
Appendix A

Sets, Relations and Functions

Summary

This chapter explains the basics of formal set notation, and gives an introduction to rela-
tions and functions. The chapter ends with a short account of the principle of proof by
mathematical induction.

A.1 Sets and Set Notation

Many mathematical notions — some say all mathematical notions — can be defined in
terms of the fundamental concept of a set. This is good reason for starting with some
basic set theory.

A set is a collection of definite, distinct objects. Examples are the set of colours of the
Dutch flag, or the set of letters of the Greek alphabet. Yet another example is the set of
even natural numbers greater than seven. And so on.

The elements of a set are also called its members. To indicate that a is an element of a set
A we write a ∈ A. To deny that a is an element of a set A we write a /∈ A. The symbol
∈ is the symbol for membership.

The elements of a set can be anything: words, colours, people, numbers. The elements of
a set can also themselves be sets. The set consisting of the set of even natural numbers
and the set of odd natural numbers is an example. This set has two elements; each of these
elements has itself an infinite number of elements.

To check whether two sets are the same one has to check that they have the same elements.
The fact that membership is all there is to set identity, or that sets are fully determined by
their members, is called the principle of extensionality. It follows that to check that two
sets A and B are identical, one has to check two things:
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• does it hold that every element a of A is also an element of B, and

• does it hold that every element b of B is also an element of A?

To specify a set, there are several methods: give a list of its members, as in ‘the set having
the numbers 1, 2 and 3 as its only members’, give some kind of semantic description, as
in ‘the set of colours of the Dutch flag’, or separate out a set from a larger set by means of
a suitable restriction. This last method is called the method of set comprehension. Here
is an example: the odd natural numbers are the natural numbers with the property that
division by 2 leaves a remainder of 1. We can express this by means of the pattern 2n+ 1,
as follows:

O = {2n + 1 | n ∈ N}.

The braces are also used to list the members of a finite set:

D = {red,white, blue}.

Mentioning a set element more than once does not make a difference. The set

{white, blue,white, red}

is identical to the set D, for it has the same members.

Another way of specifying sets is by means of operations on other sets. An example is
the following definition of the odd natural numbers:

E = N−O.

Here N−O is the set of all elements of N that are not members of O. Equivalent definitions
are the following:

E = {n ∈ N | n /∈ O}

or
E = {2n | n ∈ N}.

Some important sets have special names. N is an example. Another example is Z, for the
set of integer numbers. Yet another example is the set without any members. Because of
the principle of extensionality there can be only one such set. It is called ∅ or the empty
set.

If every member of a set A is also a member of set B we say that A is a subset of B,
written as A ⊆ B. If A ⊆ B and B ⊆ A then it follows by the principle of extensionality
that A and B are the same set. Conversely, if A = B then it follows by definition that
A ⊆ B and B ⊆ A.

Exercise A.1 Explain why ∅ ⊆ A holds for every set A.

Exercise A.2 Explain the difference between ∅ and {∅}.
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The complement of a set A, with respect to some fixed universe, or: domain, U with A ⊆
U , is the set consisting of all objects in U that are not elements of A. The complement set
is written as A. It is defined as the set {x | x ∈ U, x /∈ A}. For example, if we take U
to be the set N of natural numbers, then the set of even numbers is the complement of the
set of odd numbers and vice versa.

A.2 Relations

By a relation we mean a meaningful link between people, things, objects, whatever. Usu-
ally, it is quite important what kind of relationship we have in mind.

Formally, we can describe a relation between two sets A and B as a collection of ordered
pairs (a, b) such that a ∈ A and b ∈ B. An ordered pair is, as the name already gives away,
a collection of two distinguishable objects, in which the order plays a role. E.g., we use
(Bill,Hillary) to indicate the ordered pair that has Bill as its first element and Hillary as
its second element. This is different from the pair (Hillary,Bill) where Bill plays second
fiddle.

The notation for the set of all ordered pairs with their first element taken from A and their
second element taken from B is A×B. This is called the Cartesian product of A and B.
A relation between A and B is a subset of A×B.

The Cartesian product of the sets A = {a, b, . . . , h} and B = {1, 2, . . . , 8}, for example,
is the set

A×B = {(a, 1), (a, 2), . . . , (b, 1), (b, 2), . . . , (h, 1), (h, 2), . . . , (h, 8)}.

This is the set of positions on a chess board. And if we multiply the set of chess colours
C = {White,Black} with the set of chess figures,

F = {King,Queen,Knight,Rook,Bishop,Pawn},

we get the set of chess pieces C×F . If we multiply this set with the set of chess positions,
we get the set of piece positions on the board, with (White,King, (e, 1)) indicating that
the white king occupies square e1. To get the set of moves on a chess board, take ((C ×
F )× ((A×B)× (A×B))), and read ((White,King, ((e, 1), (f, 2)) as ‘white king moves
from e1 to f2’, but bear in mind that not all moves in ((C ×F )× ((A×B)× (A×B)))
are legal in the game.

A× A is sometimes also denoted by A2. Similarly for A× A× A and A3, and so on.

As an example of a relation as a set of ordered pairs consider the relation of authorship
between a set A of authors and a set B of books. This relation associates with every
author the book(s) he or she wrote.

Sets of ordered pairs are called binary relations. We can easily generalize this to sets of
triples, to get so-called ternary relations, to sets of quadruples, and so on. An example
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of a ternary relation is that of borrowing something from someone. This relation consists
of triples, or: 3-tuples, (a, b, c), where a is the borrower, b is the owner, and c is the
thing borrowed. In general, an n-ary relation is a set of n-tuples (ordered sequences of n
objects). We use An for the set of all n-tuples with all elements taken from A.

Unary relations are called properties. A property can be represented as a set, namely
the set that contains all entities having the property. For example, the property of be-
ing divisible by 3, considered as a property of integer numbers, corresponds to the set
{. . . ,−9,−6,−3, 0, 3, 6, 9, . . .}.
An important operation on binary relations is composition. If R and S are binary relations
on a set U , i.e. R ⊆ U2 and S ⊆ U2, then the composition of R and S, notation R ◦ S, is
the set of pairs (x, y) such that there is some z with (x, z) ∈ R and (z, y) ∈ S. E.g., the
composition of {(1, 2), (2, 3)} and {(2, 4), (2, 5)} is {(1, 4), (1, 5)}.

Exercise A.3 What is the composition of {(n, n + 2) | n ∈ N} with itself?

Another operation on binary relations is converse. If R is a binary relation, then its
converse (or: inverse) is the relation given by Rˇ = {(y, x) | (x, y) ∈ R}. The converse
of the relation ‘greater than’ on the natural numbers is the relation ‘smaller than’ on the
natural numbers. If a binary relation has the property that Rˇ ⊆ R then R is called
symmetric. It is also denoted as

∀x∀y(Rxy → Ryx). (A.1)

Exercise A.4 Show that it follows from Ř ⊆ R that R = Ř .

If U is a set, then the relation I = {(x, x) | x ∈ U} is called the identity relation on U . If
a relation R on U has the property that I ⊆ R, i.e. if every element of U stands in relation
R to itself, then R is called reflexive. The relation ≤ (‘less than or equal’) on the natural
numbers is reflexive, the relation < (‘less than’) is not. The relation A2 − I is the set of
all pairs (x, y) ∈ A2 with x 6= y. If A is the set {a, bc}, then A2 − I gives the following
relation:

{(a, b), (a, c), (b, a), (b, c), (c, a)(c, b)}.
A relation R is called transitive if it holds for all x, y, z that if (x, y) ∈ R and (y, z) ∈ R,
then also (x, z) ∈ R. To say that the relation of friendship is transitive boils down to
saying that it holds for anyone that the friends of their friends are their friends.

Exercise A.5 Which of the following relations are transitive?

(1) {(1, 2), (2, 3), (3, 4)}

(2) {(1, 2), (2, 3), (3, 4), (1, 3), (2, 4)}

(3) {(1, 2), (2, 3), (3, 4), (1, 3), (2, 4), (1, 4)}

(4) {(1, 2), (2, 1)}
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(5) {(1, 1), (2, 2)}

The next exercise shows that transitivity can be expressed in terms of relational composi-
tion.

Exercise A.6 Check that a relation R is transitive if and only if it holds that R ◦R ⊆ R.

Exercise A.7 Can you give an example of a transitive relation R for which R ◦ R = R does not
hold?

A.3 Back and Forth Between Sets and Pictures

A domain of discourse with a number of 1-place and 2-place predicates on is in fact a set
of entities with certain designated subsets (the 1-place predicates) and designated sets of
pairs of entities (the 2-place predicates).

Relations are sets of pairs, and it is useful to acquire the skill to mentally go back and
forth between sets-of-pairs representation and picture representation. Take the following
simple example of a relation on the set {1, 2, 3}.

{(1, 2), (1, 3), (2, 3)}. (A.2)

Here is the corresponding picture:

1 2 3

Exercise A.8 Give the set of pairs that constitutes the relation of the following picture:

1 2 3



A-6 APPENDIX A. SETS, RELATIONS AND FUNCTIONS

For another example, consider the picture:

1 2 3

No arrowheads are drawn, which indicates that the pictured relation is symmetric. Here
is the representation of the same relation as a set of pairs:

{(1, 2), (2, 1), (1, 3), (3, 1), (2, 3), (3, 2)}.

Exercise A.9 Give the representation of the pictured relation as a set of pairs:

1 2 3

A.4 Relational Properties

Talking about pictures with predicate logic is very useful to develop a clear view of what
relational properties the predicate logical formulas express. Predicate logic is very pre-
cise, and it takes practice to get used to this precision. Consider the following picture.

A relation is transitive if from the facts that there are links from x to y and a link from y
to z it follows that there is a link from x to y. Here is a formula for this:

∀x∀y∀z((Rxy ∧Ryz)→ Rxz). (A.3)



A.4. RELATIONAL PROPERTIES A-7

Let us check whether the link relation in the last picture is transitive. It may seem at first
sight that it is, for what transitivity expresses is that if you can go from x to z by first
taking an R step from x to y and next another R step from y to z, between, then there is
also a direct R step from x to y. This seems indeed to be the case in the picture. But there
is a snag. In reasoning like this, we assume that the three points x, y and z are all different.
But this is not what the formula says. Take any two different points in the picture. Surely
there is a link from the first point to the second. But the linking relation is symmetric: it
goes in both directions. Therefore there also is a link from the second point back to the
first. But this means that the first point has to be R related to itself, and it isn’t. So the
relation in the picture is not transitive after all.

Can we also come up with a picture of three points with a symmetric linking relation,
where the relation is transitive? Yes, there are several possibilities. Here is the first one:

But there is another possibility. Take the following picture:

This is a picture where the link relation is empty. There are no links, so it trivially holds
that if one can get from a point to a point via two links, then one can also get there with a
single link. So the empty relation is transitive.

Exercise A.10 Give all the transitive link relations on a domain consisting of three individuals,
on the assumption that the link relation is symmetric. We have already seen two examples: the
empty relation (no points are linked) and the total relation (all points are linked). What are the
other possibilities? Draw pictures!

The relations in the pictures above were all symmetric: links were the same in both direc-
tions. The following picture with arrows gives a relation that is not symmetric. We need
the arrows, for now the directions of the links matter:
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Again we use R to refer to the binary relation in the picture. Again we can ask if the
relation of the picture is transitive. This time the answer is ‘yes’. If we can get from x to
y with two −→ steps, then we can also get from x to y with a single step.

Not only is the relation in the picture not symmetric, but something stronger holds:

∀x∀y(Rxy → ¬Ryx). (A.4)

Formula (A.4) expresses that the relation R is asymmetric.

Exercise A.11 Give an example of a binary relation on a domain of three objects that it is neither
symmetric nor asymmetric.

The relation in the current picture also has another property, called irreflexivity:

∀x¬Rxx. (A.5)

This expresses that the R relation does not have self loops. We say: the relation is ir-
reflexive

The dual to irreflexivity is the property of having all self loops. This is called reflexivity:

∀xRxx. (A.6)

Here is an example of a reflexive relation:

Exercise A.12 Show that any asymmetric relation has to be irreflexive. (Hint: assume that a
relation is asymmetric, and suppose it contains a loop (x, x). Why is this impossible?)
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A binary relation R is called an equivalence relation if R has the following three proper-
ties: (i) R is reflexive, (ii) R is symmetric, (iii) R is transitive.

Exercise A.13 Give all equivalence relations on a domain consisting of three objects. Draw pic-
tures!

Exercise A.14 Consider the three predicate logical sentences (A.1), (A.3) and (A.6), These sen-
tences together express that a certain binary relation R is an equivalence relation: symmetric,
transitive and reflexive. Show that none of these sentences is semantically entailed by the other
ones by choosing for each pair of sentences a model (situation) that makes these two sentences
true but makes the third sentence false. In other words: find three examples of binary relations,
each satisfying just two of the properties in the list (A.1), (A.3) and (A.6). This shows, essentially,
that the definition of being an equivalence cannot be simplified (why?).

Exercise A.15 Consider the following predicate logical formulas:

• ∀x∀y(Rxy → ¬Ryx) (R is asymmetric)

• ∀x∃yRxy (R is serial)

• ∀x∀y∀z((Rxy ∧Ryz)→ Rxz) (R is transitive).

Take any situation with a non-empty domain of discourse, with a binary relation on it. Show: if
the three formulas are true of this situation, then the domain of discourse must be infinite. (Hint:
start with a domain consisting of a single individual d1. Then by seriality there has to be an R-
successor to d1. Suppose we take d1 as its own R-successor. Then this would get us in conflict
with we are in conflict with asymmetry, by Exercise ??. So there has to be a d2 with (d1, d2) in R.
And so on . . . )

Exercise A.16 Consider again the three properties of asymmetry, seriality and transitivity of the
previous exercise.

(1) Give a picture of a finite situation with a relation R that is asymmetric and serial but not
transitive.

(2) Give a picture of a finite situation with a relation R that is serial and transitive but not
asymmetric.

(3) Give a picture of a finite situation with a relation R that is transitive and asymmetric but not
serial.

A.5 Functions

Functions are relations with the following special property: for any (a, b) and (a, c) in the
relation it has to hold that b and c are equal. Thus a function from a set A (called domain)
to a set B (called range) is a relation between A and B such that for each a ∈ A there is
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one and only one associated b ∈ B. In other words, a function is a mechanism that maps
an input value to a uniquely determined output value. Looking at the relation author of
from above, it is immediately clear that it is not a function, because the input Michael
Ende is not mapped to a unique output but is related to more than one element from the
set B of books.

Functions are an important kind of relations, because they allow us to express the concept
of dependence. For example, we know that the gravitational potential energy of a wreck-
ing ball depends on its mass and the height we elevated it to, and this dependence is most
easily expressed in a functional relation.

Functions can be viewed from different angles. On the one hand, they can be seen as
sets of data, represented as a collection of pairs of input and output values. This tells us
something about the behaviour of a function, i.e. what input is mapped to which output.

The function converting temperatures from Kelvin to Celsius can be seen as a set of pairs
{(0,−273.15), . . .}, and the function converting temperatures from Celsius to Fahrenheit
as a set {(−273.15,−459.67), . . .}. Determining the output of the function, given some
input, simply corresponds to a table lookup. Any function can be viewed as a – possibly
infinite – database table. This is called the extensional view of functions. Another way
to look at functions is as instructions for computation. This is called the intensional
view of functions. In the case of temperature conversion the intensional view is more
convenient than the extensional view, for the function mapping Kelvin to Celsius can
easily be specified as a simple subtraction

x 7→ x− 273.15

This is read as ‘an input x is mapped to x minus 273.15’. Similarly, the function from
Celsius to Fahrenheit can be given by

x 7→ x× 9

5
+ 32

For example, if we have a temperature of 37 degrees Celsius and want to convert it to
Fahrenheit, we replace x by 37 and compute the outcome by multiplying it with 9

5
and

then adding 32.

37× 9

5
+ 32→ 66.6 + 32→ 98.6

The example shows that the intensional view of functions can be made precise by repre-
senting the function as an expression, and specifying the principles for simplifying (or:
rewriting) such functional expressions. Rewriting functional expressions is a form of sim-
plification where part of an expression is replaced by something simpler, until we arrive
at an expression that cannot be simplified (or: reduced) any further. This rewriting corre-
sponds to the computation of a function. For example, the function converting Celsius to
Fahrenheit applied to the input 37 is the expression 37× 9

5
+ 32. This expression denotes

the output, and at the same time it shows how to arrive at this output: First, 37 × 9
5

is
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rewritten to 66.6, according to the rewriting rules for multiplication. The result of this
simplification is 66.6 + 32, which is then rewritten to 98.6, in accordance with the rewrit-
ing rules for addition.

Functions can be composed, as follows. Let g be the function that converts from Kelvin
to Celsius, and let f be the function that converts from Celsius to Fahrenheit. Then f · g
is the function that converts from Kelvin to Fahrenheit, and that works as follows. First
convert from Kelvin to Celsius, then take the result and convert this to Fahrenheit. It
should be clear from this explanation that f · g is defined by

x 7→ f(g(x)),

which corresponds to

x 7→ (x− 273.15)× 9

5
+ 32

Exercise A.17 The successor function s : N→ N on the natural numbers is given by n 7→ n+ 1.
What is the composition of s with itself?

A special function which is simple yet very useful is the characteristic function of a set.
The characteristic function of subset A of some universe (or: domain) U is a function that
maps all members of A to the truth-value True and all elements of U that are not members
of A to False. E.g. the function representing the property of being divisible by 3, on the
domain of integers, would map the numbers

. . . ,−9,−6,−3, 0, 3, 6, 9, . . .

to True, and all other integers to False. Characteristic functions characterize membership
of a set. Since we specified relations as sets, this means we can represent every relation
as a characteristic function.

Exercise A.18 ≤ is a binary relation on the natural numbers. What is the corresponding charac-
teristic function?

Exercise A.19 Let f : A→ B be a function. Show that the relation R ⊆ A2 given by (x, y) ∈ R
if and only if f(x) = f(y) is an equivalence relation (reflexive, transitive and symmetric) on A.

A.6 Recursion and Induction

A recursive definition is a recipe for constructing objects from a finite number of ingre-
dients in a finite number of ways. An example is the following recursive definition of
natural numbers:

• 0 is a natural number.
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• adding 1 to a natural number n gives a new natural number n + 1.

• nothing else is a natural number.

This recipe gives rise to an important method for proving things: proof by mathematical
induction.

As an example, we prove the fact about natural numbers that the sum of the first n odd
natural numbers equals n2. For example 1 + 3 = 22, 1 + 3 + 5 + 7 = 42, and so on. More
formally and generally, we have for all natural numbers n:

n−1∑
k=0

(2k + 1) = n2.

Here is a proof of this fact by mathematical induction.

Basis. For n = 0, we have Σ0
k=0(2k + 1) = 1 = 12, so for this case the statement holds.

Induction step. We assume the statement holds for some particular natural number n and
we show that it also holds for n+1. So assume

∑n−1
k=0(2k+1) = n2. This is the induction

hypothesis. We have to show:
∑n

k=0(2k + 1) = (n + 1)2. Indeed,

n∑
k=0

(2k + 1) =
n−1∑
k=0

(2k + 1) + 2n + 1.

Now use the induction hypothesis to see that this is equal to n2 + 2n + 1, which in turn
equals (n + 1)2. Therefore we have:

n∑
k=0

(2k + 1) =
n−1∑
k=0

(2k + 1) + 2n + 1
ih
= n2 + 2n + 1 = (n + 1)2.

The equality ih
= is the step where the induction hypothesis was used. We have checked

two cases: the case 0 and the case n + 1. By the recursive definition of natural numbers,
we have covered all cases, for these are the two possible shapes of natural numbers. So
we have proved the statement for all natural numbers n.

The procedure of proof by mathematical induction does not help to find interesting pat-
terns, but once such a pattern is found it is very helpful to check whether the pattern really
holds. So how can one find a pattern like

∑n−1
k=0(2k + 1) = n2 in the first place? By

imagining the following way to build up a square with side n:
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Such a picture is what the ancient Greeks called a gnomon (“thing by which one knows”).
The structure of the inductive proof can now be pictured as follows:

Basis

n

nn

+
1

2n + 1

Induction Step

Exercise A.20 Consider the following gnomon:
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What does this suggest for the sum of the first n even numbers? Give a form for
∑n

k=0 2k, and
prove with induction that your form is correct.


