation take the formula ∀x∃y ¬(x = y). Obviously,
this formula is true in every model with more than one object. If we substitutes y for x
in ∃y ¬(x = y) we get ∃y ¬(y = y) which is an inconsistent formula. The term y is not
substitutable since y gets bound by the existential quantifier in ∃y ¬(x = y).

Introduction of the existential quantifier works in the same way. If you have derived a
property ϕ for certain term t you may replace this term by x and derive ∃xϕ successively.
If we write ϕ[t/x] for the result of substitution of t for x in ϕ and in addition prescribing
that t must be substitutable for x in ϕ, we can formulate the rules mentioned here as
follows:

...

∀xϕ
...

ϕ[t/x] E∀

...

ϕ[t/x]

...

∃xϕ I∃

(10.20)

In practice these weak rules are only used to make small completing steps in a proof.

Also in the condition of I∃ it is required that t is substitutable for x in ϕ. To see that
neglecting this additional constraint leads to incorrect result take the formula ∀y y = y.
This is a universally valid formula. It is also the result of replacing x by y in the formula
∀y x = y, but ∃x∀y x = y is certainly not a valid consequence of ∀y y = y: ∃x∀y x = y
only holds in models containing only a single object.

The introduction rule of the universal quantifier is a bit more complicated rule, but,
at the same time, it is a very strong rule. The rule is also referred at as generalization.
By proving that a property ϕ holds for an arbitrary object we derive that ϕ holds for all
objects: ∀xϕ. To make sure that the object of which we prove ϕ-ness is indeed completely
arbitrary we use a new name which is not a constant in the language. Starting the subproof
we extend the language with this new name only within the range of this subproof. Such
an additional constant is also called a parameter. It may not be used in the main line of

10-14 CHAPTER 10. PROOFS

the proof which contains this subproof. Here is the formal version of the rule I∀.

...
c

...

ϕ[c/x]

...

∀xϕ I∀

(10.21)

As you can see the subproof does not contain an hypothesis. The only information which
is relevant here is that the parameter c does not appear in the line of the argument outside
the subproof (represented by the vertical dots outside the subproof box), and that it is not
a constant in the base language. To stress this minor syntactical limitation we indicate this
c on top of the line where the subproof starts. This makes it clear that this is the reference
to the arbitrary object for which we have to prove the desired property ϕ.

In natural settings of argumentation the generalization rule is most often combined
with the deduction rule (I→). If the assumption that an arbitrary object has the property ϕ
leads to the conclusion that it also must have another property ψ we have proven that ‘All
ϕ are ψ’ or in predicate logical notation ∀x (ϕ→ ψ). In a formal deduction this looks as
follows:

c
ϕ[c/x]

...

ψ[c/x]

(ϕ→ ψ)[c/x] I→

∀x (ϕ→ ψ) I∀

(10.22)

If we are able to prove for an arbitrary man that he must be mortal, we have proven that
all men are mortal.

Take, as a mathematical example of this combination, the proof that if the square of a
positive integer m doubles the square of another positive integer n, m2 = 2n2, they must
both be even (page 10-2). The generalization rule, applied twice, would then rephrase
this as universal result (given that the domain of discourse here contains only positive
integers)

∀x∀y (x2 = 2y2 → x, y both even)

Here is a first example deduction in predicate logic, showing that ∀x (Px ∧ Qx) follows

10.2. NATURAL DEDUCTION FOR PREDICATE LOGIC 10-15

from two assumptions, ∀xPx and ∀xQx:

1. ∀xPx Ass

2. ∀xQx Ass
3. c

4. P c E∀ 1

5. Qc E∀ 2

6. P c ∧Qc I∧ 4,5

7. ∀x (Px ∧Qx) I∀ 3-6

(10.23)

As you can see the generalization rule dominates the proof. It determines the external
structure of the proof, whereas the weaker rule E∀ shows up only within the very inner part
of the proof. The generalization rule works pretty much the same way as the deduction
rule in propositional logic. In pure predicate logic a proof of a universal statement requires
most often the generalization procedure. As we will see in the next section, there are
other rules to prove statements with universal strength when we apply predicate logic for
reasoning about a specific mathematical structure: the natural numbers.

Just as I∃ is a generalization of I∨, the elimination of existential quantifiers is taken
care of by a generalization of disjunction elimination. A formula ∃xϕ represents that
there is an object which has the property ϕ but, in general, we do not know who or what
this ϕ-er is. To jump to a fixed conclusion we introduce an arbitrary ϕ-er, without caring
about who or what this ϕ-er is, and show that this is enough to derive the conclusion that
we are aiming at. The rule looks as follows:

...

∃xϕ
...

ϕ[c/x] c

...

ψ

...

ψ E∃

(10.24)

The conclusion ψ can be derived on the basis of the introduction of an arbitrary ϕ-er (and
nothing else). This means that if such a ϕ-er exists (∃xϕ) then we may safely conclude
that ψ must hold. Again, the indication of the parameter c reminds us that it restricted by
the same limitations as in the generalization rule I∀.

There is also a close relation with the generalization and the deduction rule. Combi-
nation of the latter two facilitated a way to prove statements of the form ‘All ϕ are ψ’.

10-16 CHAPTER 10. PROOFS

In fact a slight variation of this is presupposed by means of the subproof in the E∃- rule.
Here it in fact says that it has been proven for an arbitrary object that if this object has the
property ϕ then ψ must hold. And then we conclude that, given the assumption that there
exists such a ϕ-er (∃xϕ), we know that ψ must hold.

The following variant of the train scenario as discussed on page 10-10 illustrates elim-
ination of uncertainty conveyed by existential information in practice.

Again, I am traveling from A to B. I don’t know when trains leave, but I know
at least there is a train departing from A going to B every half hour. Right
now it is 7.35AM, and it will take me only ten minutes to get to the station.
This means that I’ll catch some train before 8.15AM: or some point in time t
between 7.45AM and 8.15AM. The train from A to B takes 35 minutes, and
my arrival at B will therefore be before 8.50AM (t + 35’ < 8.50AM). A cab
ride will bring me in less than 15 minutes to the office and so I will be at the
office before 9.05AM (t + 35’ + 15’ < 9.05AM). This means I will be there
before 9.15AM, when the first meeting of this morning starts.

Although I am quite uncertain about the time of departure I can safely conclude that I will
be in time at the office.

Below a deduction is given which proves that ∀x∃y Rxy follows from ∃y∀xRxy.
Each of the quantifier rules is used once:

1. ∃y∀xRxy Ass

2. ∀xRxc c
3. d

4. Rdc E∀ 2

5. ∃y Rdy I∃ 4

6. ∀x∃y Rxy I∀ 3-5

7. ∀x∃y Rxy E∃ 2-6

(10.25)

As an explanation what the individual steps in this proof mean, let us say that Rxy stands
for ‘x knows y’ in some social setting. The assumption says there is some ‘famous’ person
known by everybody. The conclusion that we want to derive means that ‘everybody knows
someone’. We started with E∃, introducing an arbitrary person known by everybody, and
we called him or her c (∀xRxc), and from this we want to derive the same conclusion
(∀x∃y Rxy). To get this settled, we introduced an arbitrary object d and proved that d
must know somebody (∃y Rdy). This is proved by using Rdc (I∃) which follows from
∀xRxc (E∀).

Let us try a more difficult case: ∀xPx ∨ ∃xQx follows from ∀x (Px ∨ Qx). The
conclusion is a disjunction, and one can easily see that both disjuncts are not valid con-
sequences of the given assumption. This means we have to prove this by using refutation

10.2. NATURAL DEDUCTION FOR PREDICATE LOGIC 10-17

(E⊥). We need to show that the assumption and the negation of the conclusion lead to a
contradiction (⊥). Here is the complete deduction.

1. ∀x (Px ∨Qx) Ass

2. ¬(∀xPx ∨ ∃xQx)

3. c

4. P c ∨Qc E∀ 1[
5. P c

]

6. Qc

7. ∃xQx I∃ 6

8. ∀xPx ∨ ∃xQx I∃ 7

9. ⊥ E¬ 2,8

10. P c E⊥ 9 (simple version)

11. P c E∨ 4,5-5,6-10

12. ∀xPx I∀ 3-11

13. ∀xPx ∨ ∃xQx I∨ 12

14. ⊥ E¬ 2,13

15. ∀xPx ∨ ∃xQx E⊥ 2-14

(10.26)

In the outermost subproof we have shown that ∀x (Px∨Qx) in combination with¬(∀xPx∨
∃xQx) leads to the conclusion ∀xPx (12) which gives indeed an immediate contradic-
tion (13,14). ∀xPx can be obtained by proving the property P for an arbitrary object (c),
which is carried in the second subproof. This can be proved then by using Pc ∨ Qc and
disjunction elimination. Pc immediately follows from the first disjunct, Pc itself, and it
also follows from Qc, since this leads to a contradiction and by applying ex falso, the
simple form of proof by refutation, also to Pc.

Exercise 10.15 Prove that ∀x¬Px follows from ¬∃xPx.

Exercise 10.16 Prove that ∃xPx ∧ ∃xQx follows from ∃x (Px ∧Qx).

Exercise 10.17 Prove that ∃x¬Px follows from ¬∀xPx. You need to prove this by refutation,
since a direct proof of the existential conclusion is not possible.

Exercise 10.18 Prove that ∃x (Px ∨ Qx) follows from ∃xPx ∨ ∃xQx, and also the other way
around.

Exercise 10.19 (*) Prove that ∃x (Px→ ∀xPx) is valid. This one requires a proof by refutation
as well: show that ⊥ follows from ¬∃x (Px→ ∀xPx).

10-18 CHAPTER 10. PROOFS

10.2.1 Rules for identity

In addition to the rules for the quantifiers we also have to formulate rules for identity
which are particularly important for mathematical proofs. The introduction rule is the
simplest of all rules. It just states that an object is always equal to itself. It is in fact an
axiom, there are no conditions which restrict application of this rule.

...

t = t I=

(10.27)

The elimination rule says that we always may replace terms by other terms which
refer to the same object. We only have to take care that the variables which occur within
these terms do not mess up the binding of variables by quantifiers. The term that we
replace may only contain variables that occur freely (within the formula which is subject
to the replacement), and the substitute may not contain variables which get bound after
replacement. If these condition hold then we may apply the following rule:

...

t1 = t2/t2 = t1
...

ϕ

...

ϕ′ E=

(10.28)

where ϕ′ is the result of replacing occurrences of t1 by t2 in ϕ (not necessarily all). Here
are two simple examples showing the symmetry and transitivity of equality:

1. a = b Ass

2. a = a I=

3. b = a E= 1,2

1. a = b Ass

2. b = c Ass

3. a = c E= 1,2

(10.29)

In the first derivation the first occurrence of a in 2 is replaced by b. In the second derivation
the occurrence of b in 2 is replaced by a.

10.3 Natural deduction for natural numbers

In chapter 4 an axiomatic system of arithmetic, as introduced by the Italian logician and
mathematician Giuseppe Peano, in predicate logical notation has been discussed.

10.3. NATURAL DEDUCTION FOR NATURAL NUMBERS 10-19

Giuseppe Peano

In this section we want to give a natural deduction format for Peano’s arithmetic, as an ex-
ample of ‘real’ mathematical proof by means of natural deduction. These kind of systems
are used for precise formalization of mathematical proofs, such that they can be checked,
or sometimes be found (that is much harder of course), by computers.

Let us first repeat the axioms as discussed in chapter 4.

P1. ∀x (x+ 0 = x)

P2. ∀x ∀y (x+ sy = s(x+ y))

P3. ∀x (x · 0 = 0)

P4. ∀x ∀y (x · sy = x · y + x)

P5. ¬∃x sx = 0

P6. (ϕ[0/x] ∧ ∀x (ϕ→ ϕ[sx/x]))→ ∀xϕ

(10.30)

A straightforward manner to build a predicate logical system for arithmetic is to add these
axioms to the system as has been introduced in the previous section. For the first five
axioms we do not have an alternative. These axioms are then treated as rules without
conditions, and can therefore be applied at any time at any place in a mathematical proof.

The last axiom, the principle of induction, can be reformulated as a conditional rule
of deduction, in line with the way it is used in mathematical proofs. For the reader who
is not familiar with the induction principle, the following simple example clarifies how it
works.

For every natural number n the sum of the first n odd numbers equals n2.

For 0 this property holds in a trivial way. The sum of the first zero odd
numbers is an empty sum and therefore equals 0, which is also 02.

Suppose that the property holds for a certain number k (induction hypothesis).

1 + 3 + ...+ (2k − 1) = k2

10-20 CHAPTER 10. PROOFS

We need to prove that under this condition the property must also hold for
k + 1 (sk). The sum of the first k + 1 odd numbers is the same as

1 + 3 + ...+ (2k − 1) + (2k + 1)

According the induction hypothesis, this must be equal to

k2 + 2k + 1

and this equals (k + 1)2.

We have proven the property for 0 and also shown that if it holds for a certain
natural number then it must also hold for its successors. From this we derive
by induction that the property holds for all natural numbers.

10.3.1 The rule of induction

The inductive axiom in Peano’s system can be rephrased as a conditional rule in the fol-
lowing way.

...

ϕ[0/x]

...
ϕ[c/x] c

...

ϕ[sc/x]

...

...

∀xϕ Ind

(10.31)

It mimics the format as has been described by the proof example here above. The formula
ϕ[0/x] says that the property ϕ holds for 0. The subproof represents the inductive step,
and starts with the induction hypothesis. We assume ϕ[c/x], i.e., an arbitrary ϕ-er repre-
sented by the parameter c (the induction hypothesis). If this assumption suffices to derive
that the successor of c, sc, also must have the property ϕ, ϕ[sc/x], then ϕ must hold for
all objects, i.e., all the natural numbers.

In terms of the natural deduction system for predicate logic, the induction rule is an
additional introduction rule for the universal quantifier. For some cases we can do without
this rule and use the generalization rule instead. Here is a simple example which proves

10.3. NATURAL DEDUCTION FOR NATURAL NUMBERS 10-21

that x+ 1 coincides with the successor sx of x.

1. c

2. ∀x∀y (x+ sy = s(x+ y)) P2

3. c+ s0 = s(c+ 0) E∀ 2 (twice)

4. ∀x (x+ 0 = x) P1

5. c+ 0 = c E∀ 4

6. c+ s0 = sc E= 5,3

7. ∀x (x+ s0 = sx) I∀ 1-6

(10.32)

The proof demonstrates that this arithmetical theorem is a pure predicate logical conse-
quence of the two first axioms of the Peano system.

In other cases we have to rely on the induction rule to derive a universal statement
about the natural numbers. Here is a very simple example:

1. 0 + 0 = 0 E∀ P1
2. 0 + c = c c

3. 0 + sc = s(0 + c) E∀ P2 (twice)

4. 0 + sc = sc E= 2,3

5. ∀x (0 + x = x) Ind 1,2-4

(10.33)

0 + x = x is the property we have proved for all natural numbers x. First we have shown
this is true for 0 and then in the induction step, the subproof 2-4, we have shown that the
property 0 + c = c for an arbitrary c leads to 0 + sc = sc.

Exercise 10.20 Prove that ∀x (x · s0 = x).

Exercise 10.21 Prove that ∀x (0 · x = 0).

10-22 CHAPTER 10. PROOFS

The following proof uses both rules, generalization and induction.

1. c

2. c+ s0 = sc E∀ (10.32)

3. sc+ 0 = sc E∀ P1

4. c+ s0 = sc+ 0 E= 3,2

5. c+ sd = sc+ d d

6. c+ ssd = s(c+ sd) E∀ P2

7. c+ ssd = s(sc+ d) E= 5,6

8. sc+ sd = s(sc+ d) E∀ P2

9. c+ ssd = sc+ sd E= 8,7

10. ∀y (c+ sy = sc+ y) Ind 4,5-9

11. ∀x∀y (x+ sy = sx+ y) I∀ 1-10

(10.34)

The outermost subproof justifies the use of a generalization in the last step, whereas the
inner subproof contains the induction step of the inductive proof of 10.

Exercise 10.22 Prove that ∀x ∀y (x+ y = y + x) by filling in the gap represented by the vertical
dots. You may use the theorem which has already been proved in (10.34).

1. c

...

n. c+ 0 = 0 + c ...
n+ 1. c+ d = d+ c d

...

n+ k. c+ sd = sd+ c ..

n+ k + 1. ∀y (c+ y = y + c) Ind n,n + 1-n + k

n+ k + 2. ∀x∀y (x+ y = y + x) I∀ 1-n + k + 1

Exercise 10.23 Prove that ∀x (x · ss0 = x+ x).

Exercise 10.24 (*) Prove that ∀x∀y (x · y = y · x).

Exercise 10.25 Prove that ∀x∀y∀z (x+ (y + z) = (x+ y) + z).

10.4. OUTLOOK 10-23

10.4 Outlook

10.4.1 Completeness and incompleteness

10.4.2 Natural deduction, tableaus and sequents

10.4.3 Intuitionistic logic

10.4.4 Automated deduction

10-24 CHAPTER 10. PROOFS

Chapter 11

Computation

Things You Will Learn in This Chapter This chapter gives a lightning introduction
to computation with logic. First we will look at computing with propositional logic. You
will learn how to put propositional formulas in a format suitable for computation, and how
to use the so-called resolution rule. Next, we turn to computation with predicate logic.
The procedure for putting predicate logical formulas into computational format is a bit
more complicated. You will learn how to transform a predicate logical formula into a set
of clauses. Next, in order to derive conclusions from predicate logical clauses, we need
to apply a procedure called unification. Terms containing variables can sometimes made
equal by means of substitution. We will present the so-called unification algorithm, and
we will prove that if two terms can be made equal, then the unification algoritm computes
the most general way of doing so. Finally, unification will be combined with resolution
to give an inference mechanism that is very well suited for predicate logical computa-
tion, and we will see how this method is put to practical use in the Prolog programming
language.

11.1 A Bit of History

Leibniz in his youth

In 1673 the polymath Godfried Wilhelm Leibniz (1645–1716) demonstated to the
Royal Society in London a design for a calculation device that was intended to solve
mathematical problems by means of execution of logical inference steps. Leibniz was not

11-1

11-2 CHAPTER 11. COMPUTATION

only a mathematician, a philosopher and a historian, but also a diplomat, and he dreamed
of rational approaches to conflict resolution. Instead of quarrelling without end or even
resorting to violence, people in disagreement would simply sit down with their reason-
ing devices, following the adage Calculemus (“Let’s compute the solution”). Mechanical
computation devices were being constructed from that time on, and in 1928 the famous
mathematician David Hilbert posed the challenge of finding a systematic method for me-
chanically settling mathematical questions formulated in a precise logical language.

David Hilbert

This challenge was called the Entscheidungsproblem (“the decision problem”). In
1936 and 1937 Alonzo Church and Alan Turing independently proved that it is impossible
to decide algorithmically whether statements of simple school arithmetic are true or false.
This result, now known as the Church-Turing theorem, made clear that a general solution
to the Entscheidungsproblem is impossible. It follows from the Church-Turing theorem
that a decision method for predicate logic does not exist. Still, it is possible to define
procedures for computing inconsistency in predicate logic, provided that one accepts that
these procedures may run forever for certain (consistent) input formulas.

Alonzo Church Alan Turing

11.2 Processing Propositional Formulas

For computational processing of propositional logic formulas, it is convenient to first put
them in a particular syntactic shape.

11.2. PROCESSING PROPOSITIONAL FORMULAS 11-3

The simplest propositional formulas are called literals. A literal is a proposition letter
or the negation of a proposition letter. Here is a BNF definition of literals. We assume
that p ranges over a set of proposition letters P .

L ::= p | ¬p.

Next, a disjunction of literals is called a clause. Clauses are defined by the following BNF
rule:

C ::= L | L ∨ C.

Finally a CNF formula (formula in conjunctive normal form) is a conjunction of clauses.
In a BNF rule:

ϕ ::= C | C ∧ ϕ.

Formulas in CNF are useful, because it is easy to test them for validity. For suppose ϕ
is in CNF. Then ϕ consists of a conjunction C1 ∧ · · · ∧ Cn of clauses. For ϕ to be valid,
each conjunct clause C has to be valid, and for a clause C to be valid, it has to contain
a proposition letter p and its negation ¬p. So to check ϕ for validity, find for each of its
clauses C a proposition letter p such that p and ¬p are both in C. In the next section, we
will see that there is a simple powerful rule to check CNF formulas for satisfiability.

We will now start out from arbitrary propositional formulas, and show how to convert
them into equivalent CNF formulas, in a number of steps. Here is the BNF definition of
the language of propositional logic once more.

ϕ ::= p | ¬ϕ | (ϕ ∧ ϕ) | (ϕ ∨ ϕ) | (ϕ→ ϕ) | (ϕ↔ ϕ)

Translating into CNF, first step The first step translates propositional formulas into
equivalent formulas that are arrow-free: formulas without ↔ and → operators. Here is
how this works:

• Use the equivalence between p→ q and ¬p ∨ q to get rid of→ symbols.

• Use the equivalence of p↔ q and (¬p ∨ q) ∧ (p ∨ ¬q), to get rid of↔ symbols.

Here is the definition of arrow-free formulas of propositional logic:

ϕ ::= p | ¬ϕ | (ϕ ∧ ϕ) | (ϕ ∨ ϕ).

Translating into CNF, first step in pseudocode We will now write the above recipe
in so-called pseudocode, i.e., as a kind of fake computer program. Pseudocode is meant
to be readable by humans (like you), while on the other hand it is so close to computer
digestible form that an experienced programmer can turn it into a real program as a matter
of routine.

The pseudocode for turning a propositional formula into an equivalent arrow free
formula takes the shape of a function. The function has a name, ArrowFree. A key

11-4 CHAPTER 11. COMPUTATION

feature of the definition of ArrowFree is that inside the definition, the function that is
being defined is mentioned again. This is an example of a phenomenon that you will
encouter often in recipes for computation. It is referred to as a recursive function call.

What do you have to do to make a formula of the form ¬ψ arrow free? First you ask
your dad to make ψ arrow free, and then you put ¬ in front of the result. The part where
you ask your dad is the recursive function call.

function ArrowFree (ϕ):
/* precondition: ϕ is a formula. */
/* postcondition: ArrowFree (ϕ) returns arrow free version of ϕ */
begin function
case
ϕ is a literal: return ϕ
ϕ is ¬ψ: return ¬ ArrowFree (ψ)
ϕ is ψ1 ∧ ψ2: return (ArrowFree (ψ1) ∧ ArrowFree (ψ2))
ϕ is ψ1 ∨ ψ2: return (ArrowFree (ψ1) ∨ ArrowFree (ψ2))
ϕ is ψ1 → ψ2: return ArrowFree (¬ψ1 ∨ ψ2)
ϕ is ψ1 ↔ ψ2: return ArrowFree ((¬ψ1 ∨ ψ2) ∧ (ψ1 ∨ ¬ψ2))

end case
end function

Note that the pseudocode uses comment lines: everything that is between /* and */
is a comment. The first comment of the function states the precondition. This is the
assumption that the argument of the function is a propositional formula. This assumption
is used in the function definition, for notice that the function definition follows the BNF
definition of the formulas of propositional logic. The second comment of the function
states the postcondition. This is the statement that all propositional formulas will be
turned into equivalent arrow free formulas.

You can think of the precondition of a function recipe as a statement of rights, and
of the postcondition as a statement of duties. The pre- and postcondition together form a
contract: if the precondition is fulfilled (i.e., if the function is called in accordance with its
rights) the function definition ensures that the postcondition will be fulfilled (the function
will perform its duties). This way of thinking about programming is called design by
contract.

Exercise 11.1 Work out the result of the function call ArrowFree (p↔ (q ↔ r)).

Translating into CNF, second step Our next step is to turn an arrow free formula into
a formula that only has negation signs in front of proposition letters. A formula in this
shape is called a formula in negation normal form. Here is the BNF definition of formulas
in negation normal form:

L ::= p | ¬p
ϕ ::= L | (ϕ ∧ ϕ) | (ϕ ∨ ϕ).

11.2. PROCESSING PROPOSITIONAL FORMULAS 11-5

What this says is that formulas in negation normal form are formulas that are constructed
out of literals by means of taking conjunctions and disjunctions.

The principles we use for translating formulas into negation normal form are the
equivalence between¬(p ∧ q) and ¬p ∨ ¬q, and that between ¬(p ∨ q) and ¬p ∧ ¬q.
If we encounter a formula of the form ¬(ψ1 ∧ ψ1), we can “push the negation sign in-
ward” by replacing it with ¬ψ1∨¬ψ2, and similarly for formulas of the form ¬(ψ1∨ψ1).
Again, we have to take care of the fact that the procedure will have to be carried out recur-
sively. Also, if we encounter double negations, we can let them cancel out: formula ¬¬ψ
is equivalent to ψ. Here is the pseudocode for turning arrow free formulas into equivalent
formulas in negation normal form.

function NNF (ϕ):
/* precondition: ϕ is arrow-free. */
/* postcondition: NNF (ϕ) returns NNF of ϕ */
begin function
case
ϕ is a literal: return ϕ
ϕ is ¬¬ψ: return NNF (ψ)
ϕ is ψ1 ∧ ψ2: return (NNF (ψ1) ∧ NNF (ψ2))
ϕ is ψ1 ∨ ψ2: return (NNF (ψ1) ∨ NNF (ψ2))
ϕ is ¬(ψ1 ∧ ψ2): return (NNF (¬ψ1) ∨ NNF (¬ψ2))
ϕ is ¬(ψ1 ∨ ψ2): return (NNF (¬ψ1) ∧ NNF (¬ψ2))

end case
end function

Again, notice the recursive function calls. Also notice that there is a contract consisting
of a precondition stating that the input to the NNF function has to be arrow free, and
guaranteeing that the output of the function is an equivalent formula in negation normal
form.

Exercise 11.2 Work out the result of the function call NNF (¬(p ∨ ¬(q ∧ r))).

Translating into CNF, third step The third and final step takes a formula in negation
normal form and produces an equivalent formula in conjunctive normal form. This func-
tion uses an auxiliary function DIST, to be defined below. Intuitively, DIST(ψ1, ψ2) gives
the CNF of the disjunction of ψ1 and ψ2, on condition that ψ1, ψ2 are themselves in CNF.

function CNF (ϕ):
/* precondition: ϕ is arrow-free and in NNF. */
/* postcondition: CNF (ϕ) returns CNF of ϕ */
begin function
case
ϕ is a literal: return ϕ
ϕ is ψ1 ∧ ψ2: return CNF (ψ1) ∧ CNF (ψ2)

11-6 CHAPTER 11. COMPUTATION

ϕ is ψ1 ∨ ψ2: return DIST (CNF (ψ1), CNF (ψ2))
end case
end function

Translating into CNF, auxiliary step The final thing that remains is define the CNF of
the disjunction of two formulas ϕ1, ϕ2 that are both in CNF. For that, we use:

• (p ∧ q) ∨ r is equivalent to (p ∨ r) ∧ (q ∨ r),

• p ∨ (q ∧ r) is equivaent to (p ∨ q) ∧ (p ∨ r).

The assumption that ϕ1 and ϕ2 are themselves in CNF helps us to use these principles.
The fact that ϕ1 is in CNF means that either ϕ1 is a conjunction ψ11 ∧ ψ12 of clauses,
or it is a single clause. Similarly for ϕ2. This means that either at least one of the two
principles above can be employed, or both of ϕ1, ϕ2 are single clauses. In this final case,
ϕ1 ∨ ϕ2 is in CNF.

function DIST (ϕ1, ϕ2):
/* precondition: ϕ1, ϕ2 are in CNF. */
/* postcondition: DIST (ϕ1, ϕ2) returns CNF of ϕ1 ∨ ϕ2 */
begin function
case
ϕ1 is ψ11 ∧ ψ12: return DIST (ψ11,ϕ2) ∧ DIST (ψ12,ϕ2)
ϕ2 is ψ21 ∧ ψ22: return DIST (ϕ1,ψ21) ∧ DIST (ϕ1,ψ22)
otherwise: return ϕ1 ∨ ϕ2

end case
end function

In order to put a propositional formula ϕ in conjunctive normal form we can proceed
as follows:

(1) First remove the arrows→ and↔ by means of a call to ArrowFree.

(2) Next put the result of the first step in negation normal form by means of a call to
NNF.

(3) Finally, put the result of the second step in conjunctive normal form by means of a
call to CNF.

In other words, if ϕ is an arbitrary propositional formula, then

CNF(NNF(ArrowFree(ϕ)))

gives an equivalent formula in conjunctive normal form.

Exercise 11.3 Work out the result of the function call CNF ((p ∨ ¬q) ∧ (q ∨ r)).

Exercise 11.4 Work out the result of the function call CNF ((p ∧ q) ∨ (p ∧ r) ∨ (q ∧ r)).

11.3. RESOLUTION 11-7

11.3 Resolution
It is not hard to see that if ¬ϕ∨ψ is true, and ϕ∨ χ is also true, then ψ ∨ χ has to be true
as well. For assume ¬ϕ ∨ ψ and ϕ ∨ χ are true. If ϕ is true, then it follows from ¬ϕ ∨ ψ
that ψ. If on the other hand ¬ϕ is true, then it follows from ϕ ∨ χ that χ. So in any case
we have ψ ∨ χ. This inference principle is called resolution. We can write the resolution
rule as:

¬ϕ ∨ ψ ϕ ∨ χ
ψ ∨ χ

Note that Modus Ponens can be viewed as a special case of this. Modus Ponens is the
rule:

ϕ→ ψ ϕ

ψ

But this can be written with negation and disjunction:

¬ϕ ∨ ψ ϕ ∨ >
ψ

The idea of resolution leads to a powerful inference rule if we apply it to two clauses.
Clauses are disjunctions of literals, so suppose have two clauses A1 ∨ · · · ∨ An and B1 ∨
· · · ∨ Bm, where all of the A and all of the B are literals. Assume that Ai and Bj are
complements (one is the negation of the other, i.e., one has the form p and the other the
form ¬p). Then the following inference step is valid:

A1 ∨ · · · ∨ An B1 ∨ · · · ∨Bm

A1 ∨ · · · ∨ Ai−1 ∨ Ai+1 ∨ · · · ∨ An ∨B1 ∨ · · · ∨Bj−1 ∨Bj+1 ∨ · · · ∨Bm

This rule is called the resolution rule. It was proposed by J. Alan Robinson (one of the
inventors of the Prolog programming language) in 1965, in a landmark paper called “A
Machine-Oriented Logic Based on the Resolution Principle.” The rule allows to fuse two
clauses together in a single clause.

Before we go on, it is convenient to switch to set notation. Let us day that a clause is
a set of literals, and a clause form a set of clauses. Then here is an example of a clause
form:

{{p,¬q, r,¬r}, {p,¬p}}.

Resolution can now be described as an operation on pairs of clauses, as follows:

C1 ∪ {p} {¬p} ∪ C2

C1 ∪ C2

Alternatively, we may view resolution as an operation on clause forms, as follows:

C1, . . . , Ci ∪ {p}, {¬p} ∪ Ci+1, Ci+2, . . . , Cn

C1, . . . , Ci ∪ Ci+1, Ci+2, . . . , Cn

11-8 CHAPTER 11. COMPUTATION

The empty clause, notation [], corresponds to an empty disjunction. To make a dis-
junction true, at least one of the disjuncts has to be true. It follows that the empty clause
is always false.

The empty clause form, notation ∅, corresponds to an empty conjunction, for clause
form is conjunctive normal form. A conjunction is true if all of its conjuncts are true. It
follows that the empty clause form is always true.

Exercise 11.5 Suppose a clause Ci contains both p and ¬p, for some proposition letter p. Show
that the following rule can be used to simplify clause forms:

C1, . . . , Ci, . . . , Cn

C1, . . . , Ci−1, Ci+1, . . . , Cn
p ∈ Ci,¬p ∈ Ci

You have to show that this rule is sound. Assuming that the premisse is true, show that the conclu-
sion is also true.

If a clause form has [] (the empty clause) as a member, then, since [] is always false,
and since clause forms express conjunctions, the clause form is always false. In other
words, a clause form that has [] as a member expresses a contradiction. So if we can derive
the empty clause [] from a clause form, we know that the clause form is not satisfiable.

Thus, resolution can be used as a refutation technique. To check whether ψ follows
logically from ϕ1, . . . , ϕn, check whether the clause form corresponding to

ϕ1 ∧ · · · ∧ ϕn ∧ ¬ψ

is satisfiable, by attempting to derive the empty clause [] from the clause form, by means
of the resolution rule. If the clause form is not satisfiable, the original inference is valid.

Example: we want to check whether from ¬p ∨ ¬q ∨ r, and ¬p ∨ q it follows that
¬p ∨ r. Construct the formula

(¬p ∨ ¬q ∨ r) ∧ (¬p ∨ q) ∧ ¬(¬p ∨ r).

This is the conjunction of the premisses together with a negation of the conclusion. Bring
this in conjunctive normal form:

(¬p ∨ ¬q ∨ r) ∧ (¬p ∨ q) ∧ p ∧ ¬r.

Write this formula in clause form:

{{¬p,¬q, r}, {¬p, q}, {p}, {¬r}}.

Applying resolution for ¬q, q to the first two clauses gives:

{{¬p, r}, {p}, {¬r}}.

Applying resolution for ¬p, p to the first two clauses gives:

{{r}, {¬r}}.

11.3. RESOLUTION 11-9

Applying resolution for r,¬r gives:
{[]}

We have derived a clause form containing the empty clause. This is a proof by resolution
that the inference is valid. We have tried to construct a situation where the premisses are
true and the conclusion is false, but this attempt has led us to a contradiction. No doubt
you will have noticed that this refutation strategy is quite similar to the strategy behind
tableau style theorem proving.

Exercise 11.6 Stefan

Exercise 11.7 Stefan

Exercise 11.8 You are a professor and you are trying to organize a congress. In youer attempt
to draw up a list of invited speakers, you are considering professors a, b, c, d, e, f . Unfortunately,
your colleagues have big egos, and informal consultation concerning their attitudes towards ac-
cepting your invitation reveals the following constraints:

• At least one of a, b is willing to accept.

• Exactly two of a, e, f will accept.

• b will accept if and only if c also accepts an invitation.

• a will accept if and only if d will not get invited.

• Similarly for c and d.

• If d will not get an invitation, e will refuse to come.

Use propositional logic to set up a clause set representing these constraints. (Hint: first express the
constraints as propositional formulas, using proposition letters a, b, c, d, e, f . Next, convert this
into a clause form.)

Exercise 11.9 As it turns out, there is only one way to satisfy all constraints of Exercise 11.8.
Give the corresponding propositional valuation. (Hint: you can use resolution to simplify the
clause form of the previous exercise.)

We know that checking (un)satisfiability for propositional logic can always be done.
It cannot always be done efficiently. The challenge of building so called sat solvers for
propositional logic is to speed up satisfiability checking for larger and larger classes of
propositional formulas. Modern sat solvers can check satisfiability of clause forms con-
taining hunderds of proposition letters. The usual way to represent a clause form is as a
list of lines of integers. Here is an example of this so-called DIMACS format:

c Here is a comment.
p cnf 5 3
1 -5 4 0
-1 5 3 4 0
-3 -4 0

11-10 CHAPTER 11. COMPUTATION

The first line gives a comment (that’s what it says, and what is says is correct). The second
line states that this is a problem in conjunctive normal form with five proposition letters
and three clauses. Each of the next three lines is a clause. 0 indicates the end of a clause.

The home page of a popular sat solver called MiniSat can be found at http://
minisat.se/. MiniSat calls itself a minimalistic, open-source SAT solver. It was
developed to help researchers and developers to get started on SAT. So this is where you
should start also if you want to learn more. Running the example (stored in file sat.txt)
in MiniSat gives:
jve@vuur:˜/tmp$ minisat2 sat.txt
This is MiniSat 2.0 beta
WARNING: for repeatability, setting FPU to use double precision
============================[Problem Statistics]=============================
| |
| Number of variables: 5 |
| Number of clauses: 3 |
| Parsing time: 0.00 s |
============================[Search Statistics]==============================
| Conflicts | ORIGINAL | LEARNT | Progress |
| | Vars Clauses Literals | Limit Clauses Lit/Cl | |
===
| 0 | 0 0 0 | 0 0 nan | 0.000 % |
===
restarts : 1
conflicts : 0 (nan /sec)
decisions : 1 (0.00 % random) (inf /sec)
propagations : 0 (nan /sec)
conflict literals : 0 (nan % deleted)
Memory used : 14.58 MB
CPU time : 0 s

SATISFIABLE

Now let’s have another look at the earlier clause form we computed:

{{¬p,¬q, r}, {¬p, q}, {p}, {¬r}}.

Written with indices, it looks like this:

{{¬p1,¬p2, p3}, {¬p1, p2}, {p1}, {¬p3}}.

And here is the clause form in DIMACS format:

p cnf 4 3
-1 -2 3 0
-1 2 0
1 0
-3 0
If this text is stored in file sat2.txt then here is the result of feeding it to minisat:
jve@vuur:˜/tmp$ minisat2 sat2.txt
This is MiniSat 2.0 beta
WARNING: for repeatability, setting FPU to use double precision
============================[Problem Statistics]=============================
| |
| Number of variables: 4 |
| Number of clauses: 3 |
| Parsing time: 0.00 s |
Solved by unit propagation
UNSATISFIABLE

11.4. AUTOMATING PREDICATE LOGIC 11-11

General background on propositional satisfiability checking can be found at http://
www.satisfiability.org/.

11.4 Automating Predicate Logic
Alloy (http://alloy.mit.edu) is a software specification tool based on first order
logic plus some relational operators. Alloy automates predicate logic by using bounded
exhaustive search for counterexamples in small domains [Jac00]. Alloy does allow for
automated checking of specifications, but only for small domains. The assumption that
most software design errors show up in small domains is known as the small domain
hypothesis [Jac06]. The Alloy website links to a useful tutorial, where the three key
aspects of Alloy are discussed: logic, language and analysis.

The logic behind Alloy is predicate logic plus an operation to compute the transitive
closures of relations. The transitive closure of a relation R is by definition the smallest
transitive relation that contains R.

Exercise 11.10 Give the transitive closures of the following relations. (Note: if a relation is
already transitive, the transitive closure of a relation is that relation itself.)

(1) {(1, 2), (2, 3), (3, 4)},

(2) {(1, 2), (2, 3), (3, 4), (1, 3), (2, 4)},

(3) {(1, 2), (2, 3), (3, 4), (1, 3), (2, 4), (1, 4)},

(4) {(1, 2), (2, 1)},

(5) {(1, 1), (2, 2)}.

The language is the set of syntactic conventions for writing specifications with logic.
The analysis of the specifications takes place by means of bounded exhaustive search for
counterexamples. The technique used for this is translation to a propositional satisfiability
problem, for a given domain size.

Here is an example of a check of a fact about relations. We just defined the transitive
closure of a relation. In a similar way, the symmetric closure of a relation can be defined.
The symmetric closure of a relation R is the smallest symmetric relation that contains R.

We call the converse of a binaryR the relation that results from changing the direction
of the relation. A common notation for this is R .̌ The following holds by definition:

Rˇ = {(y, x) | (x, y) ∈ R}.

We claim that R ∪ Rˇ is the symmetric closure of R. To establish this claim, we have to
show two things: (i) R ∪ Rˇ is symmetric, and (ii) R ∪ Rˇ is the least symmetric relation
that contains R. (i) is obvious. To establish (ii), we assume that there is some symmetric
relation S with R ⊆ S (S contains R). If we can show that R ∪ Rˇ is contained in S we

11-12 CHAPTER 11. COMPUTATION

know that R ∪ Rˇ is the least relation that is symmetric and contains R, so that it has to
be the symmetric closure of R, by definition.

So assume R ⊆ S and assume S is symmetric. Let (x, y) ∈ R∪R .̌ We have to show
that (x, y) ∈ S. From (x, y) ∈ R∪Rˇ it follows either that (x, y) ∈ R or that (x, y) ∈ R .̌
In the first case, (x, y) ∈ S by R ⊆ S, and we are done. In the second case, (y, x) ∈ R,
and therefore (y, x) ∈ S by R ⊆ S. Using the fact that S is symmetric we see that also in
this case (x, y) ∈ S. This settles R ∪Rˇ⊆ S.

Now that we know what the symmetric closure of R looks like, we can define it in
predicate logic, as follows:

Rxy ∨Ryx.

Now here is a question about operations on relations. Given a relationR, do the following
two procedures boil down to the same thing?

First take the symmetric closure, next the transitive closure

First take the transitive closure, next the symmetric closure

If we use R+ for the transitive closure of R and R ∪ Rˇ for the symmetric closure, then
the question becomes:

(R ∪R)̌+ ?
= R+ ∪R+ˇ

Here is an Alloy version of this question:

sig Object { r : set Object }
assert claim { *(r + ˜r) = *r + ˜*r }
check claim

If you run this in Alloy, the system will try to find counterexamples. Here is a counterex-
ample that it finds:

Object1

Object0

r

Object2

r

11.4. AUTOMATING PREDICATE LOGIC 11-13

To see that this is indeed a counterexample, note that for this R we have:

R = {(1, 0), (2, 0)}
Rˇ = {(0, 1), (0, 2)}

R ∪Rˇ = {(1, 0), (2, 0), (0, 1), (0, 2)}
R+ = {(1, 0), (2, 0)}
Rˇ+ = {(0, 1), (0, 2)}

R+ ∪R+ˇ = {(1, 0), (2, 0), (0, 1), (0, 2)}
(R ∪R)̌+ = {(0, 0), (0, 1), (0, 2), (1, 0), (1, 1), (1, 2), (2, 0), (2, 1), (2, 2)}

Here is another question about relations. Suppose you know that R and S are transitive.
Does it follow that their composition, the relation you get by first taking an R step and
next an S step, is also transitive? The composition of R and S is indicated by R ◦ S.

Here is a definition of the composition of R and S in predicate logic:

∃z(Rxz ∧ Szy).

Exercise 11.11 Find a formula of predicate logic stating that if R and S are transitive then their
composition is transitive as well.

The answer to exercise 11.11 gives us a rephrasing of our original question: does the
formula ϕ that you constructed have counterexamples (model where it is not true), or
not?

The Alloy version of the question is again very succinct. This is because we can state
the claim that R is transitive simply as: R = R+.

sig Object { r,s: set Object }
fact { r = ˆr and s = ˆs }
assert claim { r.s = ˆ(r.s) }
check claim

Again the system finds counterexamples:

11-14 CHAPTER 11. COMPUTATION

Object0 r

Object2

s

Object1 r s

r

r

In this example, R = {(0, 0), (2, 2), (2, 1), (1, 1)} and S = {(0, 2), (1, 1)}.

Exercise 11.12 This exercise is about the example relations R and S that were found by Alloy.
For these R and S, give R ◦ S and give (R ◦ S)+. Check that these relations are not the same, so
R ◦ S is not transitive.

11.5 Conjunctive Normal Form for Predicate Logic
Now suppose we have a predicate logical formula. We will assume that there are no free
variables: each variable occurrence is bound by a quantifier. In other words: we assume
that the formula is closed.

To convert closed formulas of predicate logic to conjunctive normal form, the follow-
ing steps have to be performed:

(1) Convert to arrow-free form.

(2) Convert to negation normal form by moving ¬ signs inwards. This involves the
laws of De Morgan, plus the following quantifier principles:

• ¬∀xϕ↔ ∃x¬ϕ.

• ¬∃xϕ↔ ∀x¬ϕ.

(3) Standardize variables, in orde to make sure that each variable binder ∀x or ∃x oc-
curs only once in the formula. For example, ∀xPx ∨ ∃xQx should be changed to
∀xPx∨∃yQy. Or a more complicated example: ∀x(∃y(Py ∧Rxy)∨∃ySxy) gets

11.5. CONJUNCTIVE NORMAL FORM FOR PREDICATE LOGIC 11-15

changed to ∀x(∃y(Py∧Rxy)∨∃zSxz). In the standardized version, each variable
name x will have exactly one binding quantifier in the formula. This will avoid
confusion later, when we are going to drop the quantifiers.

(4) Move all quantifiers to the outside, by using the following equivalences:

• (∀xϕ ∧ ψ)↔ ∀x(ϕ ∧ ψ),

• (∀xϕ ∨ ψ)↔ ∀x(ϕ ∨ ψ).

• (∃xϕ ∧ ψ)↔ ∃x(ϕ ∧ ψ),

• (∃xϕ ∨ ψ)↔ ∃x(ϕ ∨ ψ).

Note that these principles hold because accidental capture of variables is impossi-
ble. We standardized the variables, so we may assume that every variable name
x has exactly one binding quantifier in the formula. Recall that there are no free
variables.

(5) Get rid of existential quantifiers, as follows.

• If the outermost existential quantifier ∃x of the formula is not in the scope of
any universal quantifiers, remove it, and replace every occurrence of x in the
formula by a fresh constant c.

• If the outermost existential quantifier ∃x of the formula is in the scope of
universal quantifiers ∀y1 through ∀yn, remove it, and replace every occurrence
of x in the formula by a fresh function f(y1, . . . yn). (Such a function is called
a Skolem function.)

• Continue like this until there are no existential quantiers left.

This process is called skolemization.

(6) Remove the universal quantifiers.

(7) Distribute disjunction over conjunction, using the equivalences:

• ((ϕ ∧ ψ) ∨ χ)↔ ((ϕ ∨ χ) ∧ (ψ ∨ χ)),

• (ϕ ∨ (ψ ∧ χ))↔ ((ϕ ∨ χ) ∧ (ϕ ∨ χ)).

To illustrate the stages of this process, we run through an example. We start with the
formula:

∀x(∃y(Py ∨Rxy)→ ∃ySxy).

First step: make this arrow-free:

∀x(¬∃y(Py ∨Rxy) ∨ ∃ySxy).

11-16 CHAPTER 11. COMPUTATION

Second step: move negations inwards:

∀x(∀y(¬Py ∧ ¬Rxy) ∨ ∃ySxy).

Third step: standardize variables:

∀x(∀y(¬Py ∧ ¬Rxy) ∨ ∃zSxz).

Fourth step: move quantifiers out:

∀x∀y∃z((¬Py ∧ ¬Rxy) ∨ Sxz).

Fifth step: skolemization:

∀x∀y((¬Py ∧ ¬Rxy) ∨ Sxf(x, y)).

Sixth step: remove universal quantifiers:

((¬Py ∧ ¬Rxy) ∨ Sxf(x, y)).

Seventh step, distribute disjunction over conjunction:

(¬Py ∨ Sxf(x, y)) ∧ (¬Rxy ∨ Sxf(x, y)).

The clause form of the predicate logical formula contains two clauses, and it looks like
this:

{{¬Py, Sxf(x, y)}, {¬Rxy, Sxf(x, y)}}.

Exercise 11.13 Stefan

Exercise 11.14 Stefan

11.6 Substitutions
If we want to compute with first order formulas in clause form, it is necessary to be
able to handle substitution of terms in such forms. In fact, we will look at the effets of
substitutions on terms, on clauses, and on clause forms.

A variable binding is a pair consisting of a variable and a term. A binding binds the
variable to the term. A binding (v, t) is often represented as v 7→ t. A binding is proper
if it does not bind variable v to term v (the same variable, viewed as a term). A variable
substitution is a finite list of proper bindings, satisfying the requirement that no variable
v occurs as a lefthand member in more than one binding v 7→ t.

The substitution that changes nothing is called the identity substitution. It is repre-
sented by the empty list of variable bindings. We will denote it as ε.

The domain of a substitution is the list of all lefthand sides of its bindings. The range
of a substitution is the list of all righthand sides of its bindings. For example, the domain
of the substitution {x 7→ f(x), y 7→ x} is {x, y}, and its range is {x, f(x)}.

11.6. SUBSTITUTIONS 11-17

Substitutions give rise to mappings from terms to terms via the following recursion.
Let σ be a substitution. Then a term t either has the form v (the term is a variable) or
the form c (the term is a constant) or the form f(t1, . . . , tn) (the term is a function with n
argument terms). The result σt of applying the substitution to the term t is given by:

• σv := σ(v),

• σc := c,

• σf(t1, . . . , tn) := f(σt1, . . . , σtm).

Next, we define the result of applying a substitution σ to a formula ϕ, again by recur-
sion on the structure of the formula.

• σP (t1, . . . , tn) := P (σt1, . . . , σtn),

• σ(¬ϕ) := ¬(σϕ),

• σ(ϕ ∧ ψ) := (σϕ ∧ σψ),

• σ(ϕ ∨ ψ) := (σϕ ∨ σψ),

• σ(ϕ→ ψ) := (σϕ→ σψ),

• σ(ϕ↔ ψ) := (σϕ↔ σψ),

• σ(∀vϕ) := ∀vσ′ϕ, where σ′ is the result of removing the binding for v from σ,

• σ(∃vϕ) := ∃vσ′ϕ, where σ′ is the result of removing the binding for v from σ.

Exercise 11.15 Stefan

Exercise 11.16 Stefan

The composition of substitution σ with substitution τ should result in the substitution
that one gets by applying σ after τ . The following definition has the desired effect.

Definition 11.17 (Composition of substitution representations) Let

θ = [v1 7→ t1, . . . , vn 7→ tn] and σ = [w1 7→ r1, . . . , wm 7→ rm]

be substitution representations. Then θ · σ is the result of removing from the sequence

[w1 7→ θ(r1), . . . , wm 7→ θ(rm), v1 7→ t1, . . . , vn 7→ tn]

the bindings w1 7→ θ(ri) for which θ(ri) = wi, and the bindings vj 7→ tj for which
vj ∈ {w1, . . . , wm}.

Exercise 11.18 Prove that this definition gives the correct result.

11-18 CHAPTER 11. COMPUTATION

Applying the recipe for composition to {x 7→ y} · {y 7→ z} gives {y 7→ z, x 7→ y},
applying it to {y 7→ z} · {x 7→ y} gives {x 7→ z, y 7→ z}. This example illustrates the
fact that order of application of substitution matters. Substitutions do not commute.

Exercise 11.19 Stefan

Exercise 11.20 Stefan

We use the notion of composition to define a relationv on the set S of all substitutions
(for given sets of variables V and terms T), as follows. θ v σ iff there is a substitution ρ
with θ = ρ · σ. (θ v σ is sometimes pronounced as: ‘θ is less general than σ.’)

The relation v is reflexive. For all θ we have that θ = ε · θ, and therefore θ v θ.
The relation is also transitive. v is transitive because if θ = ρ · σ and σ = τ · γ then
θ = ρ · (τ · γ) = (ρ · τ) · γ, i.e., θ v γ. A relation that is reflexive and transitive is called
a pre-order, so what we have just shown is that v is a pre-order.

11.7 Unification
If we have two expressions A andB (where A,B can be terms, or formulas, or clauses, or
clause forms), each containing variables, then we are interested in the following questions:

• Is there a substitution θ that makes A and B equal?

• How do we find such a substitution in an efficient way?

We introduce some terminology for this. The substitution θ unifies expressions A and
B if θA = θB. The substitution θ unifies two sequences of expressions (A1, . . . , An)
and (B1, . . . , Bn) if, for 1 ≤ i ≤ n, θ unifies Ai and Bi. Note that unification of pairs of
atomic formulas reduces to unification of sequences of terms, for two atoms that start with
a different predicate symbol do not unify, and two atoms P (t1, . . . , tn) and P (s1, . . . , sn)
unify iff the sequences (t1, . . . , tn) and (s1, . . . , sn) unify.

What we are going to need to apply resolution reasoning (Section 11.3) to predicate
logic is unification of pairs of atomic formulas.

For example, we want to find a substitution that unifies the pair

P (x, g(a, z)), P (g(y, z), x).

In this example case, such unifying substitutions exist. A possible solution is

{x 7→ g(a, z), y 7→ a}.

for applying this substitution gives P (g(a, z), g(a, z)). Another solution is

{x 7→ g(a, b), y 7→ a, z 7→ b}.

11.7. UNIFICATION 11-19

In this case, the second solution is an instance of the first, for

{x 7→ g(a, b), y 7→ a, z 7→ b} v {x 7→ g(a, z), y 7→ a},

because

{x 7→ g(a, b), y 7→ a, z 7→ b} = {z 7→ b} · {x 7→ g(a, z), y 7→ a}.

So we see that solution {x 7→ g(a, z), y 7→ a} is more general than solution {x 7→
g(a, b), y 7→ a, z 7→ b}.

If a pair of atoms is unifiable, it is useful to try and identify a solution that is as general
as possible, for the more general a solution is, the less unnecessary bindings it contains.
These considerations motivate the following definition.

Definition 11.21 If θ is a unifier for a pair of expressions (a pair of sequences of expres-
sions), then θ is called an mgu (a most general unifier) if σ v θ for every unifier σ for the
pair of expressions (the pair of sequences of expressions).

In the above example, {x→ g(a, z), y 7→ a} is an mgu for the pair

P (x, g(a, z)), P (g(y, z), x).

The Unification Theorem says that if a unifier for a pair of sequences of terms exists, then
an mgu for that pair exists as well. Moreover, there is an algorithm that produces an mgu
for any pair of sequences of terms in case these sequences are unifiable, and otherwise
ends with failure.

We will describe the unification algorithm and prove that it does what it is supposed
to do. This constitutes the proof of the theorem.

We give the algorithm in stages.

First we define unification of terms UnifyTs, in three cases.

• Unification of two variables x and y gives the empty substitution if the variables
are identical, and otherwise a substitution that binds one variable to the other.

• Unification of x to a non-variable term t fails if x occurs in t, otherwise it yields
the binding {x 7→ t}.

• Unification of f t̄ and gr̄ fails if the two variable names are different, otherwise
it yields the return of the attempt to do term list unification on t̄ and r̄.

If unification succeeds, a unit list containing a representation of a most general uni-
fying substitution is returned. Return of the empty list indicates unification failure.

11-20 CHAPTER 11. COMPUTATION

Unification of term lists (UnifyTlists):

• Unification of two empty term lists gives the identity substitution.

• Unification of two term lists of different length fails.

• Unification of two term lists t1, . . . , tn and r1, . . . , rn is the result of trying to
compute a substitution σ = σn ◦ · · · ◦ σ1, where

– σ1 is a most general unifier of t1 and r1,

– σ2 is a most general unifier of σ1(t2) and σ1(r2),

– σ3 is a most general unifier of σ2σ1(t3) and σ2σ1(r3),

– and so on.

Our task is to show that these two unification functions do what they are supposed to
do: produce a unit list containing an mgu if such an mgu exists, produce the empty list in
case unification fails.

The proof consists of a Lemma and two Theorems. The Lemma is needed in Theorem
11.23. The Lemma establishes a simple property of mgu’s. Theorem 11.24 establishes
the result.

Lemma 11.22 If σ1 is an mgu of t1 and s1, and σ2 is an mgu of

(σ1t2, . . . , σ1tn) and (σ1s2, . . . , σ1sn),

then σ2 · σ1 is an mgu of (t1, . . . , tn) and (s1, . . . , sn).

Proof. Let θ be a unifier of (t1, . . . , tn) and (s1, . . . , sn). Given this assumption, we
have to show that σ2 · σ1 is more general than θ.

By assumption about θ we have that θt1 = θs1. Since σ1 is an mgu of t1 and s1, there
is a substitution ρ with θ = ρ · σ1.

Again by assumption about θ, it holds for all i with 1 < i ≤ n that θti = θsi. Since
θ = ρ · σ1, it follows that

(ρ · σ1)ti = (ρ · σ1)si,

and therefore,

ρ(σ1ti) = ρ(σ1si).

Since σ2 is an mgu of (σ1t2, . . . , σ1tn) and (σ1s2, . . . , σ1sn), there is a substitution ν with
ρ = ν · σ2. Therefore,

θ = ρ · σ1 = (ν · σ2) · σ1 = ν · (σ2 · σ1).

This shows that σ2 · σ1 is more general than θ, which establishes the Lemma. 2
Theorem 11.23 shows, by induction on the length of term lists, that if unifyTs t s does

what it is supposed to do, then unifyTlists also does what it is supposed to do.

11.7. UNIFICATION 11-21

Theorem 11.23 Suppose unifyTs t s yields a unit list containing an mgu of t and s if the
terms are unifiable, and otherwise yields the empty list. Then unifyTlists t̄ s̄ yields a unit
list containing an mgu of t̄ and s̄ if the lists of terms t̄ and s̄ are unifiable, and otherwise
produces the empty list.

Proof. If the two lists have different lengths then unification fails.
Assume, therefore, that t̄ and s̄ have the same length n. We proceed by induction on

n.

Basis n = 0, i.e., both t̄ and s̄ are equal to the empty list. In this case the ε substitution
unifies t̄ and s̄, and this is certainly an mgu.

Induction step n > 0. Assume t̄ = (t1, . . . , tn) and s̄ = (s1, . . . , sn), with n > 0. Then
t̄ = t1 : (t2, . . . , tn) and s̄ = s1 : (s2, . . . , sn), where : expresses the operation of
putting an element in front of a list.

What the algorithm does is:

(1) It checks if t1 and s1 are unifiable by calling unifyTs t1 s1. By the assumption
of the theorem, unifyTs t1 s1. yields a unit list (σ1), with σ1 an mgu of t1 and
s1 if t1 and s1 are unifiable, and yields the empty list otherwise. In the second
case, we know that the lists t̄ and s̄ are not unifiable, and indeed, in this case
unifyTlists will produce the empty list.

(2) If t1 and s1 have an mgu σ1, then the algorithm tries to unify the lists

(σ1t2, . . . , σ1tn) and (σ1s2, . . . , σ1sn),

i.e., the lists of terms resulting from applying σ1 to each of (t2, . . . , tn) and
each of (s2, . . . , sn). By induction hypothesis we may assume that applying
unifyTlists to these two lists produces a unit list (σ2), with σ2 an mgu of
the lists, if the two lists are unifiable, and the empty list otherwise.

(3) If σ2 is an mgu of the two lists, then the algorithm returns a unit list containing
σ2 · σ1. By Lemma 11.22, σ2 · σ1 is an mgu of t̄ and s̄.

2
Theorem 11.24 clinches the argument. It proceeds by structural induction on terms.

The induction hypothesis will allow us to use Theorem 11.23.

Theorem 11.24 The function unifyTs t s either yields a unit list (γ) or the empty list. In
the former case, γ is an mgu of t and s. In the latter case, t and s are not unifiable.

Proof. Structural induction on the complexity of (t, s). There are 4 cases.
1. Both terms are variables, i.e., t equals x, s equals y. In this case, if x and y are

identical, the ε substitution is surely an mgu of t and s. This is what the algorithm yields.
If x and y are different variables, then the substitution {x 7→ y} is an mgu of x and y. For
suppose σx = σy. Then σx = (σ · {x 7→ y})x, and for all z different from x we have
σz = (σ · {x 7→ y})z. So σ = σ · {x 7→ y}.

11-22 CHAPTER 11. COMPUTATION

2. t = x and s is not a variable. If x is not an element of the variables of s, then
{x 7→ s} is an mgu of t and s. For if σx = σs, then σx = (σ · {x 7→ s})x, and for all
variables z different from x we have that σz = (σ · {x 7→ s})z. σ = σ · {x 7→ s}. If
x is an element of the varialbes of s, then unification fails (and this is what the algorithm
yields).

3. s = x and t not a variable. Similar to case 2.
4. t = f(t̄) and s = g(s̄). Then t and s are unifiable iff (i) f equals g and (ii) the term

lists t̄ and s̄ are unifiable. Moreover, ν is an mgu of t and s iff f equals g and ν is an mgu
of t̄ and s̄.

By the induction hypothesis, we may assume for all subterms t′ of t and all subterms s′

of s that unifyTs t’ s’ yields the empty list if t′ and s′ do not unify, and a unit list (ν), with
ν an mgu of t′ and s′ otherwise. This means the condition of Theorem 11.23 is fulfilled,
and it follows that unifyTlists t̄ s̄ yields (ν), with ν an mgu of t̄ and s̄, if the term lists t̄
and s̄ unify, and unifyTlists t̄ s̄ yields the empty list if the term lists do not unify.

This establishes the Theorem. 2
Some examples of unification attempts:

• unifyTs x (f(x) yields ().

• unifyTs x (f(y) yields ({x 7→ y}).

• unifyTs g(x, a) g(y, x) yields ({x 7→ a, y 7→ a}).

Further examples are in the exercises.

Exercise 11.25 Stefan

Exercise 11.26 Stefan

Exercise 11.27 Stefan

11.8 Resolution with Unification
Suppose we have clausal forms for predicate logic. Then we can adapt the resolution
rule to predicate logic by combining resolution with unification, as follows. Assume that
C1∪{P t̄} and C2∪{¬P s̄} are predicate logical clauses. The two literals P t̄ and P s̄ need
not be the same in order to apply resolution to the clauses. It is enough that P t̄ and P s̄
are unifiable.

For what follows, let us assume that the clauses in a predicate logical clause form do
not have variables in common. This assumption is harmless: see Exercise 11.28.

Exercise 11.28 Suppose C and C ′ are predicate logical clauses, and they have a variable x in
common. Show that it does not affect the meaning of the clause form {C,C ′} if we replace the
occurrence(s) of x in C ′ by occurrences of a fresh variable z (“freshness” of z means that z occurs
in neither C nor C ′.)

11.8. RESOLUTION WITH UNIFICATION 11-23

Assume that C1 ∪ {P t̄} and C2 ∪ {¬P s̄} do not have variables in common. Then the
following inference rule is sound:

Resolution Rule with Unification

C1 ∪ {P t̄} {¬P s̄} ∪ C2

θC1 ∪ θC2
θ is mgu of t̄ and s̄

Here is an example application:

{Pf(y), Qg(y)} {¬Pf(g(a)), Rby}
{Qg(g(a)), Rbg(a)} mgu {y 7→ g(a)} applied to Pf(y) and Pf(g(a))

It is also possible to use unification to ‘simplify’ individual clauses. If P t̄ and P s̄ (or
¬P t̄ and ¬P s̄) occur in the same clause C, and θ is an mgu of t̄ and s̄, then θC is called
a factor of C. The following inference rules identify literals by means of factorisation:

Factorisation Rule (pos)

C1 ∪ {P t̄, P s̄}
θ(C1 ∪ {P t̄})

θ is mgu of t̄ and s̄

Factorisation Rule (neg)

C1 ∪ {¬P t̄,¬P s̄}
θ(C1 ∪ {¬P t̄})

θ is mgu of t̄ and s̄

An example application:

{Px, Pf(y), Qg(y)}
{Pf(y), Qg(y)} mgu {x 7→ f(y)} applied to Px and Pf(y))a

Resolution and factorisation can also be combined, as in the following example:

{Px, Pf(y), Qg(y)}
{Pf(y), Qg(y)} factorisation {¬Pf(g(a)), Rby}

{Qg(g(a)), Rbg(a)} resolution

Computation with first order logic uses these rules, together with a search strategy
for selecting the clauses and literals to which resolution and unification are going to be
applied. A particularly simple strategy is possible if we restrict the format of the clauses
in the clause forms.

It can be proved (although we will not do so here) that resolution and factorisation for
predicate logic form a complete calculus for predicate logic. What this means is that a

11-24 CHAPTER 11. COMPUTATION

clause form F is unsatisfiable if and only if there exists a deduction of the empty clause
[] from F by means of resolution and factorisation.

On the other hand, there is an important difference with the case of propositional
logic. Resolution refutation is a decision method for (un)satisfiability in propositional
logic. In the case of predicate logic, this cannot be the case, for predicate logic has
no decision mechanism. Resolution/factorisation refutation does not decide predicate
logic. More precisely, if a predicate logical clause F is unsatisfiable, then there existss a
resolution/factorisation derivation of [] from F , but if F is satisfiable, then the derivation
process may never stop, as the possibilities of finding ever new instantiations by means of
unification are inexhaustible.

11.9 Prolog
Prolog, which derives its name from programming with logic, is a general purpose pro-
gramming language that is popular in artificial intelligence and computational linguistics,
and that derives its force from a clever search strategy for a particular kind of restricted
clause form for predicate logic.

Alain Colmerauer

The language was conceived in the 1970s by a group around Alain Colmerauer in Mar-
seille. The first Prolog system was developed in 1972 by Alain Colmerauer and Phillipe
Roussel. A well known public domain version of Prolog us SWI-Prolog, developed in
Amsterdam by Jan Wielemaker. See http://www.swi-prolog.org/.

Jan Wielemaker

11.9. PROLOG 11-25

Definition 11.29 A clause with just one positive literal is called a program clause. A
clause with only negative literals is called a goal clause.

A program clause {¬A1, . . . ,¬An, B} can be viewed as an implication (A1∧· · · , An)→
B. A goal clause {¬A1, . . . ,¬An} can be viewed as a degenerate implication (A1 ∧
· · · , An) → [], where [] is the empty clause (expressing a contradiction). Goal and pro-
gram clauses together constitute what is is called pure Prolog. The computation strategy
of Prolog consists of combining a goal clause with a number of program clauses in an
attempt to derive the empty clause. Look at the goal clause like this:

(A1 ∧ · · · , An)→ [].

From this, [] can be derived if we manage to derive each of A1, . . . , An from the Prolog
program clauses. An example will clarify this. In the following example of a pure Prolog
program, we use the actual Prolog notation, where predicates are lower case, variables
are upper case, and implications (A1 ∧ · · · , An) → B are written backwards, as B :
−A1, . . . , An.

plays(heleen,X) :- haskeys(X).
plays(heleen,violin).
plays(hans,cello).
plays(jan,clarinet).

haskeys(piano).
haskeys(accordeon).
haskeys(keyboard).
haskeys(organ).

woodwind(clarinet).
woodwind(recorder).
woodwind(oboe).
woodwind(bassoon).

Each line is a program clause. All clauses except one consist of a single positive
literal. The exception is the clause plays(heleen,X) :- haskeys(X). This is
the Prolog version of ∀x(H(x) → P (h, x)). Here is an example of interaction with this
database (read from a file music.pl) in SWI-Prolog:

[jve@pidgeot lia]$ pl
Welcome to SWI-Prolog (Multi-threaded, 64 bits, Version 5.6.64)
Copyright (c) 1990-2008 University of Amsterdam.
SWI-Prolog comes with ABSOLUTELY NO WARRANTY. This is free software,
and you are welcome to redistribute it under certain conditions.
Please visit http://www.swi-prolog.org for details.

11-26 CHAPTER 11. COMPUTATION

For help, use ?- help(Topic). or ?- apropos(Word).

?- [music].
% music compiled 0.00 sec, 3,328 bytes
true.

?- plays(heleen,X).

The last line constitutes the Prolog query. The system now computes a number of answers,
and we can use ; after each answer to prompt for more, until the list of answers is
exhausted. This is what we get:

X = piano ;
X = accordeon ;
X = keyboard ;
X = organ ;
X = violin.

Prolog queries can also be composite:

?- woodwind(X),plays(Y,X).
X = clarinet,
Y = jan ;
false.

?-

The strategy that Prolog uses to compute answers is resolution refutation. Take the
first query as an example. The Prolog system combines the database clauses (the program
clauses in the file music.pl) with the goal clause plays(heleen,X) → [], and
sure enough, the system can derive the empty clause [] from this, in quite a number of
ways. Each derivation involves a unifying substitution, and these substitutions are what
the system computes for us. The exercises to follow invite you to play a bit more with
Prolog programming.

Exercise 11.30 Stefan

Exercise 11.31 Stefan

Exercise 11.32 Stefan

Exercise 11.33 Stefan

Exercise 11.34 Stefan

11.9. PROLOG 11-27

Summary After having finished this chapter you can check whether you have mastered
the material by answering the following questions:

• What is the definition of clausal form for propositional logic?

• How can formulas of propositional logic be translated into clausal form?

• How does the resolution rule work for propositional logic, and why is it sound?

• What are SAT solvers? How do they work?

• What is the definition of clausal form for predicate logic?

• How can formulas of predicate logic be translated into clausal form?

• How can variable substitutions be represented as finite sets of bindings?

• How are substitutions composed?

• What does it mean that one substitution is more general than another one?

• What is an mgu?

• What is unification? What does the unification algorithm do?

• What is the rule of resolution with unification? Why is it sound?

• What is the rule of factorisation? Why is it sound?

• What are program clauses and goal clauses?

• What is the computation mechanism behind Prolog?

11-28 CHAPTER 11. COMPUTATION

Outlook

11-29

Chapter 12

Logic and Reality

12-1

12-2 CHAPTER 12. LOGIC AND REALITY

Chapter 13

Logic and Science

Just material for the chapter:

13.1 Formal Derivations in a Logical Theory
In this section we give some demonstrations of formal derivations in Presburger arith-
metic. If you dislike the challenge of formal puzzles or if, for some reason or other, you
do not want to learn about formal reasoning inside predicate logic then you can skip to
the next section.

We start with a formal proof of the fact that 0 is even (recall the definition of being even
from the previous section):

1. ∀x x+ 0 = x PA1
2. (∀x x+ 0 = x)→ 0 + 0 = 0 PL axiom 2
3. 0 + 0 = 0 MP from 1,2
4. ∃y y + y = 0. EGEN from 3.

Next, here are some facts about + that we would like to prove:

• x+ 0 = x,

• x+ (y + z) = (x+ y) + z,

• x+ y = y + x.

Clearly, these facts should hold, for they are properties of the operation of adding
natural numbers that we are all familiar with. But the challenge now is to prove these
properties using the axioms and rules of predicate logic, together with the axioms of the
theory of Presburger arithmetic.

13-1

13-2 CHAPTER 13. LOGIC AND SCIENCE

The proof of x+ 0 = x is easy:

1. ∀x x+ 0 = x PA1
2. ∀x x+ 0 = x→ x+ 0 = x PL Axiom 2
3. x+ 0 = x MP from 1,2

The proof of (x+ y) + z = x+ (y + z) is more involved. For this we have to use the
induction scheme. In particular, we will prove this fact by induction on the structure of z.
First we prove the case where z equals 0.

1. (x+ y) + 0 = x+ y PA3
2. y + 0 = y PA3
3. y + 0 = y → (x+ y) + 0 = x+ (y + 0) From 1,2 by PL axioms 2,5
4. (x+ y) + 0 = x+ (y + 0) MP from 2,3

Next, we assume (x+ y) + z = x+ (y + z) and we prove (x+ y) + sz = x+ (y + sz):

1. (x+ y) + z = x+ (y + z) assumption
2. (x+ y) + sz = s((x+ y) + z) PA4
3. s((x+ y) + z) = s(x+ (y + z)) from 1 with PL
4. x+ s(y + z) = s(x+ (y + z)) PA4
5. y + sz = s(y + z) PA4
6. s(x+ (y + z)) = x+ (y + sz) from 4,5 with PL
7. (x+ y) + sz = x+ (y + sz) from 3,6 with PL
8. (x+ y) + z = x+ (y + z)→ (x+ y) + sz = x+ (y + sz) 1, conditionalisation
9. ∀z ((x+ y) + z = x+ (y + z)→ (x+ y) + sz = x+ (y + sz)) 8, UGEN

We can consider (x + y) + z = x + (y + z) as a property of z. Let us call it P (z).
Then we see that we have proved two facts: P (0) and ∀z(P (z) → P (sz)). This means
we can use the induction scheme PA5-scheme to prove the fact for all numbers.

1. P (0) just proved
2. ∀z(P (z)→ P (sz)) just proved
3. (P (0) ∧ ∀z(P (z)→ P (sz)))→ ∀w P (w) PA5-scheme
4. ∀w P (w) from 1,2,3 by MP

If this meticulous way of proving things seems convoluted to you then you are missing
a point. We are not proving (x + y) + z = x + (y + z) because we are worried about

13.2. UNDECIDABILITY 13-3

is truth, but because we are worried about whether this fact can be established with the
rather minimal means at our disposal. Another important point is that every fact we have
proved can be used as a building block for the next proof. As an example of this we invite
you to prove that x + y = y + x by induction on the structure of y, using the fact that
(x+ y) + z = x+ (y + z) holds, in the next couple of exercises.

Exercise 13.1 Let P (y) express the property of y that x + y = y + x. In order to prove this
property of all numbers we have to prove it for zero, and next prove that if it holds for a number
then it also holds for its successor. In this particular case we need an induction inside an induction,
for as it turns out, we need induction to establish P (0). Your first exercise is to prove P (0),
i.e.,x+ 0 = 0 + x, by induction on the structure of x.

Exercise 13.2 Again, let P (y) express the property of y that x+y = y+x. What you have proved
in the previous exercise is the fact P (0). In this exercise we invite you to establish ∀y(P (y) →
P (sy)).

Combining the results of exercises 13.1 and 13.2, we can conclude from P (0) and
∀y(P (y)→ P (sy)) that ∀y P (y), with an application of the PA5-scheme.

For a final example, let EO(x) express the property that x is even or odd:

∃y y + y = x ∨ ∃y s(y + y) = x. (x is even-or-odd)

We have already derived that 0 has the property of being even, and it follows from this by
propositional reasoning that 0 also has the property of being even-or-odd. So we know
that EO(0) is derivable in Presburger arithmetic.

Exercise 13.3 [Challenging] Assume of a certain x that x has property EO. Next, derive in
Presburger arithmetic that it follows that sx also has the property. Conclude with the PA5-scheme
that every x has the property of being even-or-odd.

Presburger arithmetic is a decidable theory: there exists a method for checking whether
a formula is derivable from the axioms or not. It also has the (rather exceptional) property
that if a statement is not derivable then the negation of that statement is derivable.

13.2 Undecidability

The deep reason behind the undecidability of predicate logic is the fact that its expressive
power is so great that it is possible to state undecidable queries.

13-4 CHAPTER 13. LOGIC AND SCIENCE

One of the famous undecidable queries is the halting problem. The halting problem
is a problem of computational procedures that compute a result for a given input. Here is
what a halting algorithm would look like:

• Input: a specification of a computational procedure P , and an input I for that
procedure

• Output: an answer ‘halt’ if P halts when applied to I , and an answer ‘loop’
otherwise.

The following piece of reasoning, in 5 steps, shows that such an algorithm cannot
exist:

(1) Suppose there is an algorithm to solve the halting problem. Call this H .

(2) Then H takes a computational procedure P as input, together with an input I to
that procedure, and decides. Note that H is itself a procedure; H takes two inputs,
P and I .

(3) Let S be the procedure that is likeH , except that it takes one input P , and then calls
H(P, P).

(4) Consider the following new procedure N for processing inputs P :

If S(P) says “halt”, then loop,
and if S(P) says “loop”, then print “halt” and terminate.

13.2. UNDECIDABILITY 13-5

(5) What does N do when applied to N itself? In other words, what is the result of
executing N(N)?

• Suppose N halts on input N . Then H should answer ‘halt’ when H is applied
to N with input N , for H is supposed to be a correct halting algorithm. But
then, by construction of the procedure, N loops. Contradiction.

• Suppose N loops on input N . Then H should answer ‘loop’ when H is ap-
plied to N with input N , for H is supposed to be a correct halting algorithm.
But then, by construction of the procedure, N prints ‘halt’ and stops. Contra-
diction.

We have a contradiction in both cases. Therefore a halting algorithm H cannot
exist.

In Pictures . . .

13-6 CHAPTER 13. LOGIC AND SCIENCE

Alan Turing’s insight: a language that allows the specification of ‘universal proce-
dures’ such as H , S and N cannot be decidable. And predicate logic is such a language.
The formal proof of the undecidability of predicate logic consists of:

• A very general definition of computational procedures.

• A demonstration of the fact that such computational procedures can be expressed
in predicate logic.

• A demonstration of the fact that the halting problem for computational procedures
is undecidable (see the above sketch).

• A formulation of the halting problem in predicate logic.

This formal proof was provided by Alan Turing in [Tur36]. The computational proce-
dures he defined for this purpose were later called Turing machines.

13.2. UNDECIDABILITY 13-7

13-8 CHAPTER 13. LOGIC AND SCIENCE

Chapter 14

Logic and Philosophy

(Very preliminary list of topics)

14.1 The Meaning of Meaning
What are meanings?

Extension and Intension

Sense and Reference

Possible worlds

Rigid and Non-rigid Designation

Truth and Falsehood

14.2 Philosophical Distinctions
Analytic versus Synthetic

A priori versus a posteriori

14.3 Knowledge, Justification, Belief
Knowledge and Truth

The Nature of Justification

14-1

14-2 CHAPTER 14. LOGIC AND PHILOSOPHY

Knowledge as Justified True Belief

Belief and Belief Revision

Scientific Knowledge

The Problem of Induction

Mathematical Knowledge

The Problem of Logical Omniscience

14.4 Ontology
Is existence a property?

Essential versus accidental properties

Existence and Identity

Leibniz’ Law

Existence as “being the value of a variable”

14.5 Paradoxes

Implementations

14-3

Chapter 15

Introduction to Functional
Programming

15.1 Functions and Programs
Programs and subroutines within programs are actually very similar to functions. They
take parameters as arguments and return a result. For example, a program for calculating
the prime factors of some number takes an integer as input and returns a list of integers.
The difference to functions, however, is that programs can have side effects. Side effects
are changes in the state of the system besides the output that the function returns and
that remain after the procedure has returned. They can consist in a change of variable
names, in writing some intermediate result to a database, and so on. For example, the
Ruby program

x = 4 ; x += 2

first assigns the value 4 to the variable x, then changes this assignment to x + 2. So after
execution of the program the variable x evaluates to 6.

There are basically two things about computation: the evaluation of an expression and
the change of state that this evaluation brings about. Imperative programming focuses on
the state and how to modify it with a sequence of commands. In contrast to this, declara-
tive programming focuses on the evaluation itself. In the case of functional programming,
computation corresponds to the evaluation of functions.

Functional programming is not a spectator sport, so let us dive into it, and learn about
it by doing. The language we are going to use is called Haskell. Haskell is a member of
the Lisp family, as are Scheme, ML, Occam, Clean and Erlang. It was designed to form a
standard for functional programming languages and was named after the mathematician
and logician Haskell B. Curry.

Three very important characteristic features of Haskell are the following. First, func-
tions are first-class citizens. This means that functions may be passed as arguments to
other functions and also can be returned as the result of some function. Second, functions
are permitted to be recursive. The significance of this we will see in Section 15.4. And

15-1

15-2 CHAPTER 15. INTRODUCTION TO FUNCTIONAL PROGRAMMING

third, arguments of functions are only evaluated when needed, if at all. This is called lazy
evaluation and it allows the use of infinite and partially-defined data structures.

15.2 Using the Book Code

In order to run the programs in this book, you need a so-called interpreter or compiler. An
interpreter is a system that allows you to execute function definitions interactively. The
two most widely used for Haskell are Hugs and GHCi. The former can be downloaded
from http://haskell.org/hugs/, and the latter comes with the Glasgow Haskell
Compiler (GHC), which can be found at http://haskell.org/ghc/. Both of these
interpreters will cater for your needs. It may be a good idea to install both, for they give
slightly different error messages, and if the feedback of one interpreter baffles you, the
other one may give you a better hint. If the error messages of both Hugs or GHCi confuse
you, you might want to try Helium, a Haskell interpreter designed for learning Haskell,
with better error messages than either Hugs or GHCi. See http://www.cs.uu.nl/
helium/. (But be aware that it does not yet support all Haskell features that we will use
in this book.)

Haskell code will be typeset in frames, in typewriter font. It constitutes the chap-
ter modules, with exception of code that defines functions that are already predefined
by the Haskell system or somewhere else in the chapter. This code defined elsewhere
is shaded grey. Typewriter font is also used for pieces of interaction with the Haskell
interpreter, but these illustrations are not boxed.

Subparts of bigger programs are usually collected in modules, each of which sits in
its own file. This way you can easily use old code when writing new programs. The
following lines declare the Haskell module for the code of this chapter. This module is
called FP.

module FP

where

import Data.List
import Data.Char

We import the predefined modules List and Char, which provide useful functions
for handling lists and characters as well as strings. The Data in front of them specifies
their place in Haskell’s module hierarchy.

All functional programs discussed in this book can be found at the book website:
http://www.cwi.nl/˜jve/lai/.

15.3. FIRST EXPERIMENTS 15-3

15.3 First Experiments
We assume that you succeeded in retrieving a Haskell interpreter and that you managed to
install it on your computer. When you start it, you will get a prompt that looks as follows
in the case of Hugs:

Prelude>

or

Hugs.Base>

And like this in the case of GHCi and Helium:

Prelude>

This string is the prompt when no user-defined files are loaded. If this prompt is
shown, only the predefined functions from the Haskell Prelude are available; these def-
initions are given in the online Haskell report1. If you want to quickly learn a lot about
how to program in Haskell, you should get into the habit of consulting this file regularly.
The definitions of all the standard operations are open source code, and are there for you
to learn from. The Haskell Prelude may be a bit difficult to read at first, but you will soon
get used to the syntax.

Online user manuals for Hugs and GHCi can be found on the internet.2 The most
important commands to know in the beginning are:

• :l 〈 file name 〉 for loading a file or module

• :r for reloading the currently loaded file

• :t 〈 expression 〉 for displaying the type of an expression

• :q for quitting the interpreter.

You can use the interpreter as a calculator. Let’s calculate the number of seconds in a leap
year. A leap year has 366 days, each day has 24 hours, each hour has 60 minutes and each
minute has 60 seconds, so this is what we get:

Prelude> 366 * 24 * 60 * 60
31622400

Exercise 15.1 Try out a few calculations using * for multiplication, + for addition, - for subtrac-
tion, ˆ for exponentiation, / for division. By playing with the system, find out what the precedence
order is among these operators.

1http://www.haskell.org/onlinereport/standard-Prelude.html
2At http://cvs.haskell.org/Hugs/pages/hugsman/index.html for Hugs, and

at http://www.haskell.org/ghc/docs/latest/html/users_guide/ghci.html for
GHCi.

15-4 CHAPTER 15. INTRODUCTION TO FUNCTIONAL PROGRAMMING

Parentheses can be used to override the built-in operator precedences:

Prelude> (2 + 3)ˆ4
625

Exercise 15.2 How much is 2ˆ3ˆ4? Does the interpreter read this as (2ˆ3)ˆ4 or as 2ˆ(3ˆ4)?

We can also define our own functions. Here is an example:

Prelude> square 2 where square x = x * x
4

We use a function square, and on the same line we tell the interpreter what we mean by
it, using the reserved keyword where. Here is another way of achieving the same, this
time using the reserved keywords let and in:

Prelude> let square x = x * x in square 3
9

We could also write the square function by means of lambda abstraction and simply apply
this lambda expression to the desired argument.

Prelude> (\ x -> x * x) 4
16

Usually, however, we define functions not in the prompt but in a module, give it a
name and a proper type declaration. For the square function, this can look like follows.

square :: Int -> Int
square x = x * x

The intention is that variable x stands proxy for a number of type Int. The result,
the squared number, also has type Int. The function square is a function that, when
combined with an argument of type Int, yields a value of type Int. This is precisely
what the type indication Int -> Int expresses.

In Haskell it is not strictly necessary to always give explicit type declarations. For
instance, the definition of square would also work without the type declaration, since
the system can infer the type from the definition. However, it is good programming prac-
tice to give explicit type declarations even when this is not strictly necessary. These type
declarations are an aid to understanding, and they greatly improve the digestibility of
functional programs for human readers. Moreover, they ensure that to some extent the
code must do what you want it to do. By writing down the intended type of a function
you exclude the option of implementing a function that does not have this type, because
the compiler would promptly reject it.

To load and use the chapter code, simply start up the interpreter with hugs FP or
ghci FP, or explicitly load the module with :l FP.

15.3. FIRST EXPERIMENTS 15-5

Prelude> :l FP
FP> square 7
49
FP> square (-3)
9
FP> square (square 7)
2401
FP> square (square (square 7))
5764801

Let us briefly look at three other types that we are going to use quite often: types for
characters and strings, and the so-called Boolean type. The Haskell type of characters is
Char. Strings of characters have type String, which is an abbreviation for [Char],
a list of characters. Similarly, lists of integers have type [Int]. The empty string (or
the empty list) is []. Examples of characters are ’a’, ’b’ (note the single quotes)
and an example of a string is "Hello World!" (note the double quotes). In fact,
"Hello World!" can be seen as an abbreviation of the following character list:

[’H’,’e’,’l’,’l’,’o’,’ ’,’W’,’o’,’r’,’l’,’d’,’!’]

This in turn can be seen as shorthand for the result of putting ’H’ in front of the list that
results from putting ’e’ in front of the list . . . in front of the list that results from putting
’!’ in front of the empty list, as follows:

’H’:’e’:’l’:’l’:’o’:’ ’:’w’:’o’:’r’:’l’:’d’:’!’:[]

Exercise 15.3 The colon : in the last example is an operator. Can you see what is its type?

Since strings have type String, properties of strings have type String -> Bool.
(Recall that properties are unary relations, which can be seen as characteristic functions
of sets, i.e. functions from elements of the set to truth values.) Here is a simple property,
the property of being a word that contains an ’h’:

hword :: String -> Bool
hword [] = False
hword (x:xs) = (x == ’h’) || (hword xs)

This definition uses pattern matching: (x:xs) is the prototypical non-empty list.
More on this in Section ?? below.

What the definition of hword says is that the empty string is not an hword, and a
non-empty string is an hword if either the head of the string is the character h, or the tail
of the string is an hword. Note that the function hword is called again from the body of
its own definition. You will encounter such recursive function definitions again and again
below. We say more about them in section 15.4.

As you can see, characters are indicated in Haskell with single quotes. The following
calls to the definition show that strings are indicated with double quotes:

15-6 CHAPTER 15. INTRODUCTION TO FUNCTIONAL PROGRAMMING

FP> hword "haskell"
True
FP> hword "curry"
False

The type Bool of Booleans (so-called after George Boole) consists of the two truth-
values True and False. If we say that an expression is of type Boolean, we mean that
the expression is either true or false, i.e. that it denotes a truth value. Boolean expressions
can be combined with the logical operators for negation, conjunction and disjunction.
Here are the Haskell versions:

• Conjunction is &&.

• Disjunction is ||.

• Negation is not.

The type of negation is Bool -> Bool. The types of the prefix versions of conjunction
and disjunction are given by:

• (&&) :: Bool -> Bool -> Bool.

• (||) :: Bool -> Bool -> Bool.

Note that the parentheses () change an infix operator into a prefix operator. To ex-
press ‘bright and beautiful’ in Haskell, we can either say bright && beautiful or
(&&) bright beautiful. In general, if op is an infix operator, (op) is the prefix
version of the operator. Thus, 2ˆ10 can also be written as (ˆ) 2 10. In general, if
op is an infix operator, (op x) is the operation resulting from applying op to its right
hand side argument, (x op) is the operation resulting from applying op to its left hand
side argument, and (op) is the prefix version of the operator (this is like the abstraction
of the operator from both arguments). Thus (ˆ2) is the squaring operation, (2ˆ) is the
operation that computes powers of 2, and (ˆ) is exponentiation. Functions like these are
called sections.

Exercise 15.4 Which property does (>3) denote? And which property does (3>) denote?

We can also change a prefix operator into an infix operator by using backticks. As an
example, assume we define a function plus x y = x + y. Instead of calling it with
plus 2 3, we can also call it with 2 ‘plus‘ 3. We will use backticks very often
with the function elem, introduced in Section 16.4 below.

15.4 Recursion
Point your webcam at your computer screen. What do you see? A computer screen, with
on it a picture of a computer screen, with on it This is an example of recursion.

15.4. RECURSION 15-7

A recursive definition is a definition that refers to itself, while avoiding an infinite
regress. We have seen many examples of this in previous chapters, and in the previous
section, in the definition of hword.

Let us illustrate the principle once more for the case of the recursive screen picture. A
screen picture is either (i) a tiny blob showing nothing, or (ii) a screen showing a screen
picture. The case of the tiny blob showing nothing is the base case. The case of the screen
showing a screen picture is the recursive case.

Definition by recursion is important in mathematics, programming, and linguistics. A
recursive function is a function that calls itself, but without infinite regress. To ensure
that the recursion will eventually stop, we have to give a base case, a case that can be
computed without calling the function. Keep in mind that recursive definitions always
have a base case. Recall the definitions of addition and multiplication in section 5.6. Here
are Haskell versions, with the natural numbers represented as strings ending in z:

add :: String -> String -> String
add x "z" = x
add x (’s’:y) = ’s’:(add x y)

mult :: String -> String -> String
mult x "z" = "z"
mult x (’s’:y) = add (mult x y) x

This represents the multiplication of 8 and 3 as follows:

FP> mult "ssssssssz" "sssz"
"ssssssssssssssssssssssssz"

The following multiplication table function gives another example of recursion.

table :: Int -> Int -> String
table x 0 =
show 0 ++ " times " ++ show x ++ " is " ++ show 0
table x n =
table x (n-1) ++ "\n" ++
show n ++ " times " ++ show x ++ " is " ++ show (x*n)

Line ends are encoded as \n. This is the linefeed control character. To display the
story on the screen we will use an output function that executes the linefeeds: putStrLn.
To generate five rows of the multiplication table of 7, we say

FP> putStrLn (table 7 5)

Exercise 15.5 What happens if you ask for putStrLn (table 7 (-1))? Why?

15-8 CHAPTER 15. INTRODUCTION TO FUNCTIONAL PROGRAMMING

Exercise 15.6 Why is the definition of ‘GNU’ as ‘GNU’s Not Unix’ not a recursive definition?

15.5 List Types and List Comprehension
An important operation is :, which appends an element to a list.

FP> :t (:)
(:) :: a -> [a] -> [a]

The expression (x:xs) is used to denote the prototypical non-empty list. The head
of (x:xs) is the element x of type a, the tail is the list xs of type [a]. According
functions are defined in the Haskell Prelude as follows:

head :: [a] -> a
head (x:_) = x

tail :: [a] -> [a]
tail (_:xs) = xs

The underscores _ indicate anonymous variables that can be matched by anything of
the right type. Thus, in (x:_), the underscore _ matches any list, and in (_:xs), the
underscore _ matches any object. The important list patterns for pattern matching are:

• The list pattern [] matches only the empty list,

• the list pattern [x] matches any singleton list,

• the list pattern (x:xs) matches any non-empty list.

These patterns are used again and again in recursive definitions over list types. It is
common Haskell practice to refer to non-empty lists as x:xs, y:ys, and so on, as a
useful reminder of the facts that x is an element of a list of x’s and that xs is a list.

Lists in computer science are an approximation of the mathematical notion of a set.
The important differences are that multiplicity (whether a certain element occurs once or
more than once) matters for lists, but not for sets, and that order of occurrence matters for
lists but not for sets. Two sets that contain the same elements are the same, but not so for
lists. The sets {1, 2}, {2, 1} and {1, 1, 2} are all identical, but the lists [1,2], [2,1]
and [1,1,2] are all different.

Lists can also be given by not enumerating all their elements but by indicating the
range of elements: [n..m] is the list bounded below by n and above by m. For example,
the list [1..423] are all numbers from 1 to 423, and the list [’g’..’s’] are all
characters from g to s. Of course, it only works for objects that are ordered in a way that
Haskell knows. In general, the ordered types are the types in class Ord. The data types

15.6. MAP AND FILTER 15-9

in this class are the types on which functions <= (less than or equal), >= (greater than or
equal), < (less than) and > (greater than) are defined. Predefined instances of class Ord
are numerical types and characters. (For more on type classes see Section 16.4.)

By use of .., we can also work with infinite lists, e.g. [0..] denotes the list of all
positive natural numbers. When typing in [0..] at the interpreter system prompt, the
interpreter will start printing the list of all natural numbers starting from 0. This display
will go on until you abort it with Ctrl-c or your computer runs out of memory, for Haskell
knows arbitrary size integers.

Infinite lists are where lazy evaluation matters. Since Haskell does not evaluate an
argument unless it needs it, it can handle infinite lists as long as it has to compute only
a finite amount of its elements. If you, for example, ask for take 5 [0..], the inter-
preter will only consider the first five elements of the infinite list of natural numbers and
give you [0,1,2,3,4].

And there is yet another way to form lists, which is analogous to set comprehension.
The latter says that if A is a set and P is a property, then {x | x ∈ A, P (x)} is the set of
all objects from A that satisfy P . List comprehension is the list counterpart of that; it is
written as [x | x <- A, P x]. Here are some examples:

FP> [n | n <- [0..10], odd n]
[1,3,5,7,9]
FP> [even n | n <- [0..10]]
[True,False,True,False,True,False,True,False,True,False,True]
FP> [square n | n <- [0..10]]
[0,1,4,9,16,25,36,49,64,81,100]
FP> [x ++ y | x <- ["talk","walk"], y <- ["s", "", "ed"]]
["talks","talk","talked","walks","walk","walked"]

15.6 map and filter
The function map takes a function and a list and returns a list containing the results of
applying the function to the individual list members. Thus, if f is a function of type
a -> b and xs is a list of type [a], then map f xs will return a list of type [b].

map :: (a -> b) -> [a] -> [b]
map f [] = []
map f (x:xs) = (f x) : map f xs

For example, map (+ 1) [0..9] will add 1 to each number in [0..9], so it
will give the list of numbers from 1 to 10. Another example is the following one:

FP> map (++ "un") ["friendly","believable"]
["unfriendly","unbelievable"]

15-10 CHAPTER 15. INTRODUCTION TO FUNCTIONAL PROGRAMMING

Accordingly, map hword will produce a list of truth values.

FP> map hword ["fish","and","chips"]
[True,False,True]

The filter function takes a property and a list, and returns the sublist of all list
elements satisfying the property. It has the type (a -> Bool) -> [a] -> [a].
Here a again denotes an arbitrary type. Indeed, one can filtrate strings, or lists of integers,
or lists of whatever, given a property of the right type: String -> Bool for strings,
Int -> Bool for integers, and so on. Here is the definition of the filter function:

filter :: (a -> Bool) -> [a] -> [a]
filter p [] = []
filter p (x:xs) | p x = x : filter p xs

| otherwise = filter p xs

A new programming element is the use of guarded equations by means of the Haskell
condition operator |. A definition with a list of guarded equations such as

foo t | condition_1 = body_1
| condition_2 = body_2
| otherwise = body_3

is read as follows:

• in case condition_1 holds, foo t is by definition equal to body_1,

• in case condition_1 does not hold but condition_2 holds, foo t is by
definition equal to body_2,

• and in case none of condition_1 and condition_2 hold, foo t is by defi-
nition equal to body_3.

Of course you can specify as many conditions as you want to.
The first line of the definition of filter p (x:xs) handles the case where the

head of the list (x:xs) satisfies property p. The second line applies otherwise, i.e. it
covers the case where the head of the list (x:xs) does not satisfy property p.

The filter function can be applied as follows:

FP> filter even [1..10]
[2,4,6,8,10]
FP> filter hword ["fish","and","chips"]
["fish","chips"]

15.7. STRINGS AND TEXTS 15-11

15.7 Strings and Texts
Consider the following differences:

Prelude> "Hello World!"
"Hello World!"
Prelude> putStr "Hello World!"
Hello World!
Prelude> show "Hello World!"
"\"Hello World!\""

The double quotes " and " serve to indicate that what is between them is a string. The
command putStr displays its string argument, but without the enclosing double quotes.
The command show quotes its argument, by putting double quotes around it, and treating
the inner quotes as part of the string. These inner quotes have changed function from
string markers to characters. The double quote character is a so-called escaped "; it is
rendered in Haskell as \".

In Section 15.4 we saw Haskell’s linefeed character \n. The following example shows
how putStr executes linefeeds:

FP> putStr "Hello\nWorld!"
Hello
World!

Exercise 15.7 Try to figure out what the following Haskell program does, without actually run-
ning it. Next, save the program in a file xxx.hs, and run it as a script, by means of the command
runhugs xxx.hs or runghc xxx.hs, from the command prompt, to check your guess. If
you run a Haskell program as a script, its main function will get executed.

main = putStrLn (s ++ show s)
where s = "main = putStrLn (s ++ show s) \n where s = "

Our next example for manipulating strings is a program reversal for the reversal
of a string, which is of type String -> String. The instruction for reversal
explains how lists of characters are reversed. A useful description is the following:

• For reversing the empty string, you have to do nothing (the reversal of the empty
string is the empty string).

• For reversing a string consisting of a first element x followed by a tail, first reverse
the tail, and next put x at the end of the result of that.

We can render this string reversal instruction in Haskell as the following function.

reversal :: String -> String
reversal [] = []
reversal (x:t) = reversal t ++ [x]

15-12 CHAPTER 15. INTRODUCTION TO FUNCTIONAL PROGRAMMING

You can try this out, as follows:

FP> reversal "Tarski"
"iksraT"
FP> reversal (reversal "Tarski")
"Tarski"
FP> (reversal . reversal) "Tarski"
"Tarski"

Next, we want to consider some examples of shallow text processing, using a piece of
prose from Lewis Carroll’s The Game of Logic as source material.

gameoflogic =
"The world contains many THINGS (such as ’Buns’, ’Babies’, ’Beetles’.\n"

++ "’Battledores’. &c.); and these Things possess many ATTRIBUTES\n"
++ "(such as ’baked’, ’beautiful’, ’black’, ’broken’, &c.: in fact,\n"
++ "whatever can be ’attributed to’, that is ’said to belong to’, any\n"
++ "Thing, is an Attribute). Whenever we wish to mention a Thing, we\n"
++ "use a SUBSTANTIVE: when we wish to mention an Attribute, we use\n"
++ "an ADJECTIVE. People have asked the question ’Can a Thing exist\n"
++ "without any Attributes belonging to it?’ It is a very puzzling\n"
++ "question, and I’m not going to try to answer it: let us turn up\n"
++ "our noses, and treat it with contemptuous silence, as if it really\n"
++ "wasn’t worth noticing. But, if they put it the other way, and ask\n"
++ "’Can an Attribute exist without any Thing for it to belong to?’, we\n"
++ "may say at once ’No: no more than a Baby could go a railway-journey\n"
++ "with no one to take care of it!’ You never saw ’beautiful’ floating\n"
++ "about in the air, or littered about on the floor, without any Thing\n"
++ "to BE beautiful, now did you?\n"

To split a string consisting of several lines separated by linefeed characters, use

lines gameoflogic

This function creates a list of strings.
We will now develop a simple counting tool, for counting characters and words in a

piece of text. Instead of defining two different counting functions, one for words and one
for text, it is more convenient to define a single polymorphic function that can count
any data type for which equality tests are possible, i.e. which are in class Eq. The
counting function we are after has type Eq a => a -> [a] -> Int. What this
means is that for any type a that is an instance of the Eq class, the function has type
a -> [a] -> Int.

We should be able to use count for counting the number of ’e’ characters in the
string "littered", for counting the number of "Thing" occurrences in the piece of
Game of Logic text, and so on.

The following function defines count:

15.7. STRINGS AND TEXTS 15-13

count :: Eq a => a -> [a] -> Int
count x [] = 0
count x (y:ys) | x == y = succ (count x ys)

| otherwise = count x ys

Here are examples of using the count function, employing the predefined func-
tions toLower for converting characters to lowercase, and words for splitting lines
into words. You should check out their definitions in the Haskell Prelude.

FP> count ’e’ gameoflogic
72
FP> [count x (map toLower gameoflogic) | x <- [’a’..’w’]]
[68,28,17,15,77,10,17,31,61,2,6,21,8,65,58,7,2,30,44,102,38,7,23]
FP> count "The" (words gameoflogic)
1
FP> count "the" (words gameoflogic)
4
FP> count "the" (words (map toLower gameoflogic))
5

Here is a function that calculates the average of a list of integers: the average of m
and n is given by m+n

2
, the average of a list of k integers n1, . . . , nk is given by n1+···+nk

k
.

In general, averages are fractions, so the result type of average should not be Int
but the Haskell data type for fractional numbers, which is Rational. There are pre-
defined functions sum for the sum of a list of integers, and length for the length of
a list. The Haskell operation for division / expects arguments of type Rational (or
more precisely, of a type in the class Fractional, and Rational is in that class), so
we need a conversion function for converting Ints into Rationals. This is done by
toRational. The function average can now be written as:

average :: [Int] -> Rational
average [] = error "empty list"
average xs = toRational (sum xs) / toRational (length xs)

Haskell allows a call to the error operation in any definition. This is used to break
off operation and issue an appropriate message when average is applied to an empty
list. Note that error has a parameter of type String.

Exercise 15.8 Write a function to compute the average word length in Lewis Carroll’s piece of
prose. Be careful: Haskell takes "attribute)." and "attribute" to be different words.
You can use filter (‘notElem‘ "?’;:,.") to get rid of the interpunction signs. The
predefined function length (from the List module) gives the length of a list.

15-14 CHAPTER 15. INTRODUCTION TO FUNCTIONAL PROGRAMMING

Suppose we want to check whether a list xs1 is a prefix of a list xs2. Then the
answer to the question prefix xs1 xs2 should be either yes (true) or no (false), i.e.
the type declaration for prefix should be:

prefix :: Eq a => [a] ->[a] -> Bool.

Prefixes of a list ys are defined as follows:

(1) [] is a prefix of ys.

(2) If xs is a prefix of ys, then x:xs is a prefix of x:ys.

(3) Nothing else is a prefix of ys.

Here is the code for prefix that implements this definition:

prefix :: Eq a => [a] -> [a] -> Bool
prefix [] ys = True
prefix (x:xs) [] = False
prefix (x:xs) (y:ys) = (x==y) && prefix xs ys

Exercise 15.9 Write a function sublist that checks whether xs1 is a sublist of xs2. The type
declaration should be:

sublist :: Ord a => [a] -> [a] -> Bool.

The sublists of an arbitrary list ys are given by:

(1) If xs is a prefix of ys, xs is a sublist of ys.

(2) If ys equals y:ys’ and xs is a sublist of ys’, xs is a sublist of ys.

(3) Nothing else is a sublist of ys.

In order to remove duplicates from a list, the items in the list have to belong to a type
in the Eq class, the class of data types for which (==) is defined. It is standard to call
the function for duplicate removal nub:

nub :: Eq a => [a] -> [a]
nub [] = []
nub (x:xs) = x : nub (filter (\ y -> (y /= x)) xs)

The code below uses the built-in Haskell function sort (from the List module);
sort xs sorts the list xs in increasing order. The code provides utilities for analysing
Shakespeare’s sonnets. cnt sonnet18 will give a word count for the words occurring
more than once in the sonnet.

15.8. FURTHER READING 15-15

preprocess :: String -> String
preprocess = (map toLower) . filter (‘notElem‘ "?;:,.")

process :: String -> [String]
process = sort . nub . words

cnt :: String -> [(String,Int)]
cnt string = [(x,n)| x <- (process.preprocess) string,

n <- [count x (words (preprocess string))],
n > 1]

Haskell has two ways to locally define auxiliary functions, the where and let con-
structions. The where construct we have seen in the main function given in Exercise
15.7. Here is an example of the let construction:

solveQdr :: (Float,Float,Float) -> (Float,Float)
solveQdr (a,b,c) = let d = bˆ2 - 4*a*c in

if d < 0 then error "no real solutions"
else
((- b + sqrt d) / 2*a,
(- b - sqrt d) / 2*a)

The let construction uses the reserved keywords let and in.

Exercise 15.10 Give a reformulation of solveQdr, using where instead of let.

15.8 Further Reading
The Haskell homepage http://www.haskell.org provides links to everything about
Haskell that you might want to know, including information on how to download the lat-
est version and the online tutorial. Among the tutorials on Haskell that can be found
on the internet, [DI07] and [HFP96] are recommended. The definitive reference for the
language is [PJ03]. Recommended textbooks on functional programming in Haskell are
[Bir98], [Tho99] and [Hut07], and the more recent [OSG08]. A textbook that bridges the
gap between reasoning and functional programming is [DvE04]. Another textbook that
combines a course in computational semantics with a introduction to Haskell is [EU10].

15-16 CHAPTER 15. INTRODUCTION TO FUNCTIONAL PROGRAMMING

Chapter 16

More About Functional Programming

16.1 Type Polymorphism
First, we wrap the code of this chapter in a module:

module MFP where

One of Haskell’s characteristics is a polymorphic type system. For example, the
Haskell Prelude contains the following definition of the identity function:

id :: a -> a
id x = x

This function can be applied to objects of any type. Applied to an argument, it just
returns that argument. Since the type of the argument does not matter, we say that the
id function is polymorphic. In the type declaration of id, a is a type variable. The use
of a indicates that any type will fit. So, instances of id’s type are Bool -> Bool,
Int -> Int, String -> String, but also

(String -> Bool) -> (String -> Bool)

and so on.

MFP> id True
True
MFP> id 42
42
MFP> id "Jabberwocky"
"Jabberwocky"
MFP> (id hword) "Jabberwocky"
False

16-1

16-2 CHAPTER 16. MORE ABOUT FUNCTIONAL PROGRAMMING

Type polymorphism, and the use of a, b as type variables, allow us to define polymor-
phic types for properties and relations. The polymorphic type of a property is a -> Bool.
The polymorphic type of a relation is a -> b -> Bool. The polymorphic type of a
relation over a single type is a -> a -> Bool.

If a is a type, [a] is the type of lists over a. Since it does not matter which type a is,
[a] is a polymorphic type. The type of the concatenation function (++) illustrates this:

MFP> :t (++)
(++) :: [a] -> [a] -> [a]

The type indicates that (++) not only concatenates strings. It works for lists in general.

MFP> [2,3] ++ [4,7]
[2,3,4,7]
MFP> "Hello " ++ "world!"
"Hello world!"

16.2 Function Composition

Function composition is the application of one function after another (see Section A.5 of
the appendix). Notation: f · g for the composition of the two functions f and g, i.e. for
applying f after g.

Assume that we have a Dutch to English dictionary and an English to French dictio-
nary. These can be viewed as a function g for translating Dutch words into English words,
and a function f for translating English words into French words. E.g. g(haas) will give
hare, and f(ant) will give fourmi. Now we can simply combine the two dictionaries into
a Dutch to French dictionary by first looking up the meaning of a Dutch word in English,
and then look up the French meaning of the result. Thus, if we want to know the French
word for Dutch haas, we first find g(haas) = hare, and next, f(hare) = lièvre.

Composing two functions f and g means that f is applied to the result of g: (f ·
g)(x) = f(g(x)). In Haskell, we use the operator (.) instead of · and write f . g.
For that to make sense, the result type of g should equal the argument type of f, i.e. if
f :: b -> c then g :: a -> b. Under this typing, the type of f . g is a -> c.

Thus, the operator (.) that composes two functions has the following type and defi-
nition:

(.) :: (b -> c) -> (a -> b) -> a -> c
(f . g) x = f (g x)

This is used, for example, in the Haskell Prelude to define odd as not . even.

16.3. GENERALIZED ‘AND’ AND ‘OR’, AND QUANTIFICATION 16-3

16.3 Generalized ‘and’ and ‘or’, and Quantification
In Section 15.3 we saw the Haskell versions of && and || of the logical operators con-
junction and disjunction. The conjunction operator && is generalized to lists of Booleans
by the predefined function and.

and :: [Bool] -> Bool
and [] = True
and (x:xs) = x && (and xs)

And the disjunction operator || is generalized to lists of Booleans by the predefined
function or.

or :: [Bool] -> Bool
or [] = False
or (x:xs) = x || (or xs)

These generalized Boolean operations are used for stating the definitions of the list
quantification operators any and all (these are also predefined in the Haskell Prelude):

any, all :: (a -> Bool) -> [a] -> Bool
any p = or . map p
all p = and . map p

They can be used for checking whether all elements of a list satisfy a property, or any
elements of the list, respectively.

MFP> all hword ["fish","and","chips"]
False
MFP> any hword ["fish","and","chips"]
True

16.4 Type Classes
Consider the function (\ x y -> x /= y). At first sight, this is just a check for
inequality. Let us check its type.

Exercise 16.1 Check the type of the function (\ x y -> x /= y) in Haskell. What do you
expect? What do you get? Can you explain what you get?

Exercise 16.2 Is there a difference between (\ x y -> x /= y) and (/=)?

16-4 CHAPTER 16. MORE ABOUT FUNCTIONAL PROGRAMMING

Exercise 16.3 Check the type of the function composition all . (/=). If you were to give
this function a name, what name would be appropriate?

Exercise 16.4 Check the type of the function composition any . (==). If you were to give
this function a name, what name would be appropriate?

The exercises show that the Haskell interpreter puts a constraint on the types of all
functions that somehow involve equality or inequality. Why is this? Because not all types
of things are testable for equality. Numbers and strings are examples of types that can be
tested for equality, but functions generally are not.

Exercise 16.5 How would you go about to test two infinite strings for equality?

The predefined Haskell functions elem and notElem that check whether an object
is element of a list are only defined for types that allow for equality tests. They have type
Eq a => a -> [a] -> Bool. In this type specification, Eq a => specifies a
as a type in the Eq class, i.e. as a type for which equality (==) and inequality (/=) are
defined. Here is what happens if you try to use elem with a function:

MFP> elem not [not]
ERROR - Cannot infer instance

*** Instance : Eq (Bool -> Bool)

*** Expression : not ‘elem‘ [not]

Let us look at another type constraint. The predefined Haskell function min computes
the minimum of two objects. If we check its type, we find that it is

min :: Ord a => a -> a -> a

The part Ord a indicates that a is constrained to be a type for which ‘less than’ and ‘less
than or equal’ are defined (Haskell (<) and (<=)).

We can also have types that have more than one constraint. Constraints are combined
by means of parentheses: (Eq a,Ord a) => a is the class of types for which equality
and an ordering are defined, and so on.

Exercise 16.6 Use min to define a function minList :: Ord a => [a] -> a for com-
puting the minimum of a non-empty list.

Exercise 16.7 Define a function delete that removes an occurrence of an object x from a list of
objects in class Ord. If x does not occur in the list, the list remains unchanged. If x occurs more
than once, only the first occurrence is deleted.

How would you need to change delete in order to delete every occurence of x?

Now we can define a function srt that sorts a list of objects (in class Ord) in order
of increasing size, by means of the following algorithm:

• An empty list is already sorted.

16.5. IDENTIFIERS IN HASKELL 16-5

• If a list is non-empty, we put its minimum in front of the result of sorting the list
that results from removing its minimum.

Note that this sorting procedure can be viewed as a kind of dual to insertion sort (where
you sort by going through a list and construct a new, sorted list by inserting each item
from the old list at the correct position in the new list). The implementation is an exercise
for you.

Exercise 16.8 Define a function srt :: Ord a => [a] -> [a] that implements the above.
Use the function minList from Exercise 16.6.

Another type class, that we will use very often throughout the book, is Show. It
contains all types that can be printed on the screen. We will see some usage of it in
Section 16.6.

16.5 Identifiers in Haskell

As the reader may have noticed already from the code examples in this chapter, Haskell
uses the distinction between upper and lower case to tell two kinds of identifiers apart:

• Variable identifiers are used to name functions. They have to start with a lower-case
letter. Examples are map, swedishVowels, list2OnePlacePred, foo_bar.

• Constructor identifiers are used to name types and their inhabitants. Constructor
identifiers have to start with an upper-case letter. An example of a type constructor
is Bool, and examples of data constructors are True, False, the two constructors
that make up the type Bool.

Functions are operations on data structures, constructors are the building blocks of the
data structures themselves (trees, lists, Booleans, and so on).

Names of functions always start with lower-case letters, and may contain both upper-
and lower-case letters, but also digits, underscores and the prime symbol ’. The following
reserved keywords have special meanings and cannot be used to name functions.

case class data default deriving do else
if import in infix infixl infixr instance
let module newtype of then type where

The character at the beginning of a word is treated as a lower-case character; all by
itself is a reserved word for the wild card pattern that matches anything. And there is one
more reserved keyword that is particular to Hugs: forall, for the definition of functions
that take polymorphic arguments. See the Hugs documentation for further particulars.

16-6 CHAPTER 16. MORE ABOUT FUNCTIONAL PROGRAMMING

16.6 User-defined Data Types

Besides the predefined data types like Int, Char, and Bool, you can define data types
yourself. Imagine, for example, we want to implement our own data structure for subjects
and predicates as sentence ingredients.

data Subject = Frege | Tarski | Turing deriving Show
data Predicate = Wrote String deriving Show

The data type Predicate is built from another data type; in fact, the data type
declaration specifies Wrote as a function from strings to predicates:

MFP> :t Wrote
Wrote :: String -> Predicate

Note that we added deriving Show to the specification of our data types. This
puts these data types in the Show class and tells Haskell to print its instances exactly like
they are given. Another way would be to tell Haskell that these data types are instances
of the Show class and then define a show function for them ourselves. This is useful if
we want a data type to be displayed in a certain way. We will do that below for the data
type Sentence.

We would like to use these data types to construct a more complex data type, say a
Sentence. For this we use a data constructor S, as follows:

data Sentence = S Subject Predicate

type Sentences = [Sentence]

The last line defines a type synonym. We added it simply to illustrate this abbreviated
way of talking about types. This is exactly like String was defined as [Char].

The specification of Sentence says that the data type has the form of a tree. But
maybe we do not want it to get displayed like a tree. In order to display instances of the
Sentence type in a more natural way, we can tell Haskell explicitly how to display a
value of the type.

instance Show Sentence where
show (S subj pred) = show subj ++ " " ++ show pred

We can specify functions for constructing predicates and sentences:

16.6. USER-DEFINED DATA TYPES 16-7

makeP :: String -> Predicate
makeP title = Wrote title

makeS :: Subject -> Predicate -> Sentence
makeS subj pred = S subj pred

Here they are in action:

MFP> makeS Frege (makeP "Begriffsschrift")
Frege Wrote "Begriffsschrift"

In the following chapters we will use Haskell to give implementations of many key
definitions from the first and second part of this book. In the course of these implemena-
tion efforts you will have occasion to use the knowledge gained from this and the previous
chapter, and to exercise and extend your Haskell programming skills. These implementa-
tion exercises will drive home the message that formal details matter in the definition of
logical concepts.

16-8 CHAPTER 16. MORE ABOUT FUNCTIONAL PROGRAMMING

Chapter 17

Propositional Logic Implemented

17.1 A Data Type for Propositional Formulas
Representation for formulas of propositional logic. Note that the conjunction and disjunc-
tion operators Cnj and Dsj take lists of formulas as arguments.

module PropLogicI where
import Data.List

data Frm = P String | Ng Frm | Cnj [Frm] | Dsj [Frm]
deriving Eq

instance Show Frm where
show (P name) = name
show (Ng f) = ’-’: show f
show (Cnj fs) = ’&’: show fs
show (Dsj fs) = ’v’: show fs

Example formulas.

form1, form2 :: Frm
form1 = Cnj [P "p", Ng (P "p")]
form2 = Dsj [P "p1", P "p2", P "p3", P "p4"]

This is how they get displayed.

PropLogicI> form1
&[p,-p]

17-1

17-2 CHAPTER 17. PROPOSITIONAL LOGIC IMPLEMENTED

PropLogicI> form2
v[p1,p2,p3,p4]

Exercise 17.1 Implement a function depth for computing the depth of the parse tree of a for-
mula. The type is depth :: Frm -> Int. The call depth form1 should yield 2.

Getting the names of basic propositions from a formula:

propNames :: Frm -> [String]
propNames (P name) = [name]
propNames (Ng f) = propNames f
propNames (Cnj fs) = (sort.nub.concat) (map propNames fs)
propNames (Dsj fs) = (sort.nub.concat) (map propNames fs)

This gives:

PropLogicI> propNames form1
["p"]
PropLogicI> propNames form2
["p1","p2","p3","p4"]

17.2 Evaluation and Propositional Consequence
A valuation for a propositional formula is a map from its variable names to the Booleans.
Alternatively, it is a list of those variable names that map to True. So we can define a
valuation as a list of variable names, i.e., as a list of strings:

type Val = [String]

The following function generates the list of all valuations over a set of names:

genVals :: [String] -> [Val]
genVals [] = [[]]
genVals (name:names) =

genVals names ++ map (name:) (genVals names)

The list of all valuations for a propositional formula:

allVals :: Frm -> [Val]
allVals = genVals . propNames

17.2. EVALUATION AND PROPOSITIONAL CONSEQUENCE 17-3

This gives for form1 a list of two valuations.

PropLogicI> allVals form1
[[],["p"]]

form2 has four proposition letters, so there are 24 = 16 valuations:

PropLogicI> allVals form2
[[],["p4"],["p3"],["p3","p4"],["p2"],["p2","p4"],["p2","p3"],
["p2","p3","p4"],["p1"],["p1","p4"],["p1","p3"],["p1","p3","p4"],
["p1","p2"],["p1","p2","p4"],["p1","p2","p3"],["p1","p2","p3","p4"]]

Evaluation of a formula with respect to a valuation.

eval :: Val -> Frm -> Bool
eval [] (P c) = False
eval (i:xs) (P c)

| c == i = True
| otherwise = eval xs (P c)

eval xs (Ng f) = not (eval xs f)
eval xs (Cnj fs) = all (eval xs) fs
eval xs (Dsj fs) = any (eval xs) fs

Tautologies are formulas that evaluate to True for every valuation:

tautology :: Frm -> Bool
tautology f = all (\ v -> eval v f) (allVals f)

Contradictions are formulas that evaluate to True for no valuation:

contradiction :: Frm -> Bool
contradiction f = not (any (\ v -> eval v f) (allVals f))

A propositional formula is called satisfiable if there is a propositional valuation that
makes the formula true. Clearly, a formula is satisfiable if it is not a contradiction. Or we
can give a direct implementation:

satisfiable :: Frm -> Bool
satisfiable f = any (\ v -> eval v f) (allVals f)

A propositional formula F1 implies another formula F1 if every valuation that satisfies
F1 also satisfies F2. From this definition:

17-4 CHAPTER 17. PROPOSITIONAL LOGIC IMPLEMENTED

F1 implies F2 iff F1 ∧ ¬F2 is a contradiction.

The implementation is straightforward:

implies :: Frm -> Frm -> Bool
implies f1 f2 = contradiction (Cnj [f1, Ng f2])

Exercise 17.2 Extend the check for propositional implication to the case with a list of premisses.
The type is impliesL :: [Frm] -> Frm -> Bool.

Exercise 17.3 Implement a check for logical equivalence between propositional formulas. The
type is propEquiv :: Frm -> Frm -> Bool.

17.3 Propositional Logic in Update Form
The current state is a set of relevant valuations, and these sets are represented as lists, so
we can define:

type State = [Val]

Updating the state with a formula gives the list of those valuations that satisfy the
formula.

update :: State -> Frm -> State
update vals f = [v | v <- vals, eval v f]

Exercise 17.4 Complete the following definition:

tautologyUPD :: Frm -> Bool
tautologyUPD f = update (allVals f) f ==

Exercise 17.5 Complete the following definition:

contradictionUPD :: Frm -> Bool
contradictionUPD f = update (allVals f) f ==

Chapter 18

Model Checking for Predicate Logic

18.1 Variables, Predicates, Formulas

module MCPL where

import Data.List

Variables with names and indices:

type Name = String
type Index = [Int]
data Variable = Variable Name Index deriving (Eq,Ord)

Variables are the type of object that can be shown on the screen. We therefore put
them in the Show class, and define a function for showing them:

instance Show Variable where
show (Variable name []) = name
show (Variable name [i]) = name ++ show i
show (Variable name is) = name ++ showInts is

where showInts [] = ""
showInts [i] = show i
showInts (i:is) = show i ++ "_" ++ showInts is

Some example variables, that we will use later on:

18-1

18-2 CHAPTER 18. MODEL CHECKING FOR PREDICATE LOGIC

x, y, z :: Variable
x = Variable "x" []
y = Variable "y" []
z = Variable "z" []

In the definition of formulas we let conjunction and disjunction operate on lists of
formulas, and we use prefix notation for implications and equivalences. To start with, we
will assume that all terms are variables, but we will modify this in the next section. It
therefore make sense to define a so-called parametrized data type or abstract data type,
where we use a type variable for the terms occurring in formulas. This gives:

data Formula a = Atom String [a]
| Eq a a
| Neg (Formula a)
| Impl (Formula a) (Formula a)
| Equi (Formula a) (Formula a)
| Conj [Formula a]
| Disj [Formula a]
| Forall Variable (Formula a)
| Exists Variable (Formula a)
deriving Eq

The construct Atom String [a] corresponds to predicate constants named by
String, with a list of terms (or more general values of type a) as arguments. For exam-
ple, R(x, y) would be represented as Atom "R" [x,y].

The function for showing formulas assumes that we use terms that are themselves
showable. This is indicated by means of a type class constraint Show a.

18.1. VARIABLES, PREDICATES, FORMULAS 18-3

instance Show a => Show (Formula a) where
show (Atom s []) = s
show (Atom s xs) = s ++ concat [show xs]
show (Eq t1 t2) = show t1 ++ "==" ++ show t2
show (Neg form) = ’˜’ : (show form)
show (Impl f1 f2) = "(" ++ show f1 ++ "==>"

++ show f2 ++ ")"
show (Equi f1 f2) = "(" ++ show f1 ++ "<=>"

++ show f2 ++ ")"
show (Conj []) = "true"
show (Conj fs) = "conj" ++ concat [show fs]
show (Disj []) = "false"
show (Disj fs) = "disj" ++ concat [show fs]
show (Forall v f) = "A " ++ show v ++ (’ ’ : show f)
show (Exists v f) = "E " ++ show v ++ (’ ’ : show f)

Why we chose to display Conj [] as "true" and Disj [] as "false" will
become clear when we look at their semantics in the next chapter on page ??.

Here are some example formulas of type Formula Variable:

formula0 = Atom "R" [x,y]
formula1 = Forall x (Atom "R" [x,x])
formula2 = Forall x

(Forall y
(Impl (Atom "R" [x,y]) (Atom "R" [y,x])))

These get displayed as follows:

MCPL> formula0
R[x,y]
MCPL> formula1
Ax R[x,x]
MCPL> formula2
Ax Ay (R[x,y]==>R[y,x])

Formula formula1 expresses that the R relation is reflexive, while formula2 ex-
presses that R is symmetric.

Exercise 18.1 Write a function closedForm :: Formula Variable -> Bool that checks
whether a formula is closed. (Hint: first write a function that collects the list of free variables of a
formula. The closed formulas are the ones with an empty free variable list.)

The formulas we have used so far are of type Formula [Variable]. It is simple
to extend this to formulas with arbitrary terms (including function symbols),

18-4 CHAPTER 18. MODEL CHECKING FOR PREDICATE LOGIC

Chapter 19

Public Announcement Logic
Implemented

19.1 Agents, Propositions, Epistemic Models

We will now implement a so-called epistemic model checker, a program that can keep
track of the epistemic effects caused by public announcements and public changes.

module PAL where

import Data.List

Let’s keep our set of agents limited to five, and give them some easy-to-use names:

data Agent = A | B | C | D | E deriving (Eq,Ord,Enum)

a,alice, b,bob, c,carol, d,dave, e,ernie :: Agent
a = A; alice = A
b = B; bob = B
c = C; carol = C
d = D; dave = D
e = E; ernie = E

instance Show Agent where
show A = "a"; show B = "b";
show C = "c"; show D = "d";
show E = "e"

Basic propositions are pi, qi, ri, where i is an appropriate index:

19-1

19-2 CHAPTER 19. PUBLIC ANNOUNCEMENT LOGIC IMPLEMENTED

data Prop = P Int | Q Int | R Int deriving (Eq,Ord)

instance Show Prop where
show (P 0) = "p"; show (P i) = "p" ++ show i
show (Q 0) = "q"; show (Q i) = "q" ++ show i
show (R 0) = "r"; show (R i) = "r" ++ show i

The implementation of epistemic models closely follows their definition. We add an
extra parameter: a list of agents that occur in the model.

data EpistM state = Mo {
dom :: [state],
agents :: [Agent],
valuation :: [(state,[Prop])],
rels :: [(Agent,state,state)],
actual :: [state]

} deriving (Eq,Show)

This uses Haskell record syntax. The data type for an epistemic model has five fields,
and each of these fields can be accessed with an appropriate function. The record syntax
makes for a more compact definition, because the access functions for the fields are part
of the definition of the data type. To see how this works, consider the following example
model.

exampleModel :: EpistM Integer
exampleModel =
Mo [0..3]

[a..c]
[(0,[]),(1,[P 0]),(2,[Q 0]),(3,[P 0, Q 0])]
([(a,x,x) | x <- [0..3]] ++
[(b,x,x) | x <- [0..3]] ++
[(c,x,y) | x <- [0..3], y <- [0..3]])
[1]

We can access the valuation of this model by means of

PAL> valuation exampleModel
[(0,[]),(1,[p]),(2,[q]),(3,[p,q])]

and similarly for the domain, the list of agents, the relations and the actual worlds.

19.2. S5 MODELS 19-3

19.2 S5 Models

As was explained above, public announcements can be viewed as actions that change a
model by removing the worlds that do not satisfy the contents of the announcement. Each
announcement ϕ comes with a function M 7→ M | ϕ. In case we add a set of actual
worlds U to the model, the effect of M | ϕ on U is given by:

U 7→ {w ∈ U |M |=w ϕ}.

The advantage of adding a set of actual worlds is that the effect of a public announcement
with falsehood can now simply be encoded, as follows: ϕ is a falsehood in pointed model
M = (W,V,R, U) if

(W,V,R) 6|=u ϕ

for all u ∈ U . The result of updating with a falsehood is an inconsistent pointed model,
i.e. a pointed model of the form (W ′, V ′, R′, ∅).

We define relations as lists of pairs:

type Rel a = [(a,a)]

We also define list inclusion and the converse of a relation:

containedIn :: Eq a => [a] -> [a] -> Bool
containedIn xs ys = all (\ x -> elem x ys) xs

cnv :: Rel a -> Rel a
cnv r = [(y,x) | (x,y) <- r]

Here is the definition of an infix operator for relational composition (cf. page A-3):

infixr 5 @@

(@@) :: Eq a => Rel a -> Rel a -> Rel a
r @@ s = nub [(x,z) | (x,y) <- r, (w,z) <- s, y == w]

Here are the three checks on accessibility relations that we need:

19-4 CHAPTER 19. PUBLIC ANNOUNCEMENT LOGIC IMPLEMENTED

reflR :: Eq a => [a] -> Rel a -> Bool
reflR xs r = [(x,x) | x <- xs] ‘containedIn‘ r

symmR :: Eq a => Rel a -> Bool
symmR r = cnv r ‘containedIn‘ r

transR :: Eq a => Rel a -> Bool
transR r = (r @@ r) ‘containedIn‘ r

Together these allow us to express that a certain relation is an equivalence relation. In
modal logic, such a relation is called an S5 relation:

isS5 :: Eq a => [a] -> Rel a -> Bool
isS5 xs r = reflR xs r && transR r && symmR r

The epistemic model instance exampleModel that was given above is in fact an
example of a multi S5 model: each of its three accessibility relations is S5, i.e. an equiv-
alence relation. Here is an auxiliary function for extracting each of the relations from an
epistemic model:

rel :: Agent -> EpistM a -> Rel a
rel a model = [(x,y) | (b,x,y) <- rels model, a == b]

This gives:

PAL> rel a exampleModel
[(0,0),(1,1),(2,2),(3,3)]
PAL> rel b exampleModel
[(0,0),(1,1),(2,2),(3,3)]
PAL> rel c exampleModel
[(0,0),(0,1),(0,2),(0,3),(1,0),(1,1),(1,2),(1,3),
(2,0),(2,1),(2,2),(2,3),(3,0),(3,1),(3,2),(3,3)]
PAL> isS5 (dom exampleModel) (rel a exampleModel)
True

Every equivalence relation R on A corresponds to a partition on A, namely the set
{[a]R | a ∈ A}, where [a]R = {b ∈ A | (a, b) ∈ R}. Here is an implementation:

19.3. BLISSFUL IGNORANCE 19-5

rel2partition :: Ord a => [a] -> Rel a -> [[a]]
rel2partition [] r = []
rel2partition (x:xs) r = xclass : rel2partition (xs\\xclass) r

where xclass = x : [y | y <- xs, (x,y) ‘elem‘ r]

The function rel2partition can be used to write a display function for S5 models
that shows each accessibility relation as a partition:

showS5 :: (Ord a,Show a) => EpistM a -> [String]
showS5 m = show (dom m)

: show (valuation m)
: map show [(a,(rel2partition (dom m)) (rel a m))

| a <- (agents m)]
++ [show (actual m)]

Here @ is used to introduce a shorthand or name for a data structure. The following is
a function for example display:

displayS5 :: (Ord a,Show a) => EpistM a -> IO()
displayS5 = putStrLn . unlines . showS5

It works as follows:

PAL> displayS5 exampleModel
[0,1,2,3]
[(0,[]),(1,[p]),(2,[q]),(3,[p,q])]
(a,[[0],[1],[2],[3]])
(b,[[0],[1],[2],[3]])
(c,[[0,1,2,3]])
[1]

19.3 Blissful Ignorance

Blissful ignorance is the state where you don’t know anything, but you know also that
there is no reason to worry, for you know that nobody knows anything.

A Kripke model where every agent from agent set A is in blissful ignorance about a
(finite) set of propositions P , with |P | = k, looks as follows:

19-6 CHAPTER 19. PUBLIC ANNOUNCEMENT LOGIC IMPLEMENTED

M = (W,V,R) where

W = {0, . . . , 2k − 1}
V = any surjection in W → P(P)

R = {x a→ y | (x, y) ∈ W,a ∈ A}.

A surjection is a function which in onto (cf. page ??). Note that V is in fact a bijection,
for |P(P)| = 2k = |W |. Generating models for blissful ignorance is done with:

initM :: [Agent] -> [Prop] -> EpistM Integer
initM ags props = (Mo worlds ags val accs points)

where worlds = [0..(2ˆk-1)]
k = length props
val = zip worlds (sortL (powerList props))
accs = [(ag,st1,st2) | ag <- ags,

st1 <- worlds,
st2 <- worlds]

points = worlds

Here powerList is the list counterpart of power set:

powerList :: [a] -> [[a]]
powerList [] = [[]]
powerList (x:xs) = (powerList xs) ++ (map (x:) (powerList xs))

The following function sorts lists by their length:

sortL :: Ord a => [[a]] -> [[a]]
sortL = sortBy (\ xs ys -> if length xs < length ys

then LT
else if length xs > length ys

then GT
else compare xs ys)

This gives:

PAL> zip [0..2ˆ3-1] (sortL (powerList [P 1,P 2,P 3]))
[(0,[]),(1,[p1]),(2,[p2]),(3,[p3]),(4,[p1,p2]),
(5,[p1,p3]),(6,[p2,p3]),(7,[p1,p2,p3])]

19.4. GENERAL KNOWLEDGE AND COMMON KNOWLEDGE 19-7

19.4 General Knowledge and Common Knowledge
The general knowledge accessibility relation of a set of agents C is given by⋃

c∈C

Rc.

Exercise 19.1 Assume that Ra, the knowledge relation for agent a, and Rb, the knowledge rela-
tion for agent b are equivalence relations. Does it follow that the general knowledge relation for a
and b is also an equivalence? Give a proof or a counterexample.

Computing the reflexive transitive closure works as follows. If A is finite, any binary
relation R on A is finite as well. In particular, there will be k with Rk+1 ⊆ R0 ∪ · · · ∪Rk.
Thus, in the finite case reflexive transitive closure can be computed by successively com-
puting

⋃
n∈{0,..,k}R

n until Rk+1 ⊆
⋃

n∈{0,..,k}R
n. In other words: the reflexive transitive

closure of a relation R can be computed from I by repeated application of the operation

λS 7→ (S ∪ (R ◦ S)),

until the operation reaches a fixpoint.
A fixpoint of an operation f is an x for which f(x) = x. Least fixpoint calculation is

done by means of the following function:

lfp :: Eq a => (a -> a) -> a -> a
lfp f x | x == f x = x

| otherwise = lfp f (f x)

We used this to compute the reflexive transitive closure as follows:

rtc :: Ord a => [a] -> Rel a -> Rel a
rtc xs r = lfp (\ s -> (sort.nub) (s ++ (r@@s))) i
where i = [(x,x) | x <- xs]

Here is an example:

PAL> rtc [1,2,3] [(1,2),(2,3)]
[(1,1),(1,2),(1,3),(2,2),(2,3),(3,3)]

Now it is easy to also compute common knowledge, for the common knowledge rela-
tion for a group of agents C is the relation

(
⋃
c∈C

Rc)
∗.

19-8 CHAPTER 19. PUBLIC ANNOUNCEMENT LOGIC IMPLEMENTED

19.5 Formulas and Evaluation

We represent formulas in the following way:

data Form = Top
| Prop Prop
| Neg Form
| Conj [Form]
| Disj [Form]
| K EE Form
| PA Form Form
| PC [(Prop,Form)] Form
deriving (Eq,Ord)

Formulas of the form K e f express that knowledge e ensures truth of f, formulas of
the form PA f1 f2 express that public announcement f1 makes f2 true, and formulas
of the form PC s f express that public change s makes f true.

Here is the data type of epistemic expressions:

data EE = Agent Agent
| Test Form
| Cmp EE EE
| Sum [EE]
| Star EE
deriving (Eq,Ord)

Example formulas are p and q:

p = Prop (P 0)
q = Prop (Q 0)

Note the following type difference:

PAL> :t (P 0)
P 0 :: Prop
PAL> :t p
p :: Form

For better readability we define show functions for Form and EE:

19.5. FORMULAS AND EVALUATION 19-9

instance Show Form where
show Top = "T"
show (Prop p) = show p
show (Neg f) = ’-’:(show f)
show (Conj fs) = ’&’: show fs
show (Disj fs) = ’v’: show fs
show (K e f) = ’[’:show e ++"]"++show f
show (PA f1 f2) = ’[’:’!’: show f1 ++"]"++show f2
show (PC s f) = show s ++ show f

instance Show EE where
show (Agent a) = show a
show (Test f) = ’?’: show f
show (Cmp e1 e2) = show e1 ++ ";" ++ show e2
show (Sum es) = ’U’: show es
show (Star e) = ’(’: show e ++ ")*"

It is also useful to have an abbreviation for common knowledge formulas:

ck :: [Agent] -> Form -> Form
ck ags f = K (Star (Sum [Agent a | a <- ags])) f

Valuation lookup can be used to look up the valuation for a world in a model.

apply :: Eq a => [(a,b)] -> a -> b
apply [] _ = error "argument not in list"
apply ((x,z):xs) y | x == y = z

| otherwise = apply xs y

If R is a binary relation on A and a ∈ A, then aR denotes the set

{b ∈ A | Rab}.

This is called the right section of a relation. The implementation:

rightS :: Ord a => a -> Rel a -> [a]
rightS x r = (sort.nub) [z | (y,z) <- r, x == y]

Now we turn to the evaluation of formulas. We start with the Boolean cases:

19-10 CHAPTER 19. PUBLIC ANNOUNCEMENT LOGIC IMPLEMENTED

isTrueAt :: Ord state => EpistM state -> state -> Form -> Bool
isTrueAt m w Top = True
isTrueAt m w (Prop p) = p ‘elem‘ (concat

[ps | (w’,ps) <- valuation m, w’==w])
isTrueAt m w (Neg f) = not (isTrueAt m w f)
isTrueAt m w (Conj fs) = and (map (isTrueAt m w) fs)
isTrueAt m w (Disj fs) = or (map (isTrueAt m w) fs)

This is the epistemic case:

isTrueAt m w (K e f) = and (map (flip (isTrueAt m) f)
(rightS w (evalEE m e)))

Next we consider the public announcement case:

isTrueAt m w (PA f1 f2) = not (isTrueAt m w f1)
|| isTrueAt m’ w f2

where m’ = upd_pa m f1

Finally, this is the public change case:

isTrueAt m w (PC s f) = isTrueAt (upd_pc m s) w f

The evaluation of epistemic expressions is defined as follows:

evalEE :: Ord state => EpistM state -> EE -> Rel state
evalEE m (Agent a) = rel a m
evalEE m (Test f) = [(w,w) | w <- dom m, isTrueAt m w f]
evalEE m (Cmp e1 e2) = (evalEE m e1) @@ (evalEE m e2)
evalEE m (Sum (es)) = (sort.nub) (concat (map (evalEE m) es))
evalEE m (Star e) = rtc (dom m) (evalEE m e)

The state of bliss is evaluated like this:

test1 = isTrueAt (initM [a..c] [P 0]) 0
(ck [a..c] (Neg (K (Agent a) p)))

Now we can use the function isTrueAt to implement a function that checks for
truth at all the actual states of an epistemic model:

19.5. FORMULAS AND EVALUATION 19-11

isTrue :: Ord state => EpistM state -> Form -> Bool
isTrue m f = and [isTrueAt m s f | s <- actual m]

Here is another test of initM:

test2 = isTrue (initM [a..c] [P 0])
(ck [a..c] (Neg (K (Agent a) p)))

Next we implement public announcement updates:

upd_pa :: Ord state => EpistM state -> Form -> EpistM state
upd_pa m@(Mo states agents val rels actual) f =

(Mo states’ agents val’ rels’ actual’)
where

states’ = [s | s <- states,
isTrueAt m s f]

val’ = [(s,p) | (s,p) <- val,
s ‘elem‘ states’]

rels’ = [(a,x,y) | (a,x,y) <- rels,
x ‘elem‘ states’,
y ‘elem‘ states’]

actual’ = [s | s <- actual,
s ‘elem‘ states’]

For substitutions we define a type synonym:

type Subst = [(Prop,Form)]

Public change updates can then be implemented as follows:

19-12 CHAPTER 19. PUBLIC ANNOUNCEMENT LOGIC IMPLEMENTED

upd_pc :: Ord state => EpistM state -> Subst -> EpistM state
upd_pc m@(Mo worlds agents val acc points) subst =

(Mo worlds agents val’ acc points)
where

val’ = [(w,[p | p <- ps, isTrueAt m w (liftS subst p)])
| w <- worlds]

ps = (sort.nub) (concat (map snd val))
liftS :: Subst -> Prop -> Form
liftS [] p = Prop p
liftS ((x,z):xs) y | x == y = z

| otherwise = liftS xs y

Here is an example model:

m0 = initM [a..c] [P 0,Q 0]

This gives:

PAL> displayS5 m0
[0,1,2,3]
[(0,[]),(1,[p]),(2,[q]),(3,[p,q])]
(a,[[0,1,2,3]])
(b,[[0,1,2,3]])
(c,[[0,1,2,3]])
[0,1,2,3]

PAL> displayS5 (upd_pa m0 (Disj [p,q]))
[1,2,3]
[(1,[p]),(2,[q]),(3,[p,q])]
(a,[[1,2,3]])
(b,[[1,2,3]])
(c,[[1,2,3]])
[1,2,3]

It is useful to be able to convert any type of state list to [0..]:

19.6. GENERATED SUBMODELS 19-13

convert :: Eq state => EpistM state -> EpistM Integer
convert (Mo states agents val rels actual) =

Mo states’ agents val’ rels’ actual’
where

states’ = map f states
val’ = map (\ (x,y) -> (f x,y)) val
rels’ = map (\ (x,y,z) -> (x,f y,f z)) rels
actual’ = map f actual
f = apply (zip states [0..])

This gives:

PAL> (displayS5.convert) (upd_pa m0 (Disj [p,q]))
[0,1,2]
[(0,[p]),(1,[q]),(2,[p,q])]
(a,[[0,1,2]])
(b,[[0,1,2]])
(c,[[0,1,2]])
[0,1,2]

19.6 Generated Submodels

In an epistemic model with a set of designated points, we are only interested in the set of
those worlds that are accessible via some path from any of the designated worlds. This is
called the generated submodel. Here is an implementation:

gsm :: Ord state => EpistM state -> EpistM state
gsm (Mo states ags val rel points) =

Mo states’ ags val’ rel’ points
where

states’ = closure rel ags points
val’ = [(s,ps) | (s,ps) <- val,

s ‘elem‘ states’]
rel’ = [(ag,s,s’) | (ag,s,s’) <- rel,

s ‘elem‘ states’,
s’ ‘elem‘ states’]

This uses the closure of a state list, given a relation and a list of agents:

19-14 CHAPTER 19. PUBLIC ANNOUNCEMENT LOGIC IMPLEMENTED

closure :: Ord state => [(Agent,state,state)] ->
[Agent] -> [state] -> [state]

closure rel agents xs = lfp f xs where
f = \ ys -> (nub.sort) (ys ++ (expand rel agents ys))

The expansion of a relation R given a state set S and a set of agents B is given by
{t | s b→ t ∈ R, s ∈ S, b ∈ B}. Here is an implementation:

expand :: Ord state => [(Agent,state,state)] ->
[Agent] -> [state] -> [state]

expand rel agents ys = (nub.sort.concat)
[alternatives rel ag state | ag <- agents,

state <- ys]

The epistemic alternatives for agent a in state s are the states in sRa (i.e. the states
reachable through Ra from s):

alternatives :: Eq state => [(Agent,state,state)] ->
Agent -> state -> [state]

alternatives rel ag current = [s’ | (a,s,s’) <- rel,
a == ag, s == current]

This ends the implementation of the epistemic model checker.

19.7 The Muddy Children Example
To show how this can be used, we demonstrate a check of a muddy children scenario. We
model the case where there are four children, Alice, Bob, Carol and Dave, where Bob,
Carol and Dave are the muddy ones.

We use propositions p1, p2, p3, p4 to express that the first, second, third, or fourth child
is muddy:

p1, p2, p3, p4 :: Form
p1 = Prop (P 1); p2 = Prop (P 2)
p3 = Prop (P 3); p4 = Prop (P 4)

The initial muddy model has 16 worlds; one for each muddiness possibility. Agent a
cannot distinguish worlds that differ only in the value of p1, for Alice cannot see whether
she herself is muddy. Agent b cannot distinguish worlds that differ only in the value of p2,

19.7. THE MUDDY CHILDREN EXAMPLE 19-15

for Bob cannot see whether he himself is muddy. Agent c cannot distinguish worlds that
differ only in the value of p3, for Carol cannot see whether she herself is muddy. Agent d
cannot distinguish worlds that differ only in the value of p4, for Dave cannot see whether
he himself is muddy. This information completely determines the accessibility relation.

computeAcc :: Agent -> [Integer] -> [Prop] -> [(Integer,[Prop])]
-> [(Agent,Integer,Integer)]

computeAcc ag states props val =
[(ag,x,y) | x <- states, y <- states,

apply val x \\ props == apply val y \\ props]

The actual world is the world where p1 is false and p2, p3, p4 are true. This yields the
following definition for the initial epistemic model.

initMuddy :: EpistM Integer
initMuddy = Mo states

[a..d]
valuation
(computeAcc a states [P 1] valuation ++
computeAcc b states [P 2] valuation ++
computeAcc c states [P 3] valuation ++
computeAcc d states [P 4] valuation)

[7]
where states = [0..15]

valuation = zip states (powerList [P 1,P 2,P 3,P 4])

Here is a check that this is correct:

PAL> displayS5 initMuddy
[0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15]
[(0,[]),(1,[p4]),(2,[p3]),(3,[p3,p4]),(4,[p2]),(5,[p2,p4]),
(6,[p2,p3]),(7,[p2,p3,p4]),(8,[p1]),(9,[p1,p4]),(10,[p1,p3]),
(11,[p1,p3,p4]),(12,[p1,p2]),(13,[p1,p2,p4]),(14,[p1,p2,p3]),
(15,[p1,p2,p3,p4])]
(a,[[0,8],[1,9],[2,10],[3,11],[4,12],[5,13],[6,14],[7,15]])
(b,[[0,4],[1,5],[2,6],[3,7],[8,12],[9,13],[10,14],[11,15]])
(c,[[0,2],[1,3],[4,6],[5,7],[8,10],[9,11],[12,14],[13,15]])
(d,[[0,1],[2,3],[4,5],[6,7],[8,9],[10,11],[12,13],[14,15]])
[7]

The statement of the father that at least one child is muddy should rule out one of
these worlds:

19-16 CHAPTER 19. PUBLIC ANNOUNCEMENT LOGIC IMPLEMENTED

m1 = convert (upd_pa initMuddy (Disj [p1,p2,p3,p4]))

This yields:

PAL> displayS5 m1
[0,1,2,3,4,5,6,7,8,9,10,11,12,13,14]
[(0,[p4]),(1,[p3]),(2,[p3,p4]),(3,[p2]),(4,[p2,p4]),
(5,[p2,p3]),(6,[p2,p3,p4]),(7,[p1]),(8,[p1,p4]),
(9,[p1,p3]),(10,[p1,p3,p4]),(11,[p1,p2]),(12,[p1,p2,p4]),
(13,[p1,p2,p3]),(14,[p1,p2,p3,p4])]
(a,[[0,8],[1,9],[2,10],[3,11],[4,12],[5,13],[6,14],[7]])
(b,[[0,4],[1,5],[2,6],[3],[7,11],[8,12],[9,13],[10,14]])
(c,[[0,2],[1],[3,5],[4,6],[7,9],[8,10],[11,13],[12,14]])
(d,[[0],[1,2],[3,4],[5,6],[7,8],[9,10],[11,12],[13,14]])
[6]

The following formulas express that the children know their states:

aK = Disj [K (Agent a) p1, K (Agent a) (Neg p1)]
bK = Disj [K (Agent b) p2, K (Agent b) (Neg p2)]
cK = Disj [K (Agent c) p3, K (Agent c) (Neg p3)]
dK = Disj [K (Agent d) p4, K (Agent d) (Neg p4)]

In the first round, they all say that they do not know their state:

m2 = convert (upd_pa m1 (Conj [Neg aK,Neg bK,Neg cK,Neg dK]))

Here is the result:

PAL> displayS5 m2
[0,1,2,3,4,5,6,7,8,9,10]
[(0,[p3,p4]),(1,[p2,p4]),(2,[p2,p3]),(3,[p2,p3,p4]),
(4,[p1,p4]),(5,[p1,p3]),(6,[p1,p3,p4]),(7,[p1,p2]),
(8,[p1,p2,p4]),(9,[p1,p2,p3]),(10,[p1,p2,p3,p4])]
(a,[[0,6],[1,8],[2,9],[3,10],[4],[5],[7]])
(b,[[0,3],[1],[2],[4,8],[5,9],[6,10],[7]])
(c,[[0],[1,3],[2],[4,6],[5],[7,9],[8,10]])
(d,[[0],[1],[2,3],[4],[5,6],[7,8],[9,10]])
[3]

In the second round, again they all say that they do not know their state:

19.7. THE MUDDY CHILDREN EXAMPLE -17

m3 = convert (upd_pa m2 (Conj [Neg aK,Neg bK,Neg cK,Neg dK]))

The result is:

PAL> displayS5 m3
[0,1,2,3,4]
[(0,[p2,p3,p4]),(1,[p1,p3,p4]),(2,[p1,p2,p4]),
(3,[p1,p2,p3]),(4,[p1,p2,p3,p4])]
(a,[[0,4],[1],[2],[3]])
(b,[[0],[1,4],[2],[3]])
(c,[[0],[1],[2,4],[3]])
(d,[[0],[1],[2],[3,4]])
[0]

In the third round, a still does not know, but b, c, d know their state.

m4 = convert (upd_pa m3 (Conj [Neg aK, bK, cK, dK]))

After this round, everything is known:

PAL> displayS5 m4
[0]
[(0,[p2,p3,p4])]
(a,[[0]])
(b,[[0]])
(c,[[0]])
(d,[[0]])
[0]

Exercise 19.2 Carry out the model checking process for the wise men puzzle.

Exercise 19.3 Implement translations that remove public announcement operators from the lan-
guage. The types are tr1 :: Form -> Form and tr2 :: EE -> EE. Next, perform a
number of checks to test whether the translations respect the semantics.

Exercise 19.4 Implement translations that remove public change operators from the language.
The types are tr3 :: Form -> Form and tr4 :: EE -> EE. Next, perform a number of
checks to test whether the translations respect the semantics.

-18 CHAPTER 19. PUBLIC ANNOUNCEMENT LOGIC IMPLEMENTED

Appendices

-19

Appendix A

Sets, Relations and Functions

Summary

This chapter explains the basics of formal set notation, and gives an introduction to rela-
tions and functions. The chapter ends with a short account of the principle of proof by
mathematical induction.

A.1 Sets and Set Notation

Many mathematical notions — some say all mathematical notions — can be defined in
terms of the fundamental concept of a set. This is good reason for starting with some
basic set theory.

A set is a collection of definite, distinct objects. Examples are the set of colours of the
Dutch flag, or the set of letters of the Greek alphabet. Yet another example is the set of
even natural numbers greater than seven. And so on.

The elements of a set are also called its members. To indicate that a is an element of
a set A we write a ∈ A. To deny that a is an element of a set A we write a /∈ A. The
symbol ∈ is the symbol for membership.

The elements of a set can be anything: words, colours, people, numbers. The elements
of a set can also themselves be sets. The set consisting of the set of even natural numbers
and the set of odd natural numbers is an example. This set has two elements; each of these
elements has itself an infinite number of elements.

To check whether two sets are the same one has to check that they have the same
elements. The fact that membership is all there is to set identity, or that sets are fully
determined by their members, is called the principle of extensionality. It follows that to
check that two sets A and B are identical, one has to check two things:

• does it hold that every element a of A is also an element of B, and

• does it hold that every element b of B is also an element of A?

A-1

A-2 APPENDIX A. SETS, RELATIONS AND FUNCTIONS

To specify a set, there are several methods: give a list of its members, as in ‘the set
having the numbers 1, 2 and 3 as its only members’, give some kind of semantic descrip-
tion, as in ‘the set of colours of the Dutch flag’, or separate out a set from a larger set
by means of a suitable restriction. This last method is called the method of set compre-
hension. Here is an example: the odd natural numbers are the natural numbers with the
property that division by 2 leaves a remainder of 1. We can express this by means of the
pattern 2n+ 1, as follows:

O = {2n+ 1 | n ∈ N}.
The braces are also used to list the members of a finite set:

D = {red,white, blue}.

Mentioning a set element more than once does not make a difference. The set

{white, blue,white, red}

is identical to the set D, for it has the same members.
Another way of specifying sets is by means of operations on other sets. An example

is the following definition of the odd natural numbers:

E = N−O.

HereN−O is the set of all elements ofN that are not members ofO. Equivalent definitions
are the following:

E = {n ∈ N | n /∈ O}
or

E = {2n | n ∈ N}.
Some important sets have special names. N is an example. Another example is Z, for the
set of integer numbers. Yet another example is the set without any members. Because of
the principle of extensionality there can be only one such set. It is called ∅ or the empty
set.

If every member of a set A is also a member of set B we say that A is a subset of B,
written as A ⊆ B. If A ⊆ B and B ⊆ A then it follows by the principle of extensionality
that A and B are the same set. Conversely, if A = B then it follows by definition that
A ⊆ B and B ⊆ A.

Exercise A.1 Explain why ∅ ⊆ A holds for every set A.

Exercise A.2 Explain the difference between ∅ and {∅}.

The complement of a set A, with respect to some fixed universe, or: domain, U with
A ⊆ U , is the set consisting of all objects in U that are not elements of A. The comple-
ment set is written as A. It is defined as the set {x | x ∈ U, x /∈ A}. For example, if we
take U to be the set N of natural numbers, then the set of even numbers is the complement
of the set of odd numbers and vice versa.

A.2. RELATIONS A-3

A.2 Relations
By a relation we mean a meaningful link between people, things, objects, whatever. Usu-
ally, it is quite important what kind of relationship we have in mind.

Formally, we can describe a relation between two sets A and B as a collection of
ordered pairs (a, b) such that a ∈ A and b ∈ B. An ordered pair is, as the name already
gives away, a collection of two distinguishable objects, in which the order plays a role.
E.g., we use (Bill,Hillary) to indicate the ordered pair that has Bill as its first element and
Hillary as its second element. This is different from the pair (Hillary,Bill) where Bill
plays second fiddle.

The notation for the set of all ordered pairs with their first element taken from A and
their second element taken from B is A × B. This is called the Cartesian product of A
and B. A relation between A and B is a subset of A×B.

The Cartesian product of the sets A = {a, b, . . . , h} and B = {1, 2, . . . , 8}, for exam-
ple, is the set

A×B = {(a, 1), (a, 2), . . . , (b, 1), (b, 2), . . . , (h, 1), (h, 2), . . . , (h, 8)}.

This is the set of positions on a chess board. And if we multiply the set of chess colours
C = {White,Black} with the set of chess figures,

F = {King,Queen,Knight,Rook,Bishop,Pawn},

we get the set of chess pieces C×F . If we multiply this set with the set of chess positions,
we get the set of piece positions on the board, with (White,King, (e, 1)) indicating that
the white king occupies square e1. To get the set of moves on a chess board, take ((C ×
F)× ((A×B)× (A×B))), and read ((White,King, ((e, 1), (f, 2)) as ‘white king moves
from e1 to f2’, but bear in mind that not all moves in ((C ×F)× ((A×B)× (A×B)))
are legal in the game.

A×A is sometimes also denoted by A2. Similarly for A×A×A and A3, and so on.
As an example of a relation as a set of ordered pairs consider the relation of authorship

between a setA of authors and a setB of books. This relation associates with every author
the book(s) he or she wrote.

Sets of ordered pairs are called binary relations. We can easily generalize this to sets
of triples, to get so-called ternary relations, to sets of quadruples, and so on. An example
of a ternary relation is that of borrowing something from someone. This relation consists
of triples, or: 3-tuples, (a, b, c), where a is the borrower, b is the owner, and c is the
thing borrowed. In general, an n-ary relation is a set of n-tuples (ordered sequences of n
objects). We use An for the set of all n-tuples with all elements taken from A.

Unary relations are called properties. A property can be represented as a set, namely
the set that contains all entities having the property. For example, the property of be-
ing divisible by 3, considered as a property of integer numbers, corresponds to the set
{. . . ,−9,−6,−3, 0, 3, 6, 9, . . .}.

An important operation on binary relations is composition. If R and S are binary
relations on a set U , i.e. R ⊆ U2 and S ⊆ U2, then the composition of R and S, notation

A-4 APPENDIX A. SETS, RELATIONS AND FUNCTIONS

R ◦ S, is the set of pairs (x, y) such that there is some z with (x, z) ∈ R and (z, y) ∈ S.
E.g., the composition of {(1, 2), (2, 3)} and {(2, 4), (2, 5)} is {(1, 4), (1, 5)}.

Exercise A.3 What is the composition of {(n, n+ 2) | n ∈ N} with itself?

Another operation on binary relations is converse. If R is a binary relation, then its
converse (or: inverse) is the relation given by Rˇ = {(y, x) | (x, y) ∈ R}. The converse
of the relation ‘greater than’ on the natural numbers is the relation ‘smaller than’ on the
natural numbers. If a binary relation has the property that Rˇ ⊆ R then R is called
symmetric.

Exercise A.4 Show that it follows from Ř ⊆ R that R = Ř .

If U is a set, then the relation I = {(x, x) | x ∈ U} is called the identity relation on
U . If a relation R on U has the property that I ⊆ R, i.e. if every element of U stands in
relation R to itself, then R is called reflexive. The relation ≤ (‘less than or equal’) on
the natural numbers is reflexive, the relation < (‘less than’) is not. The relation A2 − I is
the set of all pairs (x, y) ∈ A2 with x 6= y. If A is the set {a, bc}, then A2 − I gives the
following relation:

{(a, b), (a, c), (b, a), (b, c), (c, a)(c, b)}.

A relation R is called transitive if it holds for all x, y, z that if (x, y) ∈ R and (y, z) ∈ R,
then also (x, z) ∈ R. To say that the relation of friendship is transitive boils down to
saying that it holds for anyone that the friends of their friends are their friends.

Exercise A.5 Which of the following relations are transitive?

(1) {(1, 2), (2, 3), (3, 4)}

(2) {(1, 2), (2, 3), (3, 4), (1, 3), (2, 4)}

(3) {(1, 2), (2, 3), (3, 4), (1, 3), (2, 4), (1, 4)}

(4) {(1, 2), (2, 1)}

(5) {(1, 1), (2, 2)}

The next exercise shows that transitivity can be expressed in terms of relational com-
position.

Exercise A.6 Check that a relation R is transitive if and only if it holds that R ◦R ⊆ R.

Exercise A.7 Can you give an example of a transitive relation R for which R ◦ R = R does not
hold?

A.3. BACK AND FORTH BETWEEN SETS AND PICTURES A-5

A.3 Back and Forth Between Sets and Pictures
A domain of discourse with a number of 1-place and 2-place predicates on is in fact a set
of entities with certain designated subsets (the 1-place predicates) and designated sets of
pairs of entities (the 2-place predicates).

Relations are sets of pairs, and it is useful to acquire the skill to mentally go back and
forth between sets-of-pairs representation and picture representation. Take the following
simple example of a relation on the set {1, 2, 3}.

{(1, 2), (1, 3), (2, 3)}. (A.1)

Here is the corresponding picture:

1 2 3

Exercise A.8 Give the set of pairs that constitutes the relation of the following picture:

1 2 3

For another example, consider the picture:

1 2 3

No arrowheads are drawn, which indicates that the pictured relation is symmetric.
Here is the representation of the same relation as a set of pairs:

{(1, 2), (2, 1), (1, 3), (3, 1), (2, 3), (3, 2)}.

A-6 APPENDIX A. SETS, RELATIONS AND FUNCTIONS

Exercise A.9 Give the representation of the pictured relation as a set of pairs:

1 2 3

A.4 Relational Properties

Talking about pictures with predicate logic is very useful to develop a clear view of what
relational properties the predicate logical formulas express. Predicate logic is very pre-
cise, and it takes practice to get used to this precision. Consider the following picture.

A relation is transitive if from the facts that there are links from x to y and a link from
y to z it follows that there is a link from x to y. Here is a formula for this:

∀x∀y∀z((Rxy ∧Ryz)→ Rxz). (A.2)

Let us check whether the link relation in the last picture is transitive. It may seem at first
sight that it is, for what transitivity expresses is that if you can go from x to z by first
taking an R step from x to y and next another R step from y to z, between, then there is
also a direct R step from x to y. This seems indeed to be the case in the picture. But there
is a snag. In reasoning like this, we assume that the three points x, y and z are all different.
But this is not what the formula says. Take any two different points in the picture. Surely
there is a link from the first point to the second. But the linking relation is symmetric: it
goes in both directions. Therefore there also is a link from the second point back to the
first. But this means that the first point has to be R related to itself, and it isn’t. So the
relation in the picture is not transitive after all.

Can we also come up with a picture of three points with a symmetric linking relation,
where the relation is transitive? Yes, there are several possibilities. Here is the first one:

A.4. RELATIONAL PROPERTIES A-7

But there is another possibility. Take the following picture:

This is a picture where the link relation is empty. There are no links, so it trivially holds
that if one can get from a point to a point via two links, then one can also get there with a
single link. So the empty relation is transitive.

Exercise A.10 Give all the transitive link relations on a domain consisting of three individuals,
on the assumption that the link relation is symmetric. We have already seen two examples: the
empty relation (no points are linked) and the total relation (all points are linked). What are the
other possibilities? Draw pictures!

The relations in the pictures above were all symmetric: links were the same in both
directions. The following picture with arrows gives a relation that is not symmetric. We
need the arrows, for now the directions of the links matter:

Again we use R to refer to the binary relation in the picture. Again we can ask if the
relation of the picture is transitive. This time the answer is ‘yes’. If we can get from x to
y with two −→ steps, then we can also get from x to y with a single step.

Not only is the relation in the picture not symmetric, but something stronger holds:

∀x∀y(Rxy → ¬Ryx). (A.3)

Formula (A.3) expresses that the relation R is asymmetric.

Exercise A.11 Give an example of a binary relation on a domain of three objects that it is neither
symmetric nor asymmetric.

A-8 APPENDIX A. SETS, RELATIONS AND FUNCTIONS

The relation in the current picture also has another property, called irreflexivity:

∀x¬Rxx. (A.4)

This expresses that the R relation does not have self loops. We say: the relation is ir-
reflexive

The dual to irreflexivity is the property of having all self loops. This is called reflexiv-
ity:

∀xRxx. (A.5)

Here is an example of a reflexive relation:

Exercise A.12 Show that any asymmetric relation has to be irreflexive. (Hint: assume that a
relation is asymmetric, and suppose it contains a loop (x, x). Why is this impossible?)

A binary relation R is called an equivalence relation if R has the following three
properties: (i) R is reflexive, (ii) R is symmetric, (iii) R is transitive.

Exercise A.13 Give all equivalence relations on a domain consisting of three objects. Draw pic-
tures!

Exercise A.14 Consider the three predicate logical sentences (4.20), (A.2) and (A.5), These sen-
tences together express that a certain binary relation R is an equivalence relation: symmetric,
transitive and reflexive. Show that none of these sentences is semantically entailed by the other
ones by choosing for each pair of sentences a model (situation) that makes these two sentences
true but makes the third sentence false. In other words: find three examples of binary relations,
each satisfying just two of the properties in the list (4.20), (A.2) and (A.5). This shows, essentially,
that the definition of being an equivalence cannot be simplified (why?).

Exercise A.15 Consider the following predicate logical formulas:

• ∀x∀y(Rxy → ¬Ryx) (R is asymmetric)

• ∀x∃yRxy (R is serial)

• ∀x∀y∀z((Rxy ∧Ryz)→ Rxz) (R is transitive).

A.5. FUNCTIONS A-9

Take any situation with a non-empty domain of discourse, with a binary relation on it. Show: if
the three formulas are true of this situation, then the domain of discourse must be infinite. (Hint:
start with a domain consisting of a single individual d1. Then by seriality there has to be an R-
successor to d1. Suppose we take d1 as its own R-successor. Then this would get us in conflict
with we are in conflict with asymmetry, by Exercise ??. So there has to be a d2 with (d1, d2) in R.
And so on . . .)

Exercise A.16 Consider again the three properties of asymmetry, seriality and transitivity of the
previous exercise.

(1) Give a picture of a finite situation with a relation R that is asymmetric and serial but not
transitive.

(2) Give a picture of a finite situation with a relation R that is serial and transitive but not
asymmetric.

(3) Give a picture of a finite situation with a relation R that is transitive and asymmetric but not
serial.

A.5 Functions
Functions are relations with the following special property: for any (a, b) and (a, c) in the
relation it has to hold that b and c are equal. Thus a function from a set A (called domain)
to a set B (called range) is a relation between A and B such that for each a ∈ A there is
one and only one associated b ∈ B. In other words, a function is a mechanism that maps
an input value to a uniquely determined output value. Looking at the relation author of
from above, it is immediately clear that it is not a function, because the input Michael
Ende is not mapped to a unique output but is related to more than one element from the
set B of books.

Functions are an important kind of relations, because they allow us to express the
concept of dependence. For example, we know that the gravitational potential energy of
a wrecking ball depends on its mass and the height we elevated it to, and this dependence
is most easily expressed in a functional relation.

Functions can be viewed from different angles. On the one hand, they can be seen as
sets of data, represented as a collection of pairs of input and output values. This tells us
something about the behaviour of a function, i.e. what input is mapped to which output.

The function converting temperatures from Kelvin to Celsius can be seen as a set
of pairs {(0,−273.15), . . .}, and the function converting temperatures from Celsius to
Fahrenheit as a set {(−273.15,−459.67), . . .}. Determining the output of the function,
given some input, simply corresponds to a table lookup. Any function can be viewed as
a – possibly infinite – database table. This is called the extensional view of functions.
Another way to look at functions is as instructions for computation. This is called the
intensional view of functions. In the case of temperature conversion the intensional view
is more convenient than the extensional view, for the function mapping Kelvin to Celsius

A-10 APPENDIX A. SETS, RELATIONS AND FUNCTIONS

can easily be specified as a simple subtraction

x 7→ x− 273.15

This is read as ‘an input x is mapped to x minus 273.15’. Similarly, the function from
Celsius to Fahrenheit can be given by

x 7→ x× 9

5
+ 32

For example, if we have a temperature of 37 degrees Celsius and want to convert it to
Fahrenheit, we replace x by 37 and compute the outcome by multiplying it with 9

5
and

then adding 32.

37× 9

5
+ 32→ 66.6 + 32→ 98.6

The example shows that the intensional view of functions can be made precise by repre-
senting the function as an expression, and specifying the principles for simplifying (or:
rewriting) such functional expressions. Rewriting functional expressions is a form of sim-
plification where part of an expression is replaced by something simpler, until we arrive
at an expression that cannot be simplified (or: reduced) any further. This rewriting corre-
sponds to the computation of a function. For example, the function converting Celsius to
Fahrenheit applied to the input 37 is the expression 37× 9

5
+ 32. This expression denotes

the output, and at the same time it shows how to arrive at this output: First, 37 × 9
5

is
rewritten to 66.6, according to the rewriting rules for multiplication. The result of this
simplification is 66.6 + 32, which is then rewritten to 98.6, in accordance with the rewrit-
ing rules for addition.

Functions can be composed, as follows. Let g be the function that converts from
Kelvin to Celsius, and let f be the function that converts from Celsius to Fahrenheit. Then
f · g is the function that converts from Kelvin to Fahrenheit, and that works as follows.
First convert from Kelvin to Celsius, then take the result and convert this to Fahrenheit. It
should be clear from this explanation that f · g is defined by

x 7→ f(g(x)),

which corresponds to

x 7→ (x− 273.15)× 9

5
+ 32

Exercise A.17 The successor function s : N→ N on the natural numbers is given by n 7→ n+ 1.
What is the composition of s with itself?

A special function which is simple yet very useful is the characteristic function of a
set. The characteristic function of subset A of some universe (or: domain) U is a function
that maps all members of A to the truth-value True and all elements of U that are not
members of A to False. E.g. the function representing the property of being divisible by
3, on the domain of integers, would map the numbers

. . . ,−9,−6,−3, 0, 3, 6, 9, . . .

A.6. RECURSION AND INDUCTION A-11

to True, and all other integers to False. Characteristic functions characterize membership
of a set. Since we specified relations as sets, this means we can represent every relation
as a characteristic function.

Exercise A.18 ≤ is a binary relation on the natural numbers. What is the corresponding charac-
teristic function?

Exercise A.19 Let f : A→ B be a function. Show that the relation R ⊆ A2 given by (x, y) ∈ R
if and only if f(x) = f(y) is an equivalence relation (reflexive, transitive and symmetric) on A.

A.6 Recursion and Induction
A recursive definition is a recipe for constructing objects from a finite number of ingre-
dients in a finite number of ways. An example is the following recursive definition of
natural numbers:

• 0 is a natural number.

• adding 1 to a natural number n gives a new natural number n+ 1.

• nothing else is a natural number.

This recipe gives rise to an important method for proving things: proof by mathematical
induction.

As an example, we prove the fact about natural numbers that the sum of the first n odd
natural numbers equals n2. For example 1 + 3 = 22, 1 + 3 + 5 + 7 = 42, and so on. More
formally and generally, we have for all natural numbers n:

n−1∑
k=0

(2k + 1) = n2.

Here is a proof of this fact by mathematical induction.
Basis. For n = 0, we have Σ0

k=0(2k + 1) = 1 = 12, so for this case the statement
holds.

Induction step. We assume the statement holds for some particular natural number
n and we show that it also holds for n + 1. So assume

∑n−1
k=0(2k + 1) = n2. This is the

induction hypothesis. We have to show:
∑n

k=0(2k + 1) = (n+ 1)2. Indeed,

n∑
k=0

(2k + 1) =
n−1∑
k=0

(2k + 1) + 2n+ 1.

Now use the induction hypothesis to see that this is equal to n2 + 2n + 1, which in turn
equals (n+ 1)2. Therefore we have:

n∑
k=0

(2k + 1) =
n−1∑
k=0

(2k + 1) + 2n+ 1
ih
= n2 + 2n+ 1 = (n+ 1)2.

A-12 APPENDIX A. SETS, RELATIONS AND FUNCTIONS

The equality ih
= is the step where the induction hypothesis was used. We have checked

two cases: the case 0 and the case n + 1. By the recursive definition of natural numbers,
we have covered all cases, for these are the two possible shapes of natural numbers. So
we have proved the statement for all natural numbers n.

The procedure of proof by mathematical induction does not help to find interesting
patterns, but once such a pattern is found it is very helpful to check whether the pattern
really holds. So how can one find a pattern like

∑n−1
k=0(2k+ 1) = n2 in the first place? By

imagining the following way to build up a square with side n:

Such a picture is what the ancient Greeks called a gnomon (“thing by which one knows”).
The structure of the inductive proof can now be pictured as follows:

Basis

n

nn

+
1

2n+ 1

Induction Step

Exercise A.20 Consider the following gnomon:

A.6. RECURSION AND INDUCTION A-13

What does this suggest for the sum of the first n even numbers? Give a form for
∑n

k=0 2k, and
prove with induction that your form is correct.

A-14 APPENDIX A. SETS, RELATIONS AND FUNCTIONS

Appendix B

Solutions to the Exercises

Solutions to Exercises from Chapter 2

Exercise 2.3 on page 2-3: You are given the information that p-or-q and (not-p)-or-r. What
is the strongest valid conclusion you can draw?

p q r
p q r
p q r
p q r
p q r
p q r
p q r
p q r

p ∨ q
=⇒

p q r
p q r
p q r
p q r
p q r
p q r

¬p ∨ r

=⇒

p q r
p q r
p q r
p q r

Any valid conclusion has to be true in the set of remaining alternatives

p q r
p q r
p q r
p q r

. If it

is also false in the set of eliminated alternatives

p q r
p q r
p q r
p q r

 then it is among the strongest

ones. For instance p∨ q is a valid conclusion but it is not strong enough because it is also
true, for instance, in p q r. The formula (p∨q)∧(¬p∨r) is among the strongest conclusions
that you can draw from the given information (and so is any formula equivalent to it).

Exercise 2.1 on page 2-3: Consider the case where there are three facts that you are
interested in. You wake up, you open your eyes, and you ask yourself three things: “Have
I overslept?”, “Is it raining?”, “Are there traffic jams on the road to work?”. To find out
about the first question, you have to check your alarm clock, to find about the second

B-1

B-2 APPENDIX B. SOLUTIONS TO THE EXERCISES

you have to look out of the window, and to find out about the third you have to listen
to the traffic info on the radio. We can represent these possible facts with three basic
propositions, p, q and r, with p expressing “I have overslept”, q expressing “It is raining”,
and r expressing “There are traffic jams.” Suppose you know nothing yet about the truth
of your three facts. What is the space of possibilities?

p q r p q r
p q r p q r
p q r p q r
p q r p q r

Exercise 2.2 on page 2-3: (Continued from previous exercise.) Now you check your
alarm clock, and find out that you have not overslept. What happens to your space of
possibilities?

p q r p q r
p q r p q r
p q r p q r
p q r p q r

¬p
=⇒

{
p q r p q r
p q r p q r

}

Exercise 2.6 on page 2-7:

• I will only go to school if I get a cookie now:

(p→ q) ∧ (q → p)

where p =“I get a cooky now” and q =“I will go to school”.

• John and Mary are running:
p ∧ q

where p =“John is running” and q =“Mary is running”.

• A foreign national is entitled to social security if he has legal employment or if he
has had such less than three years ago, unless he is currently also employed abroad:

((p ∨ q) ∧ ¬r)→ s

where p =“A foreign national has legal employment”, q =“A foreign national has
had legal employment less then three years ago”, r =“A foreign national is currently
also employed abroad” and s =“A foreign national is entitled to social security”.

Exercise 2.7 on page 2-7: Only the first one.

Exercise 2.8 on page 2-7: Construct a tree for the following formulae:

(p ∧ q)→ ¬q:

B-3

(p ∧ q)→ ¬q

p ∧ q

p q

¬q

q

q ∧ r ∧ s ∧ t (draw all possible trees; and does it matter?)

Two possible trees are depicted below, you should build the remaining ones and check
that the order doesn’t matter in either construction (in the sense that the logical meaning
of this particular formula is invarinat under different construction orders). This is not,
however, a general result: sometimes the order in the construction tree changes the logical
meaning (truth value) of composed formulae.

(q ∧ r) ∧ (s ∧ t)

q ∧ r

q r

s ∧ t

s t

q ∧ (r ∧ (s ∧ t))

q r ∧ (s ∧ t)

r s ∧ t

s t

Exercise 2.19 on page 2-15:
(a)

q r
q r
q r
q r

¬(q ∧ r)

=⇒

q r
q r
q r

q

=⇒
{
q r
}

All the valuations making the premisses true also make the conclusion true. We can
also see that updating with the conclusion is redundant.

B-4 APPENDIX B. SOLUTIONS TO THE EXERCISES

p q r
p q r
p q r
p q r
p q r
p q r
p q r
p q r

¬p ∨ ¬q ∨ r
=⇒

p q r
p q r
p q r
p q r
p q r
p q r
p q r

q ∨ r
=⇒

p q r
p q r
p q r
p q r
p q r

p

=⇒
{
p q r
p q r

}

We can see that updating with the conclusion has no further effect, hence the conse-
quence relation is valid.

Exercise 2.11 on page 2-11:

p q r ¬p ¬q q ∨ r ¬p→ (q ∨ r) p ∧ r p ∨ r
0 0 0 1 1 0 0 0 0
0 0 1 1 1 1 1 0 1
0 1 0 1 0 1 1 0 0
0 1 1 1 0 1 1 0 1
1 0 0 0 1 0 1 0 1
1 0 1 0 1 1 1 1 1
1 1 0 0 0 1 1 0 1
1 1 1 0 0 1 1 1 1

You can check by inspecting the rows of the table that p∧ r is not a valid consequence
and p ∨ r is.

Exercise 2.17 on page 2-14:
You can check item (a) with the following table:

B-5

You might want to use the Truth Tabulator applet to build the truth table for item (b).
The address is:

http://staff.science.uva.nl/˜jaspars/AUC/apps/javascript/proptab

Exercise 2.27 on page 2-29:
The following table shows how starting from p and q we can obtain new truth functions ap-

plying | to previous combinations.

s1: s2: s3: s4: s5: s6: s7: s8: s9:
p q p | p p | q q | q p | s1 p | s2 q | s1 s1 | s3 s2 | s4 s2 | s7

1 1 0 0 0 1 1 1 1 1 1
1 0 0 1 1 1 0 1 1 0 0
0 1 1 1 0 1 1 0 1 0 0
0 0 1 1 1 1 1 1 0 0 1

Note that there is no unique way these combinations can be obtained, for instance, s8 could have
been obtained also as s2 | s2. Note that ϕ | ϕ defines ¬ϕ. Using this observation, the remaining
five truth functions can be obtained as negations: for instance, s10 = s9 | s9.

Exercise 2.28 on page 2-30: In three ways: (1) yes,no,yes; (2) yes,no,no; (3) no,yes,no.

Exercise 2.29 on page 2-30:

(1) You have to fill in 11 entries.

(2) In the worst case, you have to fill 88 cells in the truth table, which is eight times the number
of logical symbols.

Solutions to Exercises from Chapter 3

Exercise 3.1 on page 3-4: The middle term is A.

Exercise 3.2 on page 3-14: The syllogistic pattern is not valid because it is possible to build a
counter-example in which the premises are both true but the conclusion is false. This can be seen
in the following diagram, where A = ’philosopher’, B = ’barbarian’ and C = ’greek’:

A B

C

◦

◦ × ×

Exercise 3.3 on page 3-15: The syllogistic pattern is not valid because it is possible to build a
counter-example in which the premises are both true but the conclusion is false. This can be seen
in the following diagram, where A = ’philosopher’, B = ’barbarian’ and C = ’greek’:

B-6 APPENDIX B. SOLUTIONS TO THE EXERCISES

A B

C

×

◦ × ×

Exercise 3.4 on page 3-15: The syllogistic pattern is valid because after we update with the infor-
mation given in the premises it is impossible for the conclusion to be false. This can be illustated
by the following diagram, where A = ’philosopher’, B = ’barbarian’ and C = ’greek’:

A B

C

◦
× ×

Exercise 3.5 on page 3-15: To obtain the required modification of the method for checking syllo-
gistic validity with the all quantifiers read with existential import we have to represent explicitly
the implicit assumption that we are not thinking with empty terms. In this way even universally
quantified sentences, which give empty regions in the diagram, might also implicitly give the in-
formation that another region is not empty (otherwise some of the terms used in the reasoning
will become empty, agains the assumption). To do this in a systematic manner we have to add
three existential sentences to the given premises: one for each of the terms in the syllogism. This
will correspond to putting a ◦ symbol in each circle representing a term while respecting the other
premisses. Only after this step will our method further proceed towards checking the effects of
updating with the information given in the conclusion. In this way, the following example turns
out to be a valid patern of syllogistic reasoning: ‘All men are mortal, all greeks are men, therefore,
some greeks are mortal’. (this syllogistic mode, mnemotechnically called Barbari, was considered
valid by Aristotle as it is the subordinate mode of Barbara). In general, the inference from ‘All A
are B’ to ‘Some A are B’ is valid under existential import.

Exercise ?? on page ??: (1) ¬pABC ∧ ¬pBC (2) pAC ∨ pABC (3) pAC ∨ pA.

Exercise ?? on page ??: (1) The first syllogism is invalid and the second one is valid. (2) The
following diagram illustrates the validity of the right syllogism:

B-7

A B

C

×
× ◦

An alternative representation that makes the stages in the update explicit is the following:

A B C
AB AC BC ABC

⇓ ¬pAB ∧ ¬pABC

A B C
× AB AC BC × ABC

⇓ pBC ∨ pABC

A ◦ B ◦ C
× AB AC ◦ BC × ABC

⇓ pBC ∨ pC

A ◦ B ◦ C
× AB AC ◦ BC × ABC

We can see that updating with the conclusion does not add any new information that was not
already present in the premises, hence the syllogism is valid.

(3) The following diagram ilustrates how a counterexample to the left syllogism can be con-
structed:

A B

C

× ◦
×◦

An alternative way to represent the process of finding a counterexample lists the update at
each stage of the reasoning process:

A B C
AB AC BC ABC

B-8 APPENDIX B. SOLUTIONS TO THE EXERCISES

⇓ ¬pAB ∧ ¬pABC

A B C
× AB AC BC × ABC

⇓ pB ∨ pAB

A ◦ B C
× AB AC BC × ABC

⇓ pABC ∨ pAC

◦ A ◦ B ◦ C
× AB ◦ AC BC × ABC

We can see that updating with the conclusion adds some new information which was not already
contained in the information from the premisses, hence the inference amplifies the infomation and
makes the syllogisatic reasoning invalid.

(4) For the left syllogism we have:
The initial space of valuations is a state of ignorance about the 8 propositional valuations

describing the regions of a Venn diagram, this is a big number: 28 = 256. Using blanks to
condense the set gives us a very simple representation:

p∅ pA pB pC pAB pAC pBC pABC

After the update with the information in the first premise this space of posible valuation is
26 = 64. This is 4 times smaller than before, but still to large to fit on a A4 page, unless we use
abbreviated notation:

p∅ pA pB pC pAB pAC pBC pABC

0 0

After the update with the second premise the space of valuations is halved, so now we have
25 = 32 possible valuations. Again, it makes sense to abbreviate. Here is the condensed version
of the list of possibilities at this stage:

p∅ pA pB pC pAB pAC pBC pABC

1 0 0

To check whether the conclusion holds we have to check whether pABC ∨ pAC holds in all
these valuations. This is not the case, hence the inference is invalid.

For the right syllogism the initial space of possible valuations is also the state of ignorance
about the 8 propositions describing the regions of a Venn diagram. The condensed version of this
list of valuations is the same as before. After the first update, with ¬pAB ∧ ¬pABC , we get:

p∅ pA pB pC pAB pAC pBC pABC

0 0

B-9

After the second update, with pBC ∨ pABC , we get:

p∅ pA pB pC pAB pAC pBC pABC

0 1 0

All of the valuations represented here make pBC ∨ pC true, hence the argument is valid.

Exercise 3.6 on page 3-24: We will show that there exist A and D for which both A 6=⇒ D and
A =⇒ D can be derived.

We obtain A 6=⇒ D by a simple rule application:

(A,D, 0) ∈ K
A 6=⇒ D

For A =⇒ D we use the transitivity of =⇒:

(A,B, 1) ∈ K
A =⇒ B

(B,C, 1) ∈ K
B =⇒ C

A =⇒ C
(C,D, 1) ∈ K

C =⇒ D
A =⇒ D

Therefore, the knowledge base is inconsistent.

Exercise 3.7 on page 3-24: “I don’t know”

Exercise 3.8 on page 3-24: “I knew that already”

Exercise 3.9 on page 3-24: “I knew that already”

Solutions to Exercises from Chapter 4

Exercise 4.1 on page 4-4: y < x ∨ (¬x < y ∧ ¬y < x) ∨ z < y ∨ (¬z < y ∧ ¬y < z) or, by also
using the symbol for the equality predicate, y < x ∨ x = y ∨ z < y ∨ y = z.

Exercise 4.2 . . .

Exercise 4.3 on page 4-5: (x < y ∨ x = y) ∧ (y < z ∨ y = z)

Exercise 4.4 on page 4-5: ¬((x < y ∨ x = y) ∧ (y < z ∨ y = z)) or ¬(x < y ∨ x = y) ∨ ¬(y <
z ∨ y = z)

Exercise 4.5 on page 4-6: ∀x(Bx ∧ Wx) expresses “All x have the B and W properties” or
“Everithing is a boy and walks”. ∃x(Bx → Wx) expresses “There is an x such that if he is B
then he has the W property” or “There is something (someone) that walks if it’s a boy”.

Exercise ?? on page ??: . . .

Exercise 4.7 on page 4-7: We can read the desired entailment from the following diagram:

B-10 APPENDIX B. SOLUTIONS TO THE EXERCISES

A B

C

× ×

×

×

×
×

Exercise 4.8 on page 4-7 . . .

Exercise 4.9 on page 4-8 . . .

Exercise 4.10 on page 4-12: (1) ∃x¬Lxb, (2) Rbh ∧Rhb, (3) ∀x(Rxb =⇒ Rmx).

Exercise 4.11 on page 4-12: ∃x(Bx ∧ ¬Fx)

Exercise 4.12 on page 4-12: (1) Domain of discourse: all dogs, key: B for the “barking” property,
W for the “biting” property, translation: ∀x¬(Bx ∧Wx) (2) Domain of discourse: all inaminate
objects, key: G for the “glittering” property,A for the “being gold” property, translation: ∃x(Gx∧
¬Ax) (3) Domain of discourse: all human beings, key: F for the “frienship” relation, m for the
Michelle’s name, translation: ∀xy((Fmx ∧ Fxy) → Fmy) (4) Domain of discourse: the set
of natural numbers N, key: S for the “smaller then” relation, translation: ∃x∀ySxy (5) Domain
of discourse: the set of natural numbers N, key: P for the propery of “being prime”, S for the
“smaller then” relation, translation:∀x(Px→ ∃y(Py ∧ Sxy)).

Exercise 4.13 on page 4-12:
(1) ∀x(Bx→ Lxm) (2) ∃x(Gx∧¬Lxx) (3) ¬∃x((Bx∨Gx)∧Lxp) (4) ∃x(Gx∧Lpx∧Lxj).

Exercise 4.14 on page 4-13: (1):

where solid dots are boys, open dots are girls, the arrow represents the love relation, and Mary is
the right dot. (2) the same picture as for point (1). (3) the same picture as for point (1), with Peter
the left dot. (4) the same picture as for point (1) with John the dot on the Right:

Exercise 4.15 on page 4-13:

(1) ∃x∃y(Bx ∧Gy ∧ ¬Lxy),

(2) ∀x((Bx ∧ ∃y(Gy ∧ Lxy))→ ∃z(Gz ∧ Lzx)),

(3) ∀x((Gx ∧ ∀y(By → Lxy))→ ∃z(Gz ∧ ¬Lxz)),

B-11

(4) ∀x∀y(((Gx ∧ ∀v(Bv → ¬Lxv)) ∧ (Gy ∧ ∃z(Bz ∧ Lyz)))→ ¬Lxy).

Exercise 4.16 . . .

Exercise 4.19 on page 4-18: (1) T, (2) T, (3) F, (4) T, (5) T.

Exercise 4.20 on page 4-18: (1) T, (2) F, (3) T, (4) T.

Exercise 4.21 on page 4-19:
∀x(Px→ ¬∃y(¬Py ∧Rxy))

Exercise 4.22 on page 4-20: . . .

Exercise ?? on page ??: . . .

Exercise 4.23 on page 4-21: . . .

Exercise 4.24 on page 4-21: . . .

Exercise 4.25 on page 4-21: . . .

Exercise 4.26 on page 4-22: . . .

Exercise 4.27 on page 4-24:
∃x∃y∃z (¬x = y ∧ ¬x = z ∧ ¬x = y ∧ ∀v (Pv ↔ (v = y ∨ v = x ∨ v = z)))

Exercise 4.29 on page 4-24:
(1):

(2) in a model with two elements one of which is A but not B and the other is B but not A the
formulas have a different meaning (i.e. truth value).

Solutions to Exercises from Chapter 5

Exercise 5.1 on page 5-4: ∀x∃y y < x.

Exercise 5.2 on page 5-4: ∀x(Ox↔ ¬2|x)

Exercise 5.3 on page 5-4: ∀x(Px↔ (1 < x ∧ ∀y((1 < y ∧ y < x)→ ¬y|x)))), where x ∈ N.

Exercise 5.4 on page 5-6: The occurrences of x in Rxy and Sxyz.

Exercise 5.5 on page 5-6: ∃x binds the occurrences of x in Rxx and ∀x binds the occurrence of x
in Px.

Exercise 5.6 on page 5-6: (1) and (5).

B-12 APPENDIX B. SOLUTIONS TO THE EXERCISES

Exercise 5.7 on page 5-7:

Exercise 5.8 on page 5-8:

Exercise 5.9 on page 5-14:

(Pv1)v
a := P (v1)v

a

(Rv1v2)v
a := R(v1)v

a(v2)v
a

(Sv1v2v3)v
a := S(v1)v

a(v2)v
a(v3)v

a

(v1 = v2)v
a := (v1)v

a = (v2)v
a

(¬ϕ)v
a := ¬(ϕ)v

a

(ϕ1 ⊗ ϕ2)v
a := (ϕ1)v

a ⊗ (ϕ2)v
a, for ⊗ ∈ {∧,∨,→,↔}

(Quϕ)v
a :=

{
Quϕ if u = v
Qu(ϕ)v

a otherwise
, for Q ∈ {∀, ∃}

Exercise 5.10 on page 5-14:

Exercise 5.11 on page 5-15: (1), (2), (4), (6), (9), (11).

Exercise 5.12 on page 5-16: (1) Holds because we assume nonempty domains, (2) Doesn’t hold:
D = {1, 2}, I(P) = {1}, (3) Holds because we can chose the same object twice, (4) Doesn’t
hold: D = {1, 2}, I(R) = {(1, 2), (2, 1)}, (5) Doesn’t hold: D = {1, 2}, I(R) = {(1, 2)}, (6)
Doesn’t hold: D = {1, 2}, I(R) = {(1, 2), (2, 2)}, (7) Holds because we can reuse the choice for
y in the premise when we chose again in the conclusion, (8) Doesn’t hold: D = {1, 2}, I(R) =
{(1, 2), (2, 1)}, (9) Doesn’t hold: D = {1, 2}, I(R) = {(1, 2)}, (10) see point (3), (11) Holds
because the same object can be chosen for both x and y in the conclusion.

Exercise 5.13 on page 5-17: (1) Holds, (2) Holds.

Exercise 5.14 on page 5-20:

∃y y + y + y = x. (x is a threefold)

Exercise 5.15 on page 5-22:

x >= y || y >= z

Another solution is to change the order of the conditional statements:

if x < y && y < z
print "You lose."

else
print "You win."

end

Exercise 5.16 on page 5-23: Consider what the function would do for input 4. This input satisfies
the precondition, so according to the contract the result should be ld(4) = 2. But this is not what

B-13

we get. The procedure starts by assigning 2 to d. Next, the check d**2 < n is performed. This
check fails, for d2 = 22 = 4. Therefore, the while loop will not be executed, and the function
returns the value of n, i.e., the function returns 4.

Exercise 5.18 on page 5-27: Yes it does, because in order to decide validity of a formula ϕ it is
enough to know if ¬ϕ is or is not satisfiable.

Solutions to Exercises from Chapter 6

Exercise 6.11 on page 6-10: Suppose M 6|= ¬Ka¬Kbϕ → Kb¬Ka¬ϕ then there must be
some w ∈ M such that M |=w ¬Ka¬Kbϕ ∧ ¬Kb¬Ka¬ϕ. This means that for some w ∈
{00, 01, 10, 11} we have M |=w K̂aKbϕ ∧ K̂bKa¬ϕ. If M |=00 K̂aKbϕ ∧ K̂bKa¬ϕ then
M |=11 ϕ and M |=11 ¬ϕ. If M |=01 K̂aKbϕ ∧ K̂bKa¬ϕ then M |=10 ϕ and M |=10 ¬ϕ. If
M |=10 K̂aKbϕ∧ K̂bKa¬ϕ then M |=01 ϕ and M |=01 ¬ϕ. If M |=11 K̂aKbϕ∧ K̂bKa¬ϕ then
M |=00 ϕ and M |=00 ¬ϕ.

Exercise 6.12 on page 6-10: For w ∈ {wrb,wbr, brw, bwr} the dormula is true because the
antecedent is false. We have M 6|=brw wb ∨ bb hence M |=brw ¬Ka(wb ∨ bb), therefore M |=rbw

¬KcKa(wb ∨ bb). We have M 6|=wrb wb ∨ bb hence M |=wrb ¬Ka(wb ∨ bb), therefore M |=rwb

¬KcKa(wb ∨ bb).

Exercise 6.21 on page 6-20: In the model below the formula p ∧ ¬Kp is unsuccesful in the left
world:

p p

Exercise 6.22 on page 6-20: The formula p→ Ki¬Ki¬p is a theorem of epistemic logic. Build a
proof of it using the axiomatization given in Definition 6.13.

(1) K¬p→ ¬p Axiom (Truth)
(2) (K¬p→ ¬p)→ (¬¬p→ ¬K¬p) Theorem (Prop. Logic)
(3) ¬¬p→ ¬K¬p Modus Ponens (1,2)
(4) ¬K¬p→ K¬K¬p Axiom (Introspection−)
(5) (¬¬p→ ¬K¬p)→

((¬K¬p→ K¬K¬p)→ (¬¬p→ K¬K¬p)) Theorem (Prop. Logic)
(6) (¬K¬p→ K¬K¬p)→ (¬¬p→ K¬K¬p) Modus Ponens (3,5)
(7) ¬¬p→ K¬K¬p Modus Ponens (4,6)
(8) (¬¬p→ K¬K¬p)→ (p→ K¬K¬p) Theorem (Prop. Logic)
(9) p→ K¬K¬p Modus Ponens (7,8)

Exercise 6.23 on page 6-20: Consider the epistemic situation described in the following scenario:
“Three students Ann, Bob and Cath send their request for a certain logic textbook to the library
server in the same day at 9am, 10am and 11am, respectivelly, without knowing this about each
other. Because the library has only one copy of the book, the librarian replies by e-mail to everyone

B-14 APPENDIX B. SOLUTIONS TO THE EXERCISES

informing them that the loan will be given to whoever filed the request first, without any further
detail”.

(a) Represent the student’s knowlege in an epistemic model.
(b) Check in the model build in point (a) if any of the students knows that (s)he will receive

the book.
(c) Anxious to find out who will receive the book, Bob writes an e-mail to everione saying: ‘I

filed my request at 10am’. Compute the effect of this announcement on the epistemic model from
point (a).

(d) Check in this new model if if any of the students knows that (s)he will receive the book.
(e) After this Cath sends a “reply-all” to Bob’s previous message saying: ‘Bob, I think that

you might receive the book’. Compute the effect of this announcement on the epistemic model
from point (c).

(f) Check in this new model if if any of the students knows that (s)he will receive the book.
(a) The initial epistemic situation can be represented by the following model (reflexive and

transitive relations are skipped):

ABC∗BCA ACB

CBABAC CAB

abc

abc

abcabc

abc

abc

(b): Nobody knows.
(c) The new epistemic situation can be represented as follows (again reflexive and transitive

links are skipped):

ABC∗BCA ACB

CBABAC CAB

ab

ab

bb

bc

bc

(d): Nobody knows.
(e) The new epistemic situation can be represented as follows (again reflexive and transitive

links are skipped):

B-15

ABC∗BCA

BAC

bc

bc

(f): Ann knows that she will receive the book, Bob and Cath do not know.

Exercise 6.25 on page 6-23: Suppose that Cϕ1, . . . , Cϕn 6|= Cψ. Hence there must be an epis-
temic model M ande a world w such that M |=w Cϕi for all i and M 6|=w Cψ. This means that

there exists a world v in M which is (G∼)∗-accessible from w and M 6|=v ψ. But since all for-
mulas Cϕi are true in w we also have M |=v ϕi for all i. But then this world v in M is also a
counter-example showing that ψ is not a valid consequence from ϕ1, . . . , ϕn.

Exercise 6.26 on page 6-24: This happens in the model below where the actual world is the
rightmost one:

p p pb a

Exercise 6.27 on page 6-24: After the ATM machine counts the amount X and you also do it
yourself the epistemic situation can be modeled by the model below where the actual world is
the rightmost one. Common knowledge is not achieved because the ATM machine has no way of
knowing whether you counted the money, so mutual knowledge stops after one itaration.

c c c
y m

Exercise 6.29 on page 6-25: p ∨ q ≡ ¬(¬p ∧ ¬q); p→ q ≡ ¬p ∨ q; p↔ q ≡ (p→ q) ∧ (q → p)

Exercise 6.30 on page 6-25:

pq pq pq pqabc abc abc

Exercise 6.32 on page 6-26: The innitial epistemic situation can be modelled as depicted in the
figure below:

B-16 APPENDIX B. SOLUTIONS TO THE EXERCISES

0000 0001 0010 0011

0100

0101

0110

0111

1000 1001 1010 1011

1100

1101

1110

1111

a a a a

a

a

a

a

b

b

b

b

b

b

b

b

c c

c

c

c c

c

c

d

d

d

d

d

d

d

d

After this the information evolves by eliminating one world (0000) after the father’s announce-
ment, four worlds (1000, 0100, 0010 and 0001) after the first round of ignorance answers (you can
think about this in a positive twist as four instances of announcements giving what the children
do know, or can observe: “I do not see three clean faces”), and six worlds (1001, 10101, 0110,
0101, 0011 and 1100) after the second round of ignarance answers (a positive stance would equate
this again with announcing what each of the children does know by observation: “I do not see
two clean faces” and can infer from this). In the end five worlds (1111, 1110, 1101, and 0111)
survive this sequence of announcements and in the actual one b, c, and d already know that they
are muddy.

Exercise 6.33 on page 6-26: Which of the following formulas are valid (you can assume that there
are only two agents a and b):

(1) ((Kaϕ ∧Kbϕ)→ (KaKbϕ ∧KbKaϕ))→ Cϕ

(2) Cϕ→ KaCϕ

(3) Cϕ→ CCϕ

(4) ¬Cϕ→ C¬Cϕ

Build a counterexample for the invalid formulas and a proof for the valid ones.
(1) is not valid, check it in the leftmost world of the following model:

ϕ∗ ϕ ϕ ϕ ¬ϕa ab b

B-17

(2) Assume M |=w Cϕ for arbitrary M and w. Suppose M 6|=w KaCϕ. Then there must be

an v such that w a∼ v and M 6|=v Cϕ. Therefore, there must be some u sucht that v(ab∼)∗u and

M 6|=u ϕ. Hence we also have w(ab∼)∗u, hence M 6|=w Cϕ against the assumption.

(3) Assume M |=w Cϕ for arbitrary M and w. Suppose M 6|=w CCϕ. Then there must be

an v such that w(ab∼)∗v and M 6|=v Cϕ. Therefore, there must be some u sucht that v(ab∼)∗u and

M 6|=u ϕ. Hence we also have w(ab∼)∗u, hence M 6|=w Cϕ against the assumption.

(4) is not valid, the antecedent is true and the consequent false in the rightmost world of the
model from point (1).

Exercise 6.34 on page 6-27: Consider the following two wpistemic models:

1 : ϕ ϕ ϕ ϕ ¬ϕ

2 : ϕ ϕ ϕ ϕ ϕ

a ab b

a ab b

a

(a) Can you find am formula of epistemic logic that is true in world 1 and false in world 2?

1′ : ϕ ϕ ϕ ϕ ¬ϕ

2′ : ϕ ϕ ϕ ϕ

a ab b

a ab

(b) Can you find a formula of epistemic logic that is true in world 1′ and false in world 2′? (c) Can
you find a formula that, when announced, changes the first model into the second one? (d) can
you find a formula of public announcement logic that is true in world 1 and false in world 2?

(a) No, (b) Cϕ, (c) ϕ→ Kaϕ (d) [ϕ→ Kaϕ]Cϕ

Solutions to Exercises from Chapter 7

Exercise 7.6 on page 7-4:

B-18 APPENDIX B. SOLUTIONS TO THE EXERCISES

your type?

become hostess?

pose as ideal guest

read tips appreciated?

invite kids ask to cook make pizza

guest

not really

yes

hostess

only by husband

only passively

by no-one

Exercise 7.7 on page 7-4: b̌ ; ǎ .

Exercise 7.8 on page 7-5: ?(p ∧ q).

Exercise 7.9 on page 7-5: ?(p ∨ q).

Exercise 7.10 on page 7-5: ?>.

Exercise 7.11 on page 7-5: ?⊥.

Exercise 7.15 on page 7-5: maternal grandfather.

Exercise 7.17 on page 7-6: ⊇.

Exercise 7.19 on page 7-6: R1 = {(1, 2), (3, 4)};R2 = {(1, 3)};R3 = {(3, 1)}

Exercise 7.20 on page 7-6: Řˇ = {(x, y) ∈ S2 | (y, x) ∈ Ř } = {(x, y) ∈ S2 | (x, y) ∈ R} = R

Exercise 7.21 on page 7-6: (R1 ∪ R2)̌ = {(x, y) ∈ S2 | (y, x) ∈ (R1 ∪ R2)} = {(x, y) ∈ S2 |
(y, x) ∈ R1 or (y, x) ∈ ∪R2)} = R1̌ ∪R2̌ .

Exercise 7.23 on page 7-8: α0 :=?> and αn := αn−1;α, for any n > 0.

Exercise 7.26 on page 7-9: M |=w 〈a; b〉> is equivalent to w ∈ J〈a; b〉>KM. From the semantic
definition we have: J〈a; b〉>KM = {w ∈ WM | ∃v ∈ WM : (w, v) ∈ J(a; b)KM and v ∈

B-19

J>KM} = {w ∈ WM | ∃v ∈ WM : (w, v) ∈ JaKM ◦ JbKM} = {w ∈ WM | ∃v ∈ WM :
(w, v) ∈ {(x, y) ∈ W 2

M | ∃z ∈ WM((x, z) ∈ a→M ∧(z, y) ∈ b→M)}} = {w ∈ WM | ∃v ∈
WM : (w, v) ∈ {(x, y) ∈ W 2

M | ∃z ∈ WM((x, z) ∈ a→M ∧(z, y) ∈ b→M)}} = {w ∈ WM |
∃v ∈ WM : (w, v) ∈ a→M and v ∈ {u ∈ WM | (v, u) b→M and u ∈ WM}} = {w ∈ WM |
∃v ∈ WM : (w, v) ∈ a→M and v ∈ J〈b〉>KM} = J〈a〉〈b〉>KM. J〈a〉〈b〉>KM is equivalent to
M |=w 〈a〉〈b〉>.

Exercise 7.27 on page 7-9: J?pKM = {(pq, pq), (pq, pq)}, J?(p∨q)KM = {(pq, pq), (pq, pq), (pq, pq)},
Ja; bKM = Jb; aKM = {(pq, pq)}.

Exercise 7.28 on page 7-9: [[β ;̌ α̌]]M = [[β]̌]M ◦ [[α̌]]M = {(s, t) | ∃u ∈ SM((s, u) ∈ [[β]̌]M ∧
(u, t) ∈ [[α̌]]M} = {(s, t) | ∃u ∈ SM((u, s) ∈ [[β]]M ∧ (t, u) ∈ [[α]]M} = {(s, t) | (t, s) ∈
[[α]]M ◦ [[β]]M} = {(s, t) | (t, s) ∈ [[α;β]]M} = [[(α;β)̌]]M

[[βˇ∪ α̌]]M = [[β]̌]M ∪ [[α̌]]M = [[β]̌]M ∪ [[α̌]]M = {(s, t) | (t, s) ∈ [[α]]M} ∪ {(s, t) |
(t, s) ∈ [[β]]M} = {(s, t) | (t, s) ∈ [[β]]M ∪ [[α]]M} = [[(β ∪ α)̌]]M

[[(α∗)̌]]M = {(s, t) | (t, s) ∈ [[α∗]]M} = {(s, t) | (t, s) ∈ ([[α]]M)∗} = {(s, t) | (t, s) ∈⋃
n∈N([[α]]M)n} =

⋃
n∈N([[α̌]]M)n = ([[α̌]]M)∗

Exercise 7.29 on page 7-10: α̌ =

βˇ∪ γˇ if α = (β ∪ γ)̌
β ;̌ γˇ if α = (β; γ)̌
?ϕ if α =?ϕ̌

(β)̌∗ if α = (β∗)̌
β if α = βˇ̌

{(t, s) | (s, t) ∈ a} if α = a

Exercise 7.30 on page 7-10: 〈(a; b) ∪ (?ϕ; c)〉ψ ↔ 〈a; b〉ψ ∨ 〈?ϕ; c〉ψ ↔ 〈a〉〈b〉ψ ∨ 〈?ϕ〉〈c〉ψ ↔
〈a〉〈b〉ψ ∨ (ϕ ∧ 〈c〉ψ).

Exercise 7.31 on page 7-11: ` 〈α∗〉ϕ↔ ϕ ∨ 〈α〉〈α∗〉ϕ.

Exercise 7.33 on page 7-15: JiKs = i, JvKs = s(v), Ja1 + a2Ks = Ja1Ks + Ja2Ks, Ja1 ∗ a2Ks =
Ja1Ks ∗ Ja2Ks, Ja1 − a2Ks = Ja1Ks − Ja2Ks.

Exercise 7.34 on page 7-16: There are three possible procedure stages: (1) both drawn pebbles are
black (2) both drawn pebbles are white (3) there have been drawn a white and a black pebble. For
(1) the number of white pebbles remains unchanged, for (2) the number of white pebbles remains
odd (n′ = n − 2) for (3) the number of white pebbels remains unchanged (n′ = n − 1 + 1).
Hence the “oddness” property of the number of white pebbels is invariant during any number of
executions of the drawing procedure. Therefore, if there is only one pebble left it must be white.

Exercise 7.37 on page 7-19:

(1)

a. { 1, 3 }

b. { 2 }

c. { 2, 3 }

B-20 APPENDIX B. SOLUTIONS TO THE EXERCISES

(2) The formula 〈?p〉 ∧ [b](p ∧ ¬p) is true only at state 4 (but there are others).

(3)

a. b; b = { (2, 4) }
b. a ∪ b = { (1, 2), (2, 2), (1, 4), (4, 4), (2, 3), (3, 4) }
c. a∗ = { (1, 1), (2, 2), (3, 3), (4, 4), (1, 2), (1, 4) }

(4) The action
(
?(¬p ∧ ¬q); a; b

)
is given by { (1, 3) }.

Exercise 7.38 on page 7-20:

(1)

[R; (S ∪ T)]ϕ ↔ [R][S ∪ T]ϕ by axiom [π1;π2]ϕ↔ [π1][π2]ϕ
↔ [R]([S]ϕ ∧ [T]ϕ) by axiom [π1 ∪ π2]ϕ↔ ([π1]ϕ ∧ [π2]ϕ)
↔ [R][S]ϕ ∧ [R][T]ϕ by axiom [π](ϕ ∧ ψ)↔ ([π]ϕ ∧ [π]ψ)

(2) The relation (R ∪ S)∗ allow you to choose between R and S any number of times so, for
example, R;S;R is allowed. The relation R∗;S∗ tells you to apply R any number of times,
and then apply S any number of times, so R;S;R is not allowed. The following model is a
counter-example:

1 2 3 4
R S R

We have (1, 4) ∈ (R ∪ S)∗, but (1, 4) /∈ R∗;S∗.

Exercise 7.39 on page 7-20:
(a) No.
(b) (1): {5, 6}, (2): {3}, (3): ∅;
(c) KE(〈l〉q ∨ 〈r〉q).

Solutions to Exercises from Chapter 9

Exercise 9.1 on page 9-8:

tL ϕ t ψ ◦

ϕ ◦ ψ ψ ◦ ϕ

tR ϕ t ψ ◦

◦ϕ,ψ ◦ϕ,ψ

Exercise 9.2 on page 9-8: Here you have the left-to-right direction:

B-21

¬(ϕ t ψ) ◦ ¬ϕ t ψ

¬L

◦ϕ t ψ,¬ϕ t ψ

tR

ϕ,ψ ◦ ¬ϕ t ψ

tR

ϕ,ψ,¬ϕ,ψ◦

¬L

ϕ,ψ, ψ • ϕ

ϕ,ψ • ¬ϕ,ψ

◦ϕ,ψ,¬ϕ t ψ

tR

¬ϕ,ψ • ϕψ ◦ ¬ϕ,ψ, ϕ, ψr

¬R

ϕ • ψ,ϕ, ψ

You can check that the right-to-left direction also holds.

Exercise 9.3 on page 9-8: Here you have the table for point (1):

p ∨ (q ∧ r) ◦ (p ∨ q) ∧ (p ∨ r)

∧R

p ∨ (q ∧ r) ◦ p ∨ q

∨L

p ◦ p ∨ q

∨R

p • p, q

q ∧ r ◦ p ∨ q

∧L/∨R

q, r • p, q

p ∨ (q ∧ r) ◦ p ∨ r

∨L

p ◦ p ∨ r

∨R

p • p, r

q ∧ r ◦ p ∨ r

∧L/∨R

q, r • p, r

You can chack that point (2) also tests positively for validity.

Exercise 9.4 on page 9-9: Here you have the table for point (2), now with implicite rules:

B-22 APPENDIX B. SOLUTIONS TO THE EXERCISES

p ∨ q,¬(p→ q), (p ∧ q)↔ p◦

p ∨ q, (p ∧ q)↔ p ◦ p→ q

p ∨ q, (p ∧ q)↔ p, p ◦ q

(p ∧ q)↔ p, p, q • q (p ∧ q)↔ p, p, q ◦ q

p, q ◦ p, q, p ∧ q

p, q, p • q, p p, q, p • q, q

p ∧ q, p, p, p ◦ q

p, q, p, p, p • q

You can check that point (1) is not satisfiable either.

Exercise 9.5 on page 9-9:

Exercise 9.6 on page 9-11:

Exercise 9.7 on page 9-12:

Exercise 9.8 on page 9-12:

Exercise 9.9 on page 9-16:

Exercise 9.10 on page 9-16:

Exercise 9.11 on page 9-19:

Exercise 9.12 on page 9-19:

Exercise 9.13 on page 9-19:

Exercise 9.14 on page 9-21:

Exercise 9.15 on page 9-26:

Exercise 9.16 on page 9-27:

Exercise 9.17 on page 9-27:

Exercise 9.18 on page 9-27:

Exercise 9.19 on page 9-29:

Exercise 9.20 on page 9-29:

B-23

Solutions to Exercises from Chapter 10

Exercise 10.1 on page ??

Exercise 10.2 on page ??

Exercise 10.3 on page ??

Exercise ?? on page ??

Exercise 10.5 on page ??

Exercise 10.6 on page ??

Exercise 10.7 on page 10-10

Exercise 10.8 on page ??

Exercise 10.9 on page ??

Exercise 10.10 on page ??

Exercise 10.11 on page ??

Exercise 10.12 on page ??

Exercise 10.13 on page ??

Exercise 10.14 on page ??

Exercise ?? on page ??

Exercise ?? on page ??

Solutions to Exercises from Chapter 11

Exercise 11.1 on page 11-4:

AF (p↔ (q ↔ r)) =
= AF ((¬p ∨ (q ↔ r)) ∧ (p ∨ ¬(q ↔ r)))
= (AF (¬p ∨ (q ↔ r))) ∧ (AF (p ∨ ¬(q ↔ r)))
= (AF (¬p) ∨AF (q ↔ r)) ∧ (AF (p) ∨AF (¬(q ↔ r)))
= (¬p ∨AF ((¬q ∨ r) ∧ (q ∨ ¬r))) ∧ (p ∨ ¬AF ((¬q ∨ r) ∧ (q ∨ ¬r)))
= (¬p ∨ (AF (¬q ∨ r) ∧AF (q ∨ ¬r))) ∧ (p ∨ ¬(AF (¬q ∨ r) ∧AF (q ∨ ¬r)))
= (¬p ∨ ((AF (¬q) ∨AF (r)) ∧ (AF (q) ∨AF (¬r)))) ∧ (p ∨ ¬((AF (¬q) ∨AF (r)) ∧ (AF (q) ∨AF (¬r))))
= (¬p ∨ ((¬q ∨ r) ∧ (q ∨ ¬r))) ∧ (p ∨ ¬((¬q ∨ r) ∧ (q ∨ ¬r)))

B-24 APPENDIX B. SOLUTIONS TO THE EXERCISES

Exercise 11.2 on page 11-5:

NNF (¬(p ∨ ¬(q ∧ r))) = NNF (¬p) ∧NNF (¬¬(q ∧ r))
= ¬p ∧NNF (q ∧ r)
= ¬p ∧ (NNF (q) ∧NNF (r))
= ¬p ∧ q ∧ r

Exercise 11.3 on page 11-6:

CNF ((p ∨ ¬q) ∧ (q ∨ r)) = CNF (p ∨ ¬q) ∧ CNF (q ∨ r)
= DIST (CNF (p), CNF (¬q)) ∧DIST (CNF (q), CNF (r))
= DIST (p,¬q) ∧DIST (q, r)
= (p ∨ ¬q) ∧ (q ∨ r)

Exercise 11.4 on page 11-6:

CNF ((p ∧ q) ∨ (p ∧ r) ∨ (q ∧ r)) =
= DIST (CNF (p ∧ q), CNF ((p ∧ r) ∨ (q ∧ r)))
= DIST ((CNF (p) ∧ CNF (q)), DIST (CNF (p ∧ r), CNF (q ∧ r)))
= DIST ((p ∧ q), DIST ((CNF (p) ∧ CNF (r)), (CNF (q) ∧ CNF (r))))
= DIST ((p ∧ q), DIST ((p ∧ r), (q ∧ r)))
= DIST ((p ∧ q), (DIST (p, (q ∧ r)) ∧DIST (r, (q ∧ r))))
= DIST ((p ∧ q), (DIST (p, q) ∧DIST (p, r)) ∧ (DIST (r, q) ∧DIST (r, r)))
= DIST ((p ∧ q), ((p ∨ q) ∧ (p ∨ r)) ∧ ((r ∨ q) ∧ (r ∨ r)))
= DIST (p, ((p ∨ q) ∧ (p ∨ r)) ∧ ((r ∨ q) ∧ (r ∨ r))) ∧

∧DIST (q, ((p ∨ q) ∧ (p ∨ r)) ∧ ((r ∨ q) ∧ (r ∨ r)))
= (DIST (p, ((p ∨ q) ∧ (p ∨ r))) ∧DIST (p, ((r ∨ q) ∧ (r ∨ r)))) ∧

∧(DIST (q, ((p ∨ q) ∧ (p ∨ r))) ∧DIST (q, ((r ∨ q) ∧ (r ∨ r))))
= (DIST (p, (p ∨ q)) ∧DIST (p, (p ∨ r))) ∧ (DIST (p, (r ∨ q)) ∧DIST (p, (r ∨ r)))) ∧

∧(DIST (q, (p ∨ q)) ∧DIST (q, (p ∨ r))) ∧ (DIST (q, (r ∨ q)) ∧DIST (q, (r ∨ r))))
= (p ∨ p ∨ q) ∧ (p ∨ p ∨ r) ∧ (p ∨ r ∨ q) ∧ (p ∨ r ∨ r) ∧ (q ∨ p ∨ q) ∧ (q ∨ p ∨ r) ∧ (q ∨ r ∨ q) ∧ (q ∨ r ∨ r)

Exercise 11.5 on page 11-8:
Assume the premisse is true. Then, because the premise is a clause form C1, . . . , Ci, . . . , Cn,

every conjunctCk for k ∈ {1, ..., n} is true. Therefore everyCk for k ∈ {1, . . . , i−1, i+1, . . . , n}
is true. Hence the conclusion is true and the inference rule is sound.

B-25

Exercise 11.6 on page 11-9:
Test the validity of the following inferences using resolution:

(1) ((p ∨ q) ∧ ¬q)→ r, q ↔ ¬p |= r

(2) (p ∨ q)→ r,¬q,¬q ↔ p |= r

(1) First we translate the inferences in a corresponding clause form as follows:

{{¬p, q, r}, {¬p,¬q}, {q, p}, {¬r}}

next, we apply resolution, to the first and second clauses:

{{¬p, r}, {q, p}, {¬r}}

we apply resolution again, to the first and second clauses:

{{r, q}, {¬r}}

we apply resolution one more time, to the first and second clauses:

{{q}}

The clause form containing the premises and the conclusion negated is satisfiable, therefore
the inference is not valid.

(2) First we translate the inferences in a corresponding clause form as follows:

{{¬p, r}, {¬q, r}, {¬q}, {¬p,¬q}, {q, p}, {¬r}}

next, we apply resolution, to the first and fifth clauses:

{{r, q}, {¬q, r}, {¬q}, {¬p,¬q}, {¬r}}

we apply resolution again, to the first and second clauses:

{{r}, {¬q}, {¬p,¬q}, {¬r}}

we apply resolution one more time, to the first and last clauses:

{[], {¬q}, {¬p,¬q}}

The clause form containing the premises and the conclusion negated is not satisfiable, there-
fore the inference is valid.

Exercise 11.7 on page 11-9:
Determine which of the following clause forms are satisfiable:

(1) {{¬p, q}, {¬q}, {p,¬r}, {¬s}, {¬t, s}, {t, r}}

(2) {{p,¬q, r}, {q, r}, {q}, {¬r, q}, {¬p, r}}

B-26 APPENDIX B. SOLUTIONS TO THE EXERCISES

Give a satisfying valuation for the satisfyable case(s).

(1) We start with the clause form:

{{¬p, q}, {¬q}, {p,¬r}, {¬s}, {¬t, s}, {t, r}}.

Applying resolution for ¬q, q to the first two clauses gives:

{{¬p}, {p,¬r}, {¬s}, {¬t, s}, {t, r}}.

Applying resolution for ¬p, p to the first two clauses gives:

{{¬r}, {¬s}, {¬t, s}, {t, r}}.

Applying resolution for ¬r, r to the first and last clauses gives:

{{¬s}, {¬t, s}, {t}}.

Applying resolution for ¬s, s to the first two clauses gives:

{{¬t}, {t}}.

Applying resolution for ¬t, t to the first two clauses gives:

{[]}.

We have derived a clause form containing the empty clause. We have tried to construct a
situation where all clauses are true but this attempt has led us to a contradiction. Hence the
clause form is not satisfiable.

(2) We start with the clause form:

{{p,¬q, r}, {q, r}, {q}, {¬r, q}, {¬p, r}}

Applying resolution for ¬q, q to the first two clauses gives:

{{p, r}, {r}, {q}, {¬r, q}, {¬p, r}}

Applying resolution for r,¬r to the second and fourth clauses gives:

{{p, r}, {q}, {q}, {¬p, r}}

Applying resolution for p,¬p to the first and last clauses gives:

{{r}, {q}, {q}, {r}}

The clause form is satisfiable, and a valuation that satisfy it is the one in which all proposi-
tional atoms p, q and r are true.

Exercise 11.8 on page 11-9:
First we express the constraints as logical formulas, as follows:

B-27

• a ∨ b

• (a ∧ e ∧ ¬f) ∨ (a ∧ ¬e ∧ f) ∨ (¬a ∧ e ∧ f)

• b↔ c

• a↔ ¬d

• c↔ ¬d

• ¬d→ ¬r

Next we translate each formula in conjunctive normal form, as follows:

• a ∨ b

• (a ∨ e) ∧ (a ∨ f) ∧ (e ∨ f) ∧ (¬a ∨ ¬e ∨ ¬f)

• (¬b ∨ c) ∧ (b ∨ ¬c)

• (¬a ∨ ¬d) ∧ (a ∨ d)

• (¬c ∨ ¬d) ∧ (c ∨ d)

• d ∨ ¬e

From this we can construct the following clause form:

{{a, b}, {a, e}, {a, f}, {e, f}, {¬a,¬e,¬f}, {¬b, c}, {b,¬c}, {¬a,¬d}, {a, d}, {¬c,¬d}, {c, d}, {d,¬e}}

Exercise 11.9 on page 11-9:

{{a, b}, {a, e}, {a, f}, {e, f}, {¬a,¬e,¬f}, {¬b, c}, {b,¬c}, {¬a,¬d}, {a, d}, {¬c,¬d}, {c, d}, {d,¬e}}

We can apply resolution and find out the satisfying valuation in the following way:

B-28 APPENDIX B. SOLUTIONS TO THE EXERCISES

{a, b} {a, e, f} {a, e} {e, f} {a, f} {b, c} {b, c} {a, d} {a, d} {c, d} {c, d} {d, e}

{b, d}{a, c} {a, e}{a, c}

{a, b}{a, d} {a, f}{c, d}

{b, d}{a, e}{d, e, f}

{b, c}{e, f}

{a, e}

{a} {b} {c} {d} {e} {f}

Exercise 11.10 on page 11-11:

(1) {(1, 2), (2, 3), (3, 4), (1, 3), (1, 4), (2, 4)},

(2) {(1, 2), (2, 3), (3, 4), (1, 3), (1, 4), (2, 4)},

(3) {(1, 2), (2, 3), (3, 4), (1, 3), (1, 4), (2, 4)},

(4) {(1, 2), (2, 1), (1, 1), (2, 2)},

(5) {(1, 1), (2, 2)}.

Exercise 11.11 on page 11-13: (∀x∀y∀z((Rxy ∧ Ryz) → Rxz) ∧ ∀x∀y∀z((Sxy ∧ Syz) →
Sxz))→ (∀x∀y∀z((R ◦ Sxy ∧R ◦ Syz)→ R ◦ Sxz))

Exercise 11.12 on page 11-14:

R ◦ S = {(0, 2), (2, 1), (1, 1)},
(R ◦ S)+ = {(0, 2), (2, 1), (1, 1), (0, 1)}.

B-29

Solutions to Exercises from Chapter 13

Exercise 13.1 on page 13-3:

1. 0 + 0 = 0 + 0 PL axioms 2,4

2. y + 0 = 0 + y assumption

3. sy + 0 = sy PA3

4. sy = s(y + 0) PA3, PL

5. s(y + 0) = s(0 + y) from 2 by PL

6. s(0 + y) = 0 + sy PA3

7. sy + 0 = 0 + sy from 3,4,5,6 by PL

8. y + 0 = 0 + y → sy + 0 = 0 + sy 2, conditionalisation

9. ∀y(y + 0 = 0 + y → sy + 0 = 0 + sy) 8, UGEN

10. ∀y y + 0 = 0 + y) from 1, 6, PA5-scheme by MP

Exercise 13.2 on page 13-3:

1. x+ y = y + x assumption

2. x+ sy = s(x+ y) PA4

3. s(x+ y) = s(y + x) from 1 by PL

4. s(y + x) = y + sx PA4

5. y + sx = y + s(x+ 0) PA3

6. y + s(x+ 0) = y + (x+ s0) PA4

7. y + (x+ s0) = y + (s0 + x) from 1

8. y + (s0 + x) = (y + s0) + x proved in the text

9. (y + s0) + x = s(y + 0) + x PA4

10. s(y + 0) + x = sy + x PA3

11. x+ sy = sy + x from 2, . . . , 10 by PL

12. x+ y = y + x→ x+ sy = sy + x 1, conditionalisation

13. ∀y(x+ y = y + x→ x+ sy = sy + x) 12, UGEN

Exercise 13.3 on page 13-3:
. . . Maybe this is too difficult . . .

Solutions to Exercises from Chapter A

Exercise A.1 on page A-2

B-30 APPENDIX B. SOLUTIONS TO THE EXERCISES

Exercise A.2 on page A-2

Exercise A.3 on page A-4

Exercise A.4 on page A-4

Exercise A.5 on page A-4

Exercise A.6 on page A-4

Exercise A.7 on page A-4

Exercise A.8 on page A-5:
{(1, 1), (2, 2), (3, 3), (1, 2), (1, 3), (2, 3)}

Exercise A.9 on page A-6:
{(1, 1), (2, 2), (3, 3), (1, 2), (1, 3), (2, 3), (2, 1), (3, 1), (3, 2)}

Exercise A.10 on page A-7: Besides the empty and the universal relations we also have the identity
relation:

and also the following, each one with a version in which the isolated point can be not reflexive:

Exercise A.11

B-31

Exercise A.12

Exercise A.13 on page A-8: These are the same as the ones given in the solution to exercise A.10,
except the empty relation.

Exercise A.14 on page A-8:
6RTS = {(2, 1), (1, 2)};
R6TS = {(1, 1), (2, 2), (3, 3), (1, 2), (2, 1), (2, 3), (3, 2)};
RT6S = {(1, 1), (2, 2), (1, 2)}.
What these examples show is that reflexivity does not follow from transitivity and symmetry,

that transitivity does not follow from reflexivity and symmetry, and that symmetry does not follow
from reflexivity and transitity.

Exercise A.15 on page A-8: Base case: Proved in the text. Induction Hypothesis: If |M | < n
then ∃x∃y(Rxy ∧ Ryx) or ∃x∀y¬Rxy or ∃x∃y∃z(Rxy ∧ Ryx ∧ ¬Rxz). Induction step: take
an arbitrary model such that |M | = n− 1 and build M ′ with dom(M ′) = dom(M) ∪ {a}, such
that R′ = R ∪ Ra where Ra ⊆ RA with RA = {(x, y) | x ∈ dom(M), y = a} ∪ {(x, y) |
y ∈ dom(M), x = a} ∪ {(x, y) | x = a, y = a}. If ∃x∃y∃z(Rxy ∧ Ryx ∧ ¬Rxz) then
∃x∃y∃z(R′xy∧R′yx∧¬R′xz) and we are done. If ∃x∃y(Rxy∧Ryx) then ∃x∃y(R′xy∧R′yx)
and we are done. If ¬∃x∃y(Rxy ∧ Ryx) and ¬∃x∃y∃z(Rxy ∧ Ryx ∧ ¬Rxz) and ∃x∀y¬Rxy
then if for some x ∈ M that has no successor we have ¬R′xa we are done. Suppose that for all
x ∈ M that have no successors we have R′xa, then in order for M ′ to be serial we need to have
R′ay for some y ∈ M ′. If Raa then asymmetry is violated and we are done. Take an arbitrary
z ∈ M ′ such that R′za and z 6= a then if we have R′az, asymmetry is again violated and we are
done. If, for arbitrary z, y ∈ M ′ we have R′za, R′ay and y 6= z we have to consider two cases.
If ¬Ryz then transitivity is violated and we are done. In case Ryz then we have R′ay, R′yz,
and R′za. If we satisfy transitivity of R′ then we must also have R′aa which in turn violates the
asymmetry condition.

Exercise A.16 on page A-9: (1)

(2)

(3)

B-32 APPENDIX B. SOLUTIONS TO THE EXERCISES

Exercise A.17 on page A-10:

Exercise A.18 on page A-11:

Exercise A.19 on page A-11:

Exercise A.20 on page A-12: We prove that for all natural numbers n:

n∑
k=0

2k = n(n+ 1).

Basis. For n = 0, we have
∑0

k=0 2k = 0 = 0 · 1, so for this case the statement holds.
Induction step. We assume the statement holds for some particular natural number n and we show
that it also holds for n + 1. So assume

∑n
k=0 2k = n(n + 1). This is the induction hypothesis.

We have to show:
∑n+1

k=0 2k = (n+ 1)(n+ 2).
We have:

n+1∑
k=0

2k =
n∑

k=0

2k + 2(n+ 1).

Now use the induction hypothesis:

n+1∑
k=0

2k =
n∑

k=0

2k + 2(n+ 1) ih= n(n+ 1) + 2(n+ 1) = n2 + 3n+ 2 = (n+ 1)(n+ 2).

This settles the induction step. It follows that for all natural numbers n,
∑n

k=0 2k = n(n+ 1).

Bibliography

[Bir98] R. Bird. Introduction to Functional Programming Using Haskell. Prentice Hall, 1998.

[Cal88] Italo Calvino. Six Memos for the Next Millennium. Harvard University Press, 1988.

[DI07] Hal Daume III. Yet another Haskell tutorial, wikibooks.org edition, 2007.

[DvE04] K. Doets and J. van Eijck. The Haskell Road to Logic, Maths and Programming, vol-
ume 4 of Texts in Computing. College Publications, London, 2004.

[EU10] Jan van Eijck and Christina Unger. Computational Semantics with Functional Program-
ming. Cambridge University Press, 2010.

[HFP96] P. Hudak, J. Fasel, and J. Peterson. A gentle introduction to Haskell. Techni-
cal report, Yale University, 1996. Online version: http://www.haskell.org/
tutorial/.

[Hoa69] C.A.R. Hoare. An axiomatic basis for computer programming. Communications of the
ACM, 12(10):567–580, 583, 1969.

[Hut07] G. Hutton. Programming in Haskell. Cambridge University Press, 2007.

[Jac00] Daniel Jackson. Automating first-order relational logic. ACM SIGSOFT Software En-
gineering Notes, 25(6):130–139, 2000.

[Jac06] Daniel Jackson. Software Abstractions; Logic, Language and Analysis. MIT Press,
2006.

[OSG08] Bryan O’Sullivan, Don Stewart, and John Goerzen. Real World Haskell. O’Reilly,
2008.

[PJ03] S. Peyton Jones, editor. Haskell 98 Language and Libraries; The Revised Report. Cam-
bridge University Press, 2003.

[Rus05] B. Russell. On denoting. Mind, 14:479–493, 1905.

[Tho99] S. Thompson. Haskell: the craft of functional programming (second edition). Addison
Wesley, 1999.

[Tur36] A.M. Turing. On computable real numbers, with an application to the Entschei-
dungsproblem. Proceedings of the London Mathematical Society, 2(42):230–265, 1936.

B-33

