
Chapter 8

Validity Testing

In the first three chapters various methods have been introduced to decide the validity
of different sorts of inferences. We have discussed truth-tables and the update method
for propositional logic, and also a method using Venn-diagrams for syllogistic reasoning.
In this chapter we will introduce a uniform method to decide validity for the logics of
the first part of this book. This method has been introduced for propositional logic and
predicate logic by the Dutch philosopher and logician Evert Willem Beth (1908-1964) in
the fifties of the previous century.

The basic idea behind this method comes down to the following principle which we have
stressed at earlier occasions. ref

An inference is valid if and only if there exists no counter-examples, i.e.,
there is no situation in which the premises hold and the conclusion is false.

The method consists of a rule-based construction of a counter-example for a given infer-
ence. Each step of the construction is given account of in a tree-like structure which is
called a tableau. During this construction it may be that, due to conflicting information,
the system detects that no counter-examples can be constructed. We speak of a closed
tableau in such a case, and it implies that no counter-examples exist. We may then safely
conclude that the inference which we are analyzing must be valid.
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Evert Willem Beth (left). TABLEAUX is a large bian-
nual conference where computer scientists and logicians
meet to present and discuss the latest developments on
tableau methods and their application in automated rea-
soning systems.

The tableau method is a very powerful method. It is complete for propositional and predi-
cate logical reasoning. This means that in case of a valid inference the validity can always
be proved by means of a closed tableau, that is, the exclusion of counter-examples. More-
over, the tableau method can be implemented quite easily within computer programs, and
is therefore used extensively in the development of automated reasoning systems.ref

In the case of propositional logic the tableau method we will discuss here can generate all
counter-models for invalid inferences. In this respect, the situation in predicate logic is
quite different. If an inference is invalid a counter-model must exist, but it may be that it
can not be constructed by means of the rules of the tableau system. In this chapter we will
introduce two tableau systems for predicate logic of which one is better (but a bit more
difficult) than the other in finding counter-models for invalid inferences, but still this more
advanced system is not able to specify infinite counter-models, which means that invalid
inferences with only infinite counter-models — we will see one example in the section
on predicate logic — their invalidity can not be demonstrated by this system. In fact, a
perfect tableau system does not exist for predicate logic. Since the thirties of the previous
century, due to the work of Alonzo Church and Alan Turing, we know that there exists
no decision method in general which detects invalidity for all invalid predicate logical
inferences.ref

8.1 Tableaus for propositional logic

But let us first start with the propositional logical case. For checking the validity of a
propositional logical inference we can use the method of truth-tables (Chapter 2). If we
have an inference ϕ1, ..., ϕn/ψ then we need to set up truth-tables for all the formulas
ϕ1, ..., ϕn, ψ and then see whether there is one row, at which the formulas ϕ1, ..., ϕn are
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all true (1) and ψ is false (0). If this is the case we have detected a counter-model, and
then the inference must be invalid. If such a row can not be found then the inference must
be valid since it does not have counter-models in this case.

The tables are built up step by step, assigning truth-values to the proposition letters, who
represent some atomic bit of propositional information, and then assigning truth-values
to all the formulas following the grammatical structures of the formulas. It is therefore
called a bottom up method.

The tableau method works exactly in the opposite direction: top-down. It starts with the
original inference and then tries to break it down into smaller pieces. If it arrives at the
smallest parts, the proposition letters, and has not run into contradictions then this atomic
information can be used to specify a counter-model and invalidity for the given inference
has then been proved. If it does not succeed to do so then the tableau is a proof that no
counter-model exists, and in this case, the inference must be valid.

Let us get more specific and take a simple valid inference:

p ∧ (q ∨ r) |= (p ∧ q) ∨ r (8.1)

We start with a simplistic representation of a candidate counter-example. It depicts a
world with two hemispheres of which the true information is contained in the upper half,
and the false information in the lower part.

p ∧ (q ∨ r)
(p ∧ q) ∨ r

(8.2)

The truth-conditions of the propositions, as defined by the connectives they contain, de-
termine whether this potential counter-example can be realized. As the only true formula
is a conjunction, we know that the two conjuncts must be true. The only false proposition
is a disjunction, and therefore both these disjuncts must also be false. This leads to the
following further specification of our potential counter-example:

p q ∨ r
p ∧ q r

(8.3)

We know now that our candidate counter-example must at least support p and falsify r.
The exclusion of six other valuations has already taken place by this simple derivation.
Still it is not sure whether the picture in (8.3) captures a real counter-example since q ∨ r
must be true and p ∧ q must be false. The first formula is a disjunction and because it is
true, the formula itself does not give us accurate information about the truth-values of the
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the arguments q and r. The only thing we know is that at least one of them must be true.
This makes our search more complicated. The following two candidates are then both
potential counter-examples.

p q

p ∧ q r
p r

p ∧ q r

The world on the right hand can not be a counter-example because it requires r to be
both true and false. This can never be the case in one single world, and therefore this
possibility has to be canceled as a counter-model. The candidate on the left contains a
false conjunction, p ∧ q. Again, this gives us no precise information, since the falsity of
a conjunction only claims the falsity of at least one of the conjuncts. As a consequence,
this world must be separated into the following two possibilities.

p q

p r

p q

q r
(8.4)

The first of these two possibilities can not represent a real world because p is both true
and false there. The second can not be realized either since q is both true and false in this
case. Real counter-examples for this inference do not exist! The inevitable conclusion is
that (p ∧ q) ∨ r must be true whenever p ∧ (q ∨ r) is true.

For sake of notation, we will not continue to use the encircled representations as in this
first example. We will use a little circle ◦ instead and write the true formulas on its left
side, and the false formulas on the right side of this circle. Doing so, we can summarize
our search for a counter-example for the inference p ∧ (q ∨ r)/(p ∧ q) ∨ r as a tree in the
following way.

p ∧ (q ∨ r) ◦ (p ∧ q) ∨ r

p, q ∨ r ◦ (p ∧ q) ∨ r

p, q ∨ r ◦ p ∧ q, r

p, q ◦ p ∧ q, r

p, q ◦ p, r p, q ◦ q, r

p, r ◦ p ∧ q, r

(8.5)

Each node in the tree is called a sequent. A tree of sequents is called a tableau. A branch
of such a tableau is closed if its end node contains a sequent with a formula which appears
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both on the left (true) and on the right (false) part of the sequent. It means that this branch
does not give a counter-example for the sequent as given at the top of the tableau. If
all branches are closed then the tableau is also closed, and it says, just as in the earlier
example, that the top-sequent represents in fact a valid inference. A branch of a tableau is
called open if its final node is not closed and contains no logical symbols. In this case we
have found a counter-example since there are only propositional letters left. A valuation
which assigns the value 1 to all the proposition letters on the left part of such a sequent
in this end node and 0 to those on the right side will be a counter-model for the inference
with which you started the tableau. To illustrate this we can take the earlier example and
interchange premise and conclusion. The inference (p ∧ q) ∨ r/p ∧ (q ∨ r) is an invalid
inference, and by using the tableau method we should be able to find a counter-model.

(p ∧ q) ∨ r ◦ p ∧ (q ∨ r)

p ∧ q ◦ p ∧ (q ∨ r) r ◦ p ∧ (q ∨ r)

r ◦ p r ◦ q ∨ r (8.6)

In the first step we have removed the disjunction on the left which led to two possibilities.
Then in the second resulting sequent we have removed the conjunction on the right part
of the sequent, which led to two new possibilities. The final node with the sequent r ◦ p
represents a real counter-example. This branch is open. A valuation V with V (p) = 0
and V (r) = 1 is a counter-model indeed: V ((p ∧ q) ∨ r) = 1 and V (p ∧ (q ∨ r)) = 0. In
fact, this open branch represents two counter-examples since the truth-value of q does not
matter in this case. The situations pqr and pqr are both counter-examples.

The reader may check for himself that the other branches do not give other counter-
models. They all close eventually. This means that there are only two counter-models.
The tableau as given in (8.6) suffices as a proof of invalidity here. As soon as an open
branch has been constructed it is not needed to inspect the other branches.

8.1.1 Reduction rules

A proper tableau needs to be set up according precise reduction rules. A reduction rule is
specified by the logical symbol that is to be removed, and the truth-value of the formula as
indicated by the sequent (left or right of the truth-falsity separation symbol ◦). Such a rule
is defined by the truth-conditions for the logical symbols. The following schema depicts
the rules for conjunction and disjunction, which we already have used in the previous
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p ∧ (q ∨ r) ◦ (p ∧ q) ∨ r

∧L

p, q ∨ r ◦ (p ∧ q) ∨ r

∨R

p, q ∨ r ◦ p ∧ q, r

∨L

p, q ◦ p ∧ q, r

∧R

p, q • p, r p, q • q, r

p, r • p ∧ q, r

(p ∧ q) ∨ r ◦ p ∧ (q ∨ r)

∨L

p ∧ q ◦ p ∧ (q ∨ r) r ◦ p ∧ (q ∨ r)

∧R

r � p r ◦ q ∨ r

Figure 8.1: Complete tableaus for the earlier examples.

examples.

∧L ϕ ∧ ψ ◦

ϕ, ψ ◦

∧R ◦ ϕ ∧ ψ

◦ ϕ ◦ ψ

∨L ϕ ∨ ψ ◦

ϕ ◦ ψ ◦

∨R ◦ ϕ ∨ ψ

◦ ϕ, ψ
(8.7)

The rules ∧L and ∨L tell us what to do with a conjunction and disjunction, respectively,
when it appears on the left side of a sequent. We use a green background here to make it
explicit that when we apply such a rule, we are working on a formula which is claimed to
be true. The R-rules are rules which deal with false conjunctions and disjunctions. The
background color red is used to stress that we are reducing a formula which is claimed to
be false.

In figure 8.1 the earlier examples are given once more, but extended with specifications
of the rules we use in each step. As to distinguish open and closed branches we replace
the truth-falsity separation symbol ◦ by� and • respectively. We will continue to use this
way of indication in the sequel of this chapter.

For the other connectives rules can be given quite straightforwardly by using the truth-
conditions which have been defined in the introductory chapter on propositional logic.
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¬p ∧ ¬q ◦ ¬(p ∧ q)

∧L

¬p,¬q ◦ ¬(p ∧ q)

¬L

¬R

¬q, p ∧ q ◦ p

∧L

¬q, p, q • p

¬(p ∧ q) ◦ ¬p ∧ ¬q

¬L

◦ p ∧ q,¬p ∧ ¬q

∧R

◦ p,¬p ∧ ¬q ◦ q,¬p ∧ ¬q

∧R

◦ q,¬p

¬R

p� q

◦ q,¬q

Figure 8.2: Two tableaus with negations. The left tableau shows that ¬p ∧ ¬q |= ¬(p ∧ q). The right
tableau shows that the converse of this inference is not valid ¬(p∧q) 6|= ¬p∧¬q. The counter-model which
has been found in the open branch is the valuation which assigns 1 to p and 0 to q. This suffices to show the
invalidity of the inference. If we would have worked out the left branch as well we would have found the
other counter-example pq.

The negation rules are the most simple ones. A negation switches truth-values, so the
proper way to remove a negation is to transfer its argument from one side of the sequent
to the other.

¬L ¬ϕ ◦

◦ ϕ

¬R ◦ ¬ϕ

ϕ ◦
(8.8)

In Figure 8.2 two simple tableaus are given with occurrences of negations. The rules for
implication and equivalence are the following:

→L ϕ→ ψ ◦

◦ ϕ ψ ◦

→R ◦ ϕ→ ψ

ϕ ◦ ψ

↔L ϕ↔ ψ ◦

ϕ, ψ ◦ ◦ ϕ, ψ

↔R ◦ ϕ↔ ψ

ϕ ◦ ψ ψ ◦ ϕ
(8.9)

The rules for equivalence are quite easy to understand. An equivalence is true if the
truth-values of the two arguments are the same. In terms of reductions this means that
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if the equivalence appear on the left hand side of the sequent the two arguments remain
on the left hand side (both true) or they switch both to the right hand side (both false). If
an equivalence is false the two truth-values of the arguments differ, which gives the two
possibilities as captured by↔R-rule as shown in the schema (8.9).

The R-rule for implication captures the only possibility for an implication to be false. The
antecedent should be true (moves to the left) and the consequent should be false (stays on
the right). The L-rule captures the other possibilities: ϕ is false (moves to the right) or ψ
is true (stays on the left).

Exercise 8.1 Define appropriate reduction rules for the exclusive disjunction t. Remember that
ϕ t ψ is true if and only if exactly one of the arguments ϕ or ψ is true.

Exercise 8.2 Show that ¬(ϕ t ψ) is logically equivalent with ¬ϕ t ψ using the rules that you
have defined for t in the previous exercise. You will need two tableaus here, one for proving that
¬(ϕ t ψ) |= ¬ϕ t ψ and one for proving that ¬ϕ t ψ |= ¬(ϕ t ψ).

Below in (8.10) two tableaus are given of which the first shows that p ↔ (q → r) |=
(p↔ q)→ r. The second demonstrates that the converse is invalid.

p↔ (q → r) ◦ (p↔ q)→ r

→R

p↔ q ◦ r

↔L

p, q ◦

↔L

p, q → r ◦

→L

• q r •

• p, q → r

◦ p, q

↔L

p, q → r • ◦ p, q → r

→R

q • r

(p↔ q)→ r ◦ p↔ (q → r)

→L

◦ p↔ q r ◦
↔R

p ◦ q → r q → r ◦ p

→L

� q r �

(8.10)
For sake of shorter notation we have left out the repetition of formulas, and only kept track
of new formulas. This makes it bit harder to read the tableau, but it may be worth the effort
to get used to this shorter notation since tableaus, especially in the case of predicate logic
as we will see in the next section, tend to get very large.

In order to conclude closure of a branch we need to scan it for contradiction in backward
direction. This also is the case for defining a counter-model for an open branch. For
example, the counter-examples as given in the right-most branch in the second tableau
of (8.10) are those who falsify p and verify r. About the proposition letter q no information
is given in this open branch.
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Exercise 8.3 Use tableaus to test the validity of the following inferences.

(1) p ∨ (q ∧ r)/(p ∨ q) ∧ (p ∨ r)

(2) p→ q, q → r/¬r → ¬p

Exercise 8.4 Use the tableau method to find out whether the following sets of formulas are con-
sistent (satisfiable), i.e., check whether there is a valuation which makes all the formulas in the
given set true.

(1) {p↔ (q ∨ r),¬q → ¬r,¬(q ∧ p),¬p}

(2) {p ∨ q,¬(p→ q), (p ∧ q)↔ p}

Exercise 8.5 Check, using the tableau method, whether the following formulas are tautologies or
not.

(1) (p→ q) ∨ (q → p)

(2) ¬(p↔ q)↔ (¬p↔ ¬q)

8.2 Tableaus for predicate logic

A tableau system consists of the rules for the connectives as given in the previous section
and four rules for the quantifiers, two rules for each of the two quantifiers ∀ and ∃.1 These
rules are a bit more complicated because the quantifiers range over the individual objects
in the domain of the models. Beforehand, however, we do not know how many of those
individuals are needed to provide real counter-models. The domain has to be constructed
step by step. This makes it harder to process universal information adequately because it
needs to be applied to all the objects, and it may be that it will not be clear at that stage
what the required set of objects is to provide a counter-example. In simple cases this can
be avoided by dealing with the existential information first. Let us have a look at such an
easy going example:

∀x (Px ∨Qx)/∀xPx ∨ ∀xQx (8.11)

It may be clear that this an invalid inference. Every integer is even or odd (P ∨ Q) but it
is surely not the case that all integers are even (P ) or that all integers are odd (Q). Let us
see what happens if we want to demonstrate this with a tableau. At first we can apply the
∨R-rule as we have defined in the previous section:

∀x (Px ∨Qx) ◦ ∀xPx ∨ ∀xQx

∨R

∀x (Px ∨Qx) ◦ ∀xPx,∀xQx (8.12)
1For sake of keeping things simple, we will not deal with the equality sign = and function symbols here.

Moreover, we assume that all formulas contain no free variables.
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For the potential counter-model this means the following. All individuals are P ∨ Q-s
but not all of them are P -s and not all of them are Q-s, since ∀xPx and ∀xQx must
be falsified. They occur on the right side of the last sequent. A universally quantified
formula ∀xϕ on the right hand side of a sequent conveys an existential claim, we need at
least one non-ϕ-er within the candidate counter-model. As we said earlier, it is better to
deal with this existential information first. Removal of the formula ∀xPx can be done by
replacing it by Pd1 where d1 is some additional name for the object which does not have
the property P . We do not know who or what this non-P -object is, and therefore we need
a neutral name to denote it. So our next step is:

∀x (Px ∨Qx) ◦ ∀xPx,∀xQx

∀R

∀x (Px ∨Qx) ◦ Pd1,∀xQx (8.13)

Elimination of the last universal quantifier on the right hand side requires a non-Q-object.
This object may be different from d1 and therefore we choose a new neutral name d2.2

∀x (Px ∨Qx) ◦ Pd1, ∀xQx

∀R

∀x (Px ∨Qx) ◦ Pd1, Qd2 (8.14)

At this stage we have to eliminate the universal quantifier on the left hand side of the
sequent. We need to apply the property Px ∨ Qx to all the objects in the domain. This
far we only have objects called d1 and d2 and therefore we only apply it to those objects,
which brings two new formulas on the stage Pd1 ∨ Qd1 and Pd2 ∨ Qd2. In this case we
are sure that no other objects may be needed because all the existential information has
been dealt with in the two steps before.

∀x (Px ∨Qx) ◦ Pd1, Qd2

∀L

Pd1 ∨Qd1, Pd2 ∨Qd2 ◦ Pd1, Qd2 (8.15)

2Note that we do not exclude the possibility that d1 and d2 are equal here. In predicate logic it is possible
that one object carries two names.
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∀x (Px ∨Qx) ◦ ∀xPx ∨ ∀xQx

∨R

∀x (Px ∨Qx) ◦ ∀xPx,∀xQx

∀R

∀x (Px ∨Qx) ◦ ∀xPx,Qd1

∀R

∀x (Px ∨Qx) ◦ Pd2, Qd1

∀L

Pd1 ∨Qd1, Pd2 ∨Qd2 ◦ Pd2, Qd1

∨L

Pd1, Pd2 ∨Qd2 • Pd1, Qd2 Qd1, Pd2 ∨Qd2 ◦ Pd1, Qd2

∨L

Qd1, Pd2 � Pd1, Qd2 Qd1, Qd2 • Pd1, Qd2

Figure 8.3: The full tableau demonstrating that ∀x (Px ∨Qx) 6|= ∀xPx ∨ ∀xQx. The counter-example
contains a P who is not Q and a Q who is not P .

The last two steps deal with the two disjunctions.

Pd1 ∨Qd1, Pd2 ∨Qd2 ◦ Pd1, Qd2

∨L

Pd1, Pd2 ∨Qd2 • Pd1, Qd2 Qd1, Pd2 ∨Qd2 ◦ Pd1, Qd2

∨L

Qd1, Pd2 � Pd1, Qd2 Qd1, Qd2 • Pd1, Qd2 (8.16)

Finally, we have found a counter-model. The open branch tells us that we need a model
with two objects. The first one needs to be a Q-object which does not have the property
P , and the second has to be a P -object which does not have the propertyQ. This is indeed
a counter-model for the original inference as given in (8.11). In Figure 8.3 the full tableau
is given.
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Exercise 8.6 Show with a tableau that ∃x (Px ∧Qx) |= ∃xPx ∧ ∃xQx.

Exercise 8.7 Show with a tableau that ∃xPx ∧ ∃xQx 6|= ∃x (Px ∧Qx).

Exercise 8.8 Show with a tableau that ∀x (Px ∨Qx) |= ∀xPx ∨ ∃xQx.

In the last example we dealt with existential information before we used the universal
information. This is not always possible. Here is a short but more complicated case.

∃x (Px→ ∀y Py) (8.17)

The formula says that there exists an object such that if this object has the property P
then every object has the property P . We do not know which object is meant here so let
us give it a neutral name. The formula then reduces to Pd1 → ∀y Py. Such an object
can then always be chosen. If all objects have the property P then it does not matter
which object you choose, since the consequent is true in this case. If, on the other hand,
not all objects have the property P then you can pick one of the non-P -objects for d1.
The antecedent is then false and therefore the implication Pd1 → ∀y Py holds. In other
words, ∃x (Px→ ∀y Py) is valid.

In order to prove that (8.17) is valid by means of a tableau we have to show that it never
can be false. Putting it on the right side of the top-sequent, we then should be able to
construct a closed tableau. Here is a first try in three steps.

◦ ∃x (Px→ ∀y Py)

∃R

◦ Pd1 → ∀y Py

→R

Pd1 ◦ ∀y Py

∀R

Pd1 ◦ Pd2 (8.18)

Foremost, we need to explain the first step. An existential quantified formula on the right
yields a universal claim. If ∃xϕ is false it means that there exists no ϕ-er: ϕ is false
for all individuals in the domain. Since there are no objects introduced so far the reader
may think that this leads to an empty sequent. But in predicate logic we have a minimal
convention that every model has at least one object.This means that if we want to fulfillref
a universal claim, that is, a true formula of the form ∀xϕ or a false formula of the form
∃xϕ, and there are no objects introduced so far then we introduce one. This is what has
been done in the first step in (8.18).
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The second and the third step are as before. Now, it may seem as if we have an open
branch here since there is no contradictory information and there are no logical symbols
left. But we made a logistic mistake here. We removed the false formula ∀y Py here
by introducing a new non-P -object called d2. The universal claim by the false formula
∃x (Px→ ∀y Py) however has been applied to d1 only, whereas Px→ ∀y Py has to be
false for all objects, and therefore, also for d2! In tableau-systems for predicate logic this
means that whenever a new name is to be introduced the formulas which have universal
strength which have been removed at an earlier stage in the tableau will become active
again, and then need to be dealt with at a later stage. So the last step of (8.18) need to be
extended in the following way:

Pd1 ◦ ∀yPy

∀R

Pd1 ◦ Pd2,∃x (Px→ ∀y Py) (8.19)

The formula ∃x (Px→ ∀y Py) is supposed to be falsified in the end, and becomes active
again when the new object called d2 is introduced. The next step then is to deny the
property Px → ∀y Py for all objects. Since it has been already denied for d1 in the first
step in (8.18), the only new information is that Pd2 → ∀y Py must be false.

Pd1 ◦ Pd2,∃x (Px→ ∀y Py)

∃R

Pd1 ◦ Pd2, Pd2 → ∀y Py (8.20)

One may think, at first sight, that this leads to an infinite procedure. In this case, things
work out nicely, since the tableau closes in the next step. The implication will be removed,
and then we run into a conflict: Pd2 must be true and false at the same time.

Pd1 ◦ Pd2, Pd2 → ∀y Py

→R

Pd1, Pd2 • Pd2,∀y Py (8.21)

This means that there are no models which falsify ∃x (Px→ ∀y Py). This formula must
be valid.

8.2.1 Rules for quantifiers

In the two examples above we have indicated how we should deal with quantified predi-
cate logical formulas in a tableau. Here we want to give a formal status to the reduction
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rules for the quantifiers. Let us start with the universal quantifier.

∀L0 ∀xϕ ◦

ϕ [d/x]
+◦

∀L ∀xϕ ◦

ϕ [d1/x] . . . ϕ [dn/x] ◦

∀R ◦ ∀xϕ

+◦ ϕ [d/x]

(8.22)
There are two left rules for the universal quantifier when it appears on the left part of a
sequent.

∀L0 : The first rule (0) is meant to deal with the exceptional case when no names are
present in the sequent, that is, there are no names to apply the property ϕ to. In this
case we introduce a new name d and replace all free occurrences of x in ϕ by d. We
write this as ϕ [d/x]. In addition, the truth-falsity separation symbol ◦ is designated
with a + on top to indicate that a new name has been added within the branch of
the tableau.ref

∀L: If names are present in the input sequent then ∀xϕ can be removed from the left part
of the sequent by applying ϕ to the names d1, ..., dn, all occurring in the sequent
and which ϕ has not been applied to yet.

∀R: A false formula ∀xϕ is removed by applying ϕ to a new name d. This denotes
the object we need as an example of a non-ϕ-er in the counter-model which we
are constructing. In order to show that this name is new we use the additional
+-indication.

In the end we need to distinguish ◦ from
+◦-sequents in which new name are introduced.

+◦: If a new name is introduced then all formulas of the form ∀xϕ appearing on the
left part and those of the form ∃xϕ on the right part of preceding sequents in this
branch re-appear in the output sequent.

The rules for the existential quantifiers are defined analogously to the rules for the univer-
sal quantifier:

∃L ∃xϕ ◦

ϕ [d/x]
+◦

∃R0 ◦ ∃xϕ

+◦ ϕ [d/x]

∃R ◦ ∃xϕ

◦ ϕ [d1/x] . . . ϕ [dn/x]

(8.23)
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The following example, which shows that ∃y∀xRxy |= ∀x∃y Rxy, make use of all the
general rules.

∃y∀xRxy ◦ ∀x ∃y Rxy

∃L

∀xRxd1
+◦ ∀x ∃y Rxy

∀R

∀xRxd1
+◦ ∃y Rd2y

∀L

Rd1d1, Rd2d1 ◦ ∃y Rd2y

∃R

Rd1d1, Rd2d1 •Rd2d1, Rd2d2 (8.24)

In this example the quantifiers were in optimal position. We could fulfill the existential
claims (∃L and ∀R) before we dealt with the universal requirements (∀L and ∃R) for the
potential counter-model. As a result of this no reintroduction of universal information
was needed.

In (8.18) we already have seen that this reintroduction can not always be avoided. Fortu-
nately, this did not lead to an infinite procedure, because the tableau could be closed. But
in other cases we may run into real trouble due to continuing introduction of new names,
and consequently, unstoppable re-appearance of universal information. Below such an
example is given. Let us first look at the first two steps.

∀x ∃y Rxy ◦ ∃y∀xRxy

∀L0

∃y Rd1y
+◦ ∃y∀xRxy

∃L

∀x∃y Rxy,Rd1d2
+◦ ∃y∀xRxy (8.25)

The two formulas in the top-sequent have universal status. The left formula is true and
says that every object is R-related to some object. In a domain of persons, taking the
relation Rxy to represent the relation ‘x loves y’, ∀x∃y Rxy means “Everybody loves
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somebody”. The formula ∃y∀xRxy on the right hand should be falsified, and therefore
the claim is that is not the case that there exists an object such that all objects areR-related
to it. In the context mentioned here above, this means that there is no person who is loved
by everybody. So, there is no other option than to apply one of the exceptional universal
rules ∀L0 or ∃R0 . We have chosen to take the former.

In the second step we took the new existential formula on the left since we prefer to
deal with existential information first. Here we introduced a new name, and therefore, the
universal formula which has been removed in the first step pops up again. Repetition of the
same procedure would introduce a third object and a second re-appearance of ∀x∃y Rxy.
If, instead, we would choose to remove the formula ∃y∀xRxy on the right we would then
get the following two successive steps:

∀x ∃y Rxy,Rd1d2 ◦ ∃y∀xRxy

∃R

∀x ∃y Rxy,Rd1d2 ◦ ∀xRxd1,∀xRxd2

∀R

∀x ∃y Rxy,Rd1d2
+◦ Rd3d1,∀xRxd1,∃y∀xRxy (8.26)

In the last step a third object is introduced, and then ∃x∀y Rxy re-appears on the right
part of the sequent. The sequent in the last node contains the same formulas as in the top
node with two additional atomic formulas who do not contradict each other. Moreover,
we know that this tableau will never close since the top sequent represents an invalid in-
ference. This branch will never end with the desired final sequent free of logical symbols.

Without applying the rules it is not hard to find a simple counter-example. Take the situ-
ation of two persons who love themselves but not each other. In such a case, ∀x∃y Rxy
is true and ∃y∀xRxy is false, since there is no person who is loved by everybody. Ap-
parently, our tableau system is not able to find such a simple counter-model. In fact the
rules guide us towards an infinite counter-example which can never be constructed since
in each step at most one additional object is introduced.

Despite this inability of the system, the rules make up a complete validity testing method.
If an inference ϕ1, ...ϕn/ψ is valid, ϕ1, ..., ϕn |= ψ, then there exists a closed tableau with
ϕ1, ..., ϕn ◦ ψ as the top sequent. We will not prove this completeness result here, but
instead, get into more detail at a later stage.ref

Exercise 8.9 Test the validity of the following syllogisms with tableaus:

(1) ∀x (Ax→ Bx), ∃x (Ax ∧ Cx)/∃x (Cx ∧Bx)

(2) ∀x (Ax→ Bx),∃x (Ax ∧ ¬Cx)/∃x (Cx ∧ ¬Bx)
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(3) ¬∃x (Ax ∧Bx),∀x (Bx→ Cx)/¬∃x (Cx ∧Ax)

Exercise 8.10 Prove the validity of the following inference with tableaus:

(1) ∀x (Ax→ Bx) ∨ ∀y (By → Ay) |= ∀x ∀y ((Ax ∧By)→ (Bx ∨Ay))

(2) ∀x ∀y ((Ax ∧By)→ (Bx ∨Ay)) |= ∀x (Ax→ Bx) ∨ ∀y (By → Ay)

8.2.2 Alternative rules for finding finite counter-models

In (8.25) and (8.26) we have seen an example of an invalid inference with quite simple
finite counter-models which can not be found by means of the rules for the quantifiers.
In order to find such finite counter-models with a tableau system we need to extend the
rules for the quantifiers a bit. The problem with the earlier rules was the introduction of
new names which caused repetitive reintroduction of formulas. This can be avoided by
facilitating the ‘old’ objects to support existential information. These extended versions
of the ‘existential’ rules ∃L and ∀R have the following general format, where the name d
is some name which occurs in the input node and d′ does not.

∃L+d ∃xϕ ◦

ϕ [d/x] ◦ ϕ [d′/x]
+◦

∀R+d ◦ ∀xϕ

◦ ϕ [d/x] +◦ ϕ [d′/x]

(8.27)
The truth-falsity separation sign ◦ only has a +-sign in the right branch. In the left branch
we have used an old object called d which does not provoke reintroduction of universal
information. We indicate these special try-out branches with a dashed line.

Let us try these extended rules to find a simple finite counter-model for the example we
started with in (8.25). Here are the first two steps.

∀x∃y Rxy ◦ ∃y∀xRxy

∀L0

∃y Rd1y
+◦ ∃y∀xRxy

∃L+d1

Rd1d1 ◦ ∃y∀xRxy ∀x∃y Rxy,Rd1d2
+◦ ∃y∀xRxy (8.28)

The first step is the same as in (8.25). The second step is the application of the extended
version of ∃L. We apply in the left branch the property Rd1y to the only known name d1.
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In this branch the true formula ∀x∃y Rxy is not reintroduced. This try-out branch can
then be extended with the following four steps.

Rd1d1 ◦ ∃y∀xRxy

∃R

Rd1d1 ◦ ∀xRxd1

∀R

∀x∃y Rxy,Rd1d1
+◦ Rd2d1,∃y∀xRxy

∀L

∃y Rd2y,Rd1d1 ◦Rd2Rd1,∃y∀xRxy

∃L+d2

Rd2d2, Rd1d1 ◦Rd2d1,∃y∀xRxy ∀x∃y Rxy,Rd2d3, Rd1d1
+◦ Rd2d1,∃y∀xRxy

(8.29)
In the second step we did not apply ∀R+d1 but the old version ∀R instead. A try-out branch
would close immediately because of the true formula Rd1d1. In the last step we have
chosen for ∃Ld2 . The d1-version would have given a closed branch because of the false
formula Rd2d1. Extension of this new try-out branch results into our desired counter-
model in two more steps.

Rd2d2, Rd1d1 ◦Rd2d1,∃y∀xRxy

∃R

Rd2d2, Rd1d1 ◦Rd2d1,∀xRxd2

∀R+d1

Rd2d2, Rd1d1 �Rd2d1, Rd1d2 ∀x ∃y Rxy ◦Rd3d2,∃y∀xRxy (8.30)

In the first step the false formula ∃y∀xRxy results into ∀xRxd2 only because ∀xRxy
has been applied to d1 in the third step of this branch (8.29). In the second step we used
a d1-try-out branch. The d2-variant would have given closure because of the true formula
Rd2d2. This third try-out branch has finally determined a counter-example. The objects
called d1 and d2 are R-related to themselves but are mutually not R-related.

It is not hard to see that the d1-try-out branch in the second step of this tableau (8.28) can
not give any other counter-examples with only two objects. If we would have chosen for
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the regular branch after this second step we could have constructed the other two object
counter-model, that consists of two objects who are mutually related but are not related to
themselves. We leave this as an exercise to the reader.

Exercise 8.11 Try to find the other counter-model as mentioned here above using the try-out
branches on other places.

Exercise 8.12 Show the invalidity of the following inference with a tableau dressed up with try-
out branches. Try to keep the final counter-model as small and simple as possible.

(1) ∀x∃y Rxy/∀x∃y Ryx

(2) ∃x∀y Rxy/∃x∀y Ryx

8.2.3 Invalid inferences without finite counter-examples

With these new extended ‘existential’ rules we can always find finite counter-examples,
but this does not mean that every invalid inference can be recognized as such by the
extended tableau system. In predicate logic we can make up invalid inferences with only
infinite counter-models. Here is an example with two premises:

∀x∃y Rxy,∀x∀y∀z ((Rxy ∧Ryz)→ Rxz) 6|= ∃x∃y (Rxy ∧Ryx) (8.31)

Take again the ‘love’-interpretation for the relation R then the inference can be rephrased
as follows:

Everybody loves somebody

Everybody loves all persons who are loved by his loved ones.

There is at least a pair of persons who love each other.

(8.32)

We would expect that the seemingly cautious conclusion would follow from the happy
hippie optimism conveyed by the two premises. And in fact it holds as long as we would
stick to situations with only a finite number of persons.

Exercise 8.13 Show that for finite models which satisfy the two premises as given (8.31) will
always contain a symmetric pair: ∃x∃y (Rxy ∧ Ryx). A finite happy hippie community always
contains a happily loving couple!

In situations with an infinite number of objects we can interpret R in such a way that the
two premises are true and the conclusion is false. For example, take the integers instead
of people with R interpreted as the relation <. The inference then can be recaptured as
follows:
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Every integer is smaller than some integer

If one integer is smaller than a second one, then all the integers which
are larger than the second are also larger than the first.

There is at least one pair of integers who are smaller than each other.

Here the premises are clearly true, and the conclusion is false, which proves that the
inference as given in (8.31) is indeed invalid. Such infinite counter-models can never be
constructed by our tableaus, and since the inference of (8.31) has only infinite counter-
examples its invalidity can never be demonstrated by the system, not even with the help
of the extended ‘existential’ rules.

8.2.4 Tableaus versus natural reasoning

Although the tableau systems which we have discussed so far are pretty good computa-
tional methods for testing the validity of inferences, there is also a clear disadvantage.
Each of the individual steps in a tableau can be understood quite easily, but a tableau as a
full line of argumentation is not very transparent, and it seems that it does not reflect the
way ordinary humans reason.

One part of this type of objection against the tableau method is superficial because there
are many small steps in a tableau that are never made explicitly in a ‘normal’ argumenta-
tion because they are too trivial to be mentioned. Due to the fact that the tableau method
is a pure symbolic method all the small steps have to be taken into account, and therefore
these steps may look quite artificial.

But there is more to it. In a tableau we reason in a negative way, which tends to be un-
natural. Validity is demonstrated by the exclusion of counter-examples, whereas humans
tend to prove the validity of an inference directly, from the given facts to what has to be
proven. If this does not work, or if uncertainty about the validity of an inference arises,
one tries to use his imagination to think of a counter-example to refute the validity. Proof
and refutation are most often considered to be two different sorts of mental activity. The
tableau method incorporates the two in one computational system by argumentation in an
indirect way.

In one of the next chapters we will discuss another proof system which can only be used to
demonstrate validity and which makes use of rules which are close to the way humans rea-
son. Therefore, these system are referred to as ‘natural deduction’. The tableau systems
are considered as ‘unnatural deduction’. They are very useful for ‘black box’ automated
reasoning systems, where the users are only interested in a final answer about the validity
of an inference (and maybe also a specification of a counter-example) but not how it has
been computed.

This is quite an exaggerated qualification. It is true that tableau systems may behave
in an unnatural way. We have seen an example of the first tableau system for predicate
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logic where the system tried to construct a complicated infinite counter-example for an
invalid inference for which everybody can make a very simple counter-example. We have
also shown how the rules can be ‘tamed’ to perform in a more ‘reasonable’ way. The
development of more natural and more ‘intelligent’ tableau systems is an important issue
of contemporary research of applied computational logic.

Moreover, systems which may perform strangely in certain circumstances may behave
remarkably intelligent in others. Here is an example:

∃x∀y (Rxy ↔ ¬∃z (Ryz ∧Rzy)) (8.33)

This is a predicate logical formulation of what is known as the Quine paradox (after the
American philosopher and logician Willard Van Orman Quine). This formula turns out to
be inconsistent. This is not directly obvious. It really takes some argumentation.

Exercise 8.14 The formula ∃x∀y (Ryx ↔ ¬Ryy) is a predicate logical version of the famous
Russell paradox (take R to be the relation ‘element of’ to get the exact version). Show with a
tableau that this formula can never be true (is inconsistent).

The subformula¬∃z (Ryz∧Rzy) of (8.33) means that there is no object which is mutually
related to y. In a domain of persons and by interpretingRxy as that ‘x knows y’ this means
that y has no acquaintances, that is, persons known by y who also know y. Let us say that
such a person without acquaintances is called a ‘loner.’ The full formula as given in (8.33)
says that there exists some person who knows all the loners and nobody else. Let us call
this person the ‘loner-knower’. According to the following infallible argumentation this
loner-knower cannot exist.

• If the loner-knower knows himself, then he has an acquaintance, and therefore he
is not a loner himself. But then he knows a person who is not a loner, which
contradicts the fact that he only knows loners.

• If he does not know himself, then he is not a loner, otherwise he would know him-
self. But if he is not a loner then he must have an acquaintance. This acquaintance
is a loner neither, since he knows the loner-knower and the loner-knower knows
him. So, the loner-knower knows a non-loner, which also contradicts the fact that
the loner-knower only knows loners.

• The inevitable conclusion is that the loner-knower does not exist, because for every
person it must be the case that he knows himself or not. For the loner-knower both
options lead to a contradiction.

In Figure (8.4) on page 8-23 the inconsistency of (8.33) has been demonstrated by means
of a closed tableau. This closed tableau, starting with a sequent with the formula on
the left hand side, shows that the Quine paradox can never be true. If we rephrase the
information in the closing tableau of Figure 8.4 we get in fact quite the same line of
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argumentation as have been outlined here above. In Figure 8.5 on page 8-24 the tableau
has been translated back to the interpretation in natural language as has been described
here.

8.3 Tableaus for epistemic logic

The tableau method is used extensively for classical logics such as propositional and pred-
icate logic. It does not have been applied very much in the field of modal logic, such as the
epistemic and dynamic logics that have been introduced in the first part. In modal logicref
the tradition tends much more towards axiomatic systems and model-checking. Part of
the underlying reasons are purely cultural, but there are also important technical reasons.
There are many different modal logics using a wide variety of different kind of modal
operators. On top of that, these logics also make use of different classes of possible world
models. Technically, it is just easier to capture these differences by means of axioms. It
is just a matter of replacing some axioms by others in order to skip from one modal logic
to the other. Directed search methods, such as the tableau method, are much harder to
modify appropriately.

We will avoid technical details here. In order to illustrate a tableau method for a modal
system we take the simplest one of which rules look very much like those of the last
system we have presented for predicate logical reasoning. The system we will discuss
here is a validity test for inferences in epistemic propositional logic with only one agent,
that is, propositional logic with a single K operator.

Remember that Kϕ stands for the proposition which says the agent knows that ϕ is the
case, and in terms of possible world semantics, it meant that ϕ is true in all the agent’s
epistemic alternatives. This means that we have to keep track of more worlds in one node
in a tableau, since a counter-model may exist of multiple worlds. In tableau terminology
these are called multi-sequents which are represented by boxes which may contain more
than one sequent.

Below the rules have been given in a brief schematic way. The vertical lines of dots
represent one or more sequents, and ϕ > means that the formula ϕ appears on the left
hand side of at least one of the sequents in the box, and ϕ { means it appears in all of
them. The symbols < ϕ and { ϕ are used to describe analogous situations for formulas
on the right side.
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∃x∀y (Rxy ↔ ¬∃z(Ryz ∧Rzy)) ◦

∃L

∀y (R1y ↔ ¬∃z(Ryz ∧Rzy)) ◦

∀L

R11↔ ¬∃z(R1z ∧Rz1) ◦

↔L

R11,¬∃z(R1z ∧Rz1)) ◦

¬L

◦ ∃z(R1z ∧Rz1)

∃R

◦R11 ∧R11

∧R

•R11 •R11

◦R11,¬∃z(R1z ∧Rz1)

¬R

∃z(R1z ∧Rz1) ◦

∃L

∀y (R1y ↔ ¬∃z(Ryz ∧Rzy)), R12 ∧R21 ◦

∧L

R12, R21 ◦

∀L

R12↔ ¬∃z(R2z ∧Rz2) ◦

↔L

R12,¬∃z(R2z ∧Rz2) ◦

¬L

◦ ∃z(R2z ∧Rz2)

∃R

◦R21 ∧R12, R22 ∧R22

∧R

•R21 •R12

•R12,¬∃z(R2z ∧Rz2)

Figure 8.4: A tableau which proves that the Quine-paradox is not satisfiable.
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There exists a ‘loner-knower’.

∃L

Call this ‘loner-knower’ d1.

∀L

d1 knows himself if and only if d1 is a loner.

↔L

d1 knows himself and d1 is
a loner.

¬L

d1 knows himself and d1
has no acquaintances.

∃R

d1 knows himself and d1 is
not an acquaintance of him-
self.

∧R

d1 knows himself and d1
does not know himself.

d1 does not know himself and d1 is not a loner.

¬R

d1 has an acquaintance.

∃L

d1 has an acquaintance, which we call d2.

∧L

d1 knows d2 and vice versa.

∀L

d1 knows d2 and vv. d1 knows d2 if and only if
d2 is a loner.

↔L

d1 knows d2 and vv. d2 is a loner.

¬L

d1 knows d2 and vv. d2 has no acquaintances.

∃R

d1 knows d2 and vv. d1 nor d2 is an acquaintance of d2.

∧R

d1 knows d2 and
vv. d1 does not
know d2.

d1 knows d2 and
vv. d2 does not
know d1.

d1 knows d2 and vv. d1
does not know d2. d2 is
not a loner.

Figure 8.5: A tableau which proves that the Quine-paradox is not satisfiable.
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KL Kϕ
〉

...

ϕ
{

...

KR ...
〈
Kϕ

...
+◦ ϕ

KR+ ...
〈
Kϕ

...
〈
ϕ

...
+◦ ϕ

(8.34)

KL: If a formula Kϕ appears on the left part of at least one of the sequents in the box
then remove this formula from those sequents and add ϕ to all the sequents in the
box.

KR: If a formulaKϕ appears in the right part of at least one of the sequents then remove
them and add the sequent ◦ ϕ to the box.

KR+: If a formula Kϕ appears on the right part of at least one of the sequents then add
the sequent ◦ ϕ to the box, and add a try-out branch with the original sequents of
which one is extended with ϕ on the right part of it.

The symbol
+◦ means that a new sequent (world) has been added to the box. This also

implies that all formulas Kϕ which were removed in preceding steps becomes active
again. They are to be placed in left part of the first sequent of the sequent box.

Below two relatively simple examples are given. The first demonstrates thatK(p→ q) |=
Kp → Kq by means of a closed tableau. As you can see, the two end nodes consist of
sequent boxes of which each contains a contradictory sequent. The second tableau shows
that the converse of this inference is invalid: Kp→ Kq 6|= K(p→ q).
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K(p→ q) ◦Kp→ Kq

→R

K(p→ q), Kp ◦Kq

KR

K(p→ q), Kp ◦
+◦ q

KL

K(p→ q), p ◦
p ◦ q

KL

p→ q, p ◦
p→ q, p ◦ q

→L

p→ q, p ◦
p • p, q

p→ q, p ◦
q, p • q

Kp→ Kq ◦K(p→ q)

→L

◦Kp,K(p→ q)

KR+

◦ p,K(p→ q)

KR

◦ p
+◦ p→ q

→R

◦ p
p ◦ q

◦K(p→ q)
+◦ p

Kq ◦K(p→ q)

(8.35)
Before we may jump to conclusions we need to be precise about closed and open multi-
sequents. A multi-sequent is closed if it contains an impossible sequent containing con-
tradictory information, i.e., a formula which appears on the left and on the right part of
the sequent. All the worlds as described in a multi-sequent need to be possible to provide
a counter-example. A tableau is closed if it contains only branches with closed multi-
sequents in the terminal nodes. A multi-sequent is open if it is not closed and all of its
sequents are free of logical symbols. A tableau is open if it contains at least one open
multi-sequent. As for propositional and predicate logic, an open tableau detects invalidity
and the open multi-sequent is nothing less than the description of a counter-model. The
first sequent of the open node is then the world at which rejection of the inference takes
place: all the premises are true there, and the conclusion will be false. A closed tableau
tells us that the top sequent represents a valid inference.

The first tableau in (8.35) showed a direct consequence of the logical closure property
of the epistemic operator K, which holds for all ‘necessity’ operators in modal logics
such as the dynamic operator [π]. The second tableau in (8.35) shows the invalidity ofref
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the converse by means of the construction of a two worlds counter-model of which one
falsifies p and the other verifies p and falsifies q. We have used the try-out version of KR

in the second step in order to find the smallest counter-model. The third step is a regular
KR-step because an additional try-out branch would close immediately (p • p, q).
If we would have used KR twice we would have end up with a three worlds counter-
model. In other more complicated cases of invalid inference the try-out version of the KR

is really needed to find finite counter-models, just as we have seen for certain predicate
logical inferences.

Exercise 8.15 Show with two tableaus that Kp ∨Kq |= K(p ∨ q) and K(p ∨ q) 6|= Kp ∨Kq.

The following tableau shows a principle which holds specifically for epistemic logic:
negative introspection.

¬Kp ◦K¬Kp

¬L

◦Kp,K¬Kp

KR

◦K¬Kp
+◦ p

KR

◦
◦ p

+◦ ¬Kp

¬R

◦
◦ p

Kp ◦

KL

p ◦
p • p
p ◦

(8.36)

The tableau ends with a description of a single ‘impossible’ possible worlds model. In
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fact it tells us that a counter-model requires at least one impossible world at which p is
both true and false, and therefore, a counter-model for negative introspection does not
exist.

Exercise 8.16 Show with two tableaus that Kp |= p and p 6|= Kp.

Exercise 8.17 Show with a closed tableau that Kp |= KKp (positive introspection).

Exercise 8.18 Show with a closed tableau that K(Kp ∨ q) |= Kp ∨Kq.

As a last example we demonstrate one other tableau where the try-out version of KR are
required to get a counter-model to compute an invalidity: K¬Kp 6|= K¬p. It says that if
the agent knows that he does not know that p does not imply that he must know that ¬p
is the case. The tableau to find the smallest counter-model requires two applications of
KR+ .
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K¬Kp ◦K¬p

KR+

K¬Kp ◦ ¬p

¬R

K¬Kp, p ◦

KL

¬Kp, p ◦

¬L

p ◦Kp

KR

K¬Kp, p ◦
+◦ p

KL

¬Kp, p ◦
¬Kp ◦ p

¬L
¬L

p ◦Kp
◦ p,Kp

KR+

p ◦
◦ p, p

K¬Kp, p ◦
◦ p
+◦ p

K¬Kp ◦
+◦ ¬p

(8.37)

The counter-model which has been found in the left-most branch contains two worlds,
one which verifies p and one which falsifies p. In both worlds the agent does not know
that p and so K¬Kp is true in the first world (and also in the second), but K¬p is false in
this world because p is false in the second.

Exercise 8.19 Show with a tableau that K¬K¬p 6|= ¬K¬Kp.
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Exercise 8.20 Show with a tableau that ¬K¬Kp |= K¬K¬p.

In many modal logics such as the epistemic and dynamic logic of the first part of this
book the so-called finite model property holds. This means that there exist no inferences
(with a finite set of premises) with only infinite counter-models such as we have seen for
predicate logic in the example (8.31) on page 8-19. This also means that we can always
detect invalidity for invalid inferences in single agent epistemic logic by using the tableau
method with the given rules for the knowledge operator.

Single agent epistemic logic is by far the easiest modal logic when it comes down to
defining a complete tableau system. For other modal logics this is much harder, but
not impossible. Instead of multi-sequents so-called hyper-sequents are needed to search
and specify counter-models by means of reduction rules. A hyper-sequent may not only
contain multiple sequents but also other hyper-sequents. Using the format we have been
using for single agent epistemic logic here this would look like nested boxes which can
be used to capture the accessibility relation of potential counter-models. For multi-modal
logics such as multi-agent epistemic logic and dynamic logic we need in addition labeling
mechanisms for the nested boxes as to keep track of multiple accessibility relations. On
top of that we also need quite complicated rules for ‘path’-operators such as the common
knowledge operator in multi-agent epistemic logic or the iteration operator in dynamic
logic. All these technical complications are the main reason that tableau methods for
advanced modal logics have not been standardized yet. Construction of models, whether
they are realized by means of extended tableau techniques or alternative methods, are in
the field of applied modal logic a very important theme of ongoing research. For sake of
presentation and clarity, we do not want to drag along our readers into the highly technical
mathematics of it.
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K¬K¬p ◦ ¬K¬Kp
¬R

K¬K¬p,K¬Kp ◦

KL

K¬K¬p,¬Kp ◦
¬L

K¬K¬p ◦Kp

K+
R

K¬K¬p ◦ p

KL

¬K¬p ◦ p
¬L

◦K¬p, p

KR

K¬K¬p,K¬Kp ◦ p
◦ ¬p

KL

¬K¬p,K¬Kp ◦ p
¬K¬p ◦ ¬p

¬L (2×)

K¬Kp ◦K¬p, p
◦K¬p,¬p

K+
R

K¬Kp ◦ p
◦ ¬p,¬p

KL

¬L (2×)

K+
R

◦ p, p
◦ ¬p,¬p

K¬K¬p,K¬Kp ◦ p
◦ ¬p,¬p

+◦ p

K¬K¬p,K¬Kp ◦ p
◦K¬p,¬p

+◦ ¬p

K¬K¬p,K¬Kp ◦
+◦ p

(8.38)


