Logic in Action
 Chapter 2: Propositional Logic

http://www.logicinaction.org/

Example (1)

In a restaurant, your Father has ordered Fish, your Mother ordered Vegetarian, and you ordered Meat. Out of the kitchen comes some new person carrying the three plates. What will happen?

Three guests are sitting at a table. The waitress asks: "Does everyone want coffee". The first guest says: "I don't know". The second guest now says: "I don't know". Then the third guest says: "No, not everyone wants coffee". The waitress comes back and gives the right people their coffees. Assuming that at the beginning each guest only knows about himself, which was the waitress reasoning? Who gets coffee and who does not?

Example (3)

Example (3)

Example (3)

Example (3)

1	2	3
3	\cdot	2
\cdot	3	1

Example (3)

1	2	3
3	$\mathbf{1}$	2
2	3	1

Example (4)

If you take the medication, you will get better. You are taking the medication.

So, you will get better.

Example (4)

If you take the medication, you will get better. You are taking the medication.

So, you will get better.

Example (4)

If you take the medication, you will get better.
You are taking the medication.
So, you will get better.

If you take the medication, you will get better. You are getting better.

So, you took the medication.

Example (4)

If you take the medication, you will get better. You are taking the medication.

So, you will get better.

If you take the medication, you will get better. You are getting better.

So, you took the medication.

Example (5)

If you take the medication, you will get better. But you are not taking the medication.

So, you will not get better.

Example (5)

If you take the medication, you will get better. But you are not taking the medication.

So, you will not get better.

Example (5)

If you take the medication, you will get better. But you are not taking the medication.

So, you will not get better.

If you take the medication, you will get better.
But you are not getting better.
So, you have not taken the medication.

Example (5)

If you take the medication, you will get better. But you are not taking the medication.

So, you will not get better.

If you take the medication, you will get better.
But you are not getting better.
So, you have not taken the medication.

Valid inference

Valid inference

An inference is valid if and only if every time all the premises are true, the conclusion is also true.

What a valid inference tells us?

Suppose the following inference is valid

Then

What a valid inference tells us?

Suppose the following inference is valid

Then
(1) if all the premises $\boldsymbol{A}_{1}, \ldots, \boldsymbol{A}_{\boldsymbol{n}}$ are true, so is the conclusion \boldsymbol{C}.

What a valid inference tells us?

Suppose the following inference is valid

Then
(1) if all the premises $\boldsymbol{A}_{\boldsymbol{1}}, \ldots, \boldsymbol{A}_{\boldsymbol{n}}$ are true, so is the conclusion \boldsymbol{C}.
(2) if the conclusion \boldsymbol{C} is false, at least one premise $\boldsymbol{A}_{\boldsymbol{i}}$ is false.

Looking for patterns (1)

Two valid inferences:

If you take the medication, then you will get better.
You are taking the medication.
So, you will get better.

If you jump from a 4th floor, then you will fly.
You jump from a 4th floor.
So, you will fly.

Looking for patterns (1)

Two valid inferences:
If you take the medication, then you will get better.
You are taking the medication.
So, you will get better.

If you jump from a 4th floor, then you will fly.
You jump from a 4th floor.
So, you will fly.

Looking for patterns (1)

Two valid inferences:

If \boldsymbol{A}, then \boldsymbol{B}.
A.
So, B.

If \boldsymbol{E}, then \boldsymbol{F}.
E.

So, \boldsymbol{F}.

Looking for patterns (2)

Another valid inference:
If you take the medication, then you will get better. You are not getting better.

So, you are not taking the medication.

Looking for patterns (2)

Another valid inference:
If you take the medication, then you will get better. You are not getting better.

So, you are not taking the medication.

Looking for patterns (2)

Another valid inference:

If \boldsymbol{A}, then \boldsymbol{B}. not B.

So, not \boldsymbol{A}.

Looking for patterns (3)

And yet another:
An integer x is even or odd.
If x is even, then $x+x$ is even.
If x is odd, then $x+x$ is even.
So, $x+x$ is even.

Looking for patterns (3)

And yet another:
An integer x is even or odd.
If x is even, then $x+x$ is even.
If x is odd, then $x+x$ is even.
So, $x+x$ is even.

Looking for patterns (3)

And yet another:
An integer x is $\boldsymbol{A}_{\boldsymbol{1}}$ or $\boldsymbol{A}_{\mathbf{2}}$.
If x is $\boldsymbol{A}_{\boldsymbol{1}}$, then \boldsymbol{C}.
If x is $\boldsymbol{A}_{\mathbf{2}}$, then \boldsymbol{C}.
So, C.

Looking for patterns (3)

And yet another:
An integer x is $\boldsymbol{A}_{\mathbf{1}}$ or $\boldsymbol{A}_{\mathbf{2}}$.
If x is $\boldsymbol{A}_{\boldsymbol{1}}$, then \boldsymbol{C}.
If x is $\boldsymbol{A}_{\mathbf{2}}$, then \boldsymbol{C}.
So, C.

Can you think of others?

The main question

How can we recognize valid inference patterns?

Example (6)

A1 At least one of them is guilty.
A2 Not all of them are guilty.
A3 If Mrs White is guilty, then Colonel Mustard helped her (he is guilty too).
A4 If Miss Scarlet is innocent then so is Colonel Mustard.

Example (6)

Example (6)

A1 At least one of them is guilty.

innocent	innocent	innocent
innocent	innocent	guilty
innocent	guilty	innocent
innocent	guilty	guilty
guilty	innocent	innocent
guilty	innocent	guilty
guilty	guilty	innocent
guilty	guilty	guilty

Example (6)

A1 At least one of them is guilty.

innocent	innocent	innocent
innocent	innocent	guilty
innocent	guilty	innocent
innocent	guilty	guilty
guilty	innocent	innocent
guilty	innocent	guilty
guilty	guilty	innocent
guilty	guilty	guilty

Example (6)

A1 At least one of them is guilty. A2 Not all of them are guilty.

innocent	innocent
innocent	innocent
innocent	guilty
innocent	guilty
guilty	innocent
guilty	innocent
guilty	innocent
guilty	guilty
guilty	guilty

Example (6)

A1 At least one of them is guilty. A2 Not all of them are guilty.

innocent	innocent	innocent
innocent	innocent	guilty
innocent	guilty	innocent
innocent	guilty	guilty
guilty	innocent	innocent
guilty	innocent	guilty
guilty	guilty	innocent
guilty	guilty	guilty

Example (6)

A1 At least one of them is guilty.
A2 Not all of them are guilty.
A3 If Mrs White is guilty, then Colonel Mustard helped her (he is guilty too).

innocent	innocent
innocent	innocent
innocent	guilty
guilty	innocent
innocent	guilty
guilty	guilty
guilty	innocent
guilty	innocent
guilty	guilty
guilty	guilty

Example (6)

A1 At least one of them is guilty.
A2 Not all of them are guilty.
A3 If Mrs White is guilty, then Colonel Mustard helped her (he is guilty too).

innocent	innocent	innocent
innocent	innocent	guilty
innocent	guilty	innocent
innocent	guilty	guilty
guilty	innocent	innocent
guilty	innocent	guilty
guilty	guilty	innocent
guilty	guilty	guilty

Example (6)

A1 At least one of them is guilty.
A2 Not all of them are guilty.
A3 If Mrs White is guilty, then Colonel Mustard helped her (he is guilty too).
A4 If Miss Scarlet is innocent then so is Colonel Mustard.

innocent	innocent	innocent
innocent	innocent	guilty
innocent	guilty	innocent
innocent	guilty	guilty
guilty	innocent	innocent
guilty	innocent	guilty
guilty	guilty	innocent
guilty	guilty	guilty

Example (6)

A1 At least one of them is guilty.
A2 Not all of them are guilty.
A3 If Mrs White is guilty, then Colonel Mustard helped her (he is guilty too).
A4 If Miss Scarlet is innocent then so is Colonel Mustard.

innocent	innocent	innocent
innocent	imnocent	guilty
innocent	guilty	innocent
innocent	guilty	guilty
guilty	innocent	innocent
guilty	innocent	guilty
guilty	guilty	innocent
guilty	guilty	guilty

Example (6)

Example (6)

$$
\checkmark \frac{\boldsymbol{A}_{1}, \boldsymbol{A}_{2}, \boldsymbol{A}_{\mathbf{3}}, \boldsymbol{A}_{4}}{\text { Miss Scarlet is guilty }}
$$

Example (6)

$$
\checkmark \frac{\boldsymbol{A}_{\mathbf{1}}, \boldsymbol{A}_{\mathbf{2}}, \boldsymbol{A}_{\mathbf{3}}, \boldsymbol{A}_{4}}{\text { Miss Scarlet is guilty }}
$$

In every situation in which $\boldsymbol{A}_{\mathbf{1}}, \boldsymbol{A}_{\mathbf{2}}, \boldsymbol{A}_{\mathbf{3}}$ and \boldsymbol{A}_{4} are all true, "Miss Scarlet is guilty" is true.

Example (6)

$$
\checkmark \frac{\boldsymbol{A}_{1}, \boldsymbol{A}_{2}, \boldsymbol{A}_{\mathbf{3}}, \boldsymbol{A}_{4}}{\text { Miss Scarlet is guilty }}
$$

In every situation in which $\boldsymbol{A}_{1}, \boldsymbol{A}_{2}, \boldsymbol{A}_{3}$ and \boldsymbol{A}_{4} are all true, "Miss Scarlet is guilty" is true.

$$
? \frac{\boldsymbol{A}_{1}, \boldsymbol{A}_{2}, \boldsymbol{A}_{\mathbf{3}}, \boldsymbol{A}_{\mathbf{4}}}{\text { Mrs White is innocent }}
$$

Example (6)

$$
\checkmark \frac{\boldsymbol{A}_{\mathbf{1}}, \boldsymbol{A}_{2}, \boldsymbol{A}_{\mathbf{3}}, \boldsymbol{A}_{4}}{\text { Miss Scarlet is guilty }}
$$

In every situation in which $\boldsymbol{A}_{1}, \boldsymbol{A}_{2}, \boldsymbol{A}_{3}$ and \boldsymbol{A}_{4} are all true, "Miss Scarlet is guilty" is true.

$$
\frac{\boldsymbol{A}_{1}, \boldsymbol{A}_{2}, \boldsymbol{A}_{3}, \boldsymbol{A}_{4}}{\text { Mrs White is innocent }}
$$

Example (6)

$$
\checkmark \frac{\boldsymbol{A}_{1}, \boldsymbol{A}_{2}, \boldsymbol{A}_{3}, \boldsymbol{A}_{4}}{\text { Miss Scarlet is guilty }}
$$

In every situation in which $\boldsymbol{A}_{1}, \boldsymbol{A}_{2}, \boldsymbol{A}_{3}$ and \boldsymbol{A}_{4} are all true, "Miss Scarlet is guilty" is true.

$$
\frac{\boldsymbol{A}_{1}, \boldsymbol{A}_{2}, \boldsymbol{A}_{3}, \boldsymbol{A}_{4}}{\text { Mrs White is innocent }}
$$

In every situation in which $\boldsymbol{A}_{1}, \boldsymbol{A}_{\mathbf{2}}, \boldsymbol{A}_{\mathbf{3}}$ and \boldsymbol{A}_{4} are all true, "Mrs White is innocent" is true.

Example (6)

Example (6)

$$
\times \frac{\boldsymbol{A}_{1}, \boldsymbol{A}_{2}, \boldsymbol{A}_{3}, \boldsymbol{A}_{4}}{\text { Colonel Mustard is guilty }}
$$

Example (6)

$$
\times \frac{\boldsymbol{A}_{1}, \boldsymbol{A}_{2}, \boldsymbol{A}_{3}, \boldsymbol{A}_{4}}{\text { Colonel Mustard is guilty }}
$$

There is a situation in which $\boldsymbol{A}_{\mathbf{1}}, \boldsymbol{A}_{\mathbf{2}}, \boldsymbol{A}_{\mathbf{3}}$ and $\boldsymbol{A}_{\mathbf{4}}$ are all true, but "Colonel Mustard is guilty" is false (there is a counter-example).

Example (6)

$$
\times \frac{\boldsymbol{A}_{1}, \boldsymbol{A}_{2}, \boldsymbol{A}_{3}, \boldsymbol{A}_{4}}{\text { Colonel Mustard is guilty }}
$$

There is a situation in which $\boldsymbol{A}_{\mathbf{1}}, \boldsymbol{A}_{\mathbf{2}}, \boldsymbol{A}_{\mathbf{3}}$ and $\boldsymbol{A}_{\mathbf{4}}$ are all true, but "Colonel Mustard is guilty" is false (there is a counter-example).

Example (6)

$$
\times \frac{\boldsymbol{A}_{1}, \boldsymbol{A}_{2}, \boldsymbol{A}_{3}, \boldsymbol{A}_{4}}{\text { Colonel Mustard is guilty }}
$$

There is a situation in which $\boldsymbol{A}_{\mathbf{1}}, \boldsymbol{A}_{\mathbf{2}}, \boldsymbol{A}_{\mathbf{3}}$ and $\boldsymbol{A}_{\mathbf{4}}$ are all true, but "Colonel Mustard is guilty" is false (there is a counter-example).

Example (6)

$$
\times \frac{\boldsymbol{A}_{1}, \boldsymbol{A}_{2}, \boldsymbol{A}_{3}, \boldsymbol{A}_{4}}{\text { Colonel Mustard is guilty }}
$$

There is a situation in which $\boldsymbol{A}_{\boldsymbol{1}}, \boldsymbol{A}_{\mathbf{2}}, \boldsymbol{A}_{\mathbf{3}}$ and $\boldsymbol{A}_{\mathbf{4}}$ are all true, but "Colonel Mustard is guilty" is false (there is a counter-example).

There is a situation in which $\boldsymbol{A}_{\mathbf{1}}, \boldsymbol{A}_{\mathbf{2}}, \boldsymbol{A}_{\mathbf{3}}$ and $\boldsymbol{A}_{\mathbf{4}}$ are all true, but "Colonel Mustard is innocent" is false (there is a counter-example).

Ingredients of the propositional language

Ingredients of the propositional language

(1) Basic (atomic) statements (propositions):

$$
p, q, r, \ldots
$$

Ingredients of the propositional language

(1) Basic (atomic) statements (propositions):

$$
p, q, r, \ldots
$$

(2) Operators to build more statements:

"not $\ldots "$ "	becomes	$\neg \ldots$
$" \ldots$ and $\ldots "$	becomes	$\ldots \wedge \ldots$
$" \ldots$ or $\ldots "$	becomes	$\ldots \vee \ldots$
"if \ldots then"	becomes $\ldots \rightarrow \ldots$	
$" \ldots$ if and only if \ldots "	becomes	$\ldots \leftrightarrow \ldots$

The propositional language

The language \mathcal{L}_{P} is a set of formulas satisfying:

The propositional language

The language \mathcal{L}_{P} is a set of formulas satisfying:
(1) All the basic propositions are in \mathcal{L}_{P} :

$$
\boldsymbol{p} \in \mathcal{L}_{\mathrm{P}}, \quad \boldsymbol{q} \in \mathcal{L}_{\mathrm{P}}, \quad r \in \mathcal{L}_{\mathrm{P}}
$$

The propositional language

The language \mathcal{L}_{P} is a set of formulas satisfying:
(1) All the basic propositions are in \mathcal{L}_{P} :

$$
\boldsymbol{p} \in \mathcal{L}_{\mathrm{P}}, \quad \boldsymbol{q} \in \mathcal{L}_{\mathrm{P}}, \quad r \in \mathcal{L}_{\mathrm{P}}, \quad \ldots
$$

(2) If $\varphi \in \mathcal{L}_{\mathrm{P}}$ and $\psi \in \mathcal{L}_{\mathrm{P}}$, then

The propositional language

The language \mathcal{L}_{P} is a set of formulas satisfying:
(1) All the basic propositions are in \mathcal{L}_{P} :

$$
\boldsymbol{p} \in \mathcal{L}_{\mathrm{P}}, \quad \boldsymbol{q} \in \mathcal{L}_{\mathrm{P}}, \quad r \in \mathcal{L}_{\mathrm{P}}, \quad \ldots
$$

(2) If $\varphi \in \mathcal{L}_{\mathrm{P}}$ and $\psi \in \mathcal{L}_{\mathrm{P}}$, then

$$
\neg \varphi \in \mathcal{L}_{\mathrm{P}}
$$

The propositional language

The language \mathcal{L}_{P} is a set of formulas satisfying:
(1) All the basic propositions are in \mathcal{L}_{P} :

$$
\boldsymbol{p} \in \mathcal{L}_{\mathrm{P}}, \quad \boldsymbol{q} \in \mathcal{L}_{\mathrm{P}}, \quad r \in \mathcal{L}_{\mathrm{P}}, \quad \ldots
$$

(2) If $\varphi \in \mathcal{L}_{\mathrm{P}}$ and $\psi \in \mathcal{L}_{\mathrm{P}}$, then

$$
\neg \varphi \in \mathcal{L}_{P}, \quad(\varphi \wedge \psi) \in \mathcal{L}_{P}
$$

The propositional language

The language \mathcal{L}_{P} is a set of formulas satisfying:
(1) All the basic propositions are in \mathcal{L}_{P} :

$$
\boldsymbol{p} \in \mathcal{L}_{\mathrm{P}}, \quad \boldsymbol{q} \in \mathcal{L}_{\mathrm{P}}, \quad r \in \mathcal{L}_{\mathrm{P}}, \quad \ldots
$$

(2) If $\varphi \in \mathcal{L}_{\mathrm{P}}$ and $\psi \in \mathcal{L}_{\mathrm{P}}$, then

$$
\begin{array}{ll}
\neg \varphi \in \mathcal{L}_{P}, \quad & (\varphi \wedge \psi) \in \mathcal{L}_{P} \\
& (\varphi \vee \psi) \in \mathcal{L}_{P}
\end{array}
$$

The propositional language

The language \mathcal{L}_{P} is a set of formulas satisfying:
(1) All the basic propositions are in \mathcal{L}_{P} :

$$
\boldsymbol{p} \in \mathcal{L}_{\mathrm{P}}, \quad \boldsymbol{q} \in \mathcal{L}_{\mathrm{P}}, \quad r \in \mathcal{L}_{\mathrm{P}}, \quad \ldots
$$

(2) If $\varphi \in \mathcal{L}_{\mathrm{P}}$ and $\psi \in \mathcal{L}_{\mathrm{P}}$, then

$$
\begin{array}{ll}
\neg \varphi \in \mathcal{L}_{\mathrm{P}}, \quad & (\varphi \wedge \psi) \in \mathcal{L}_{\mathrm{P}}, \quad(\varphi \rightarrow \psi) \in \mathcal{L}_{\mathrm{P}}, \\
& (\varphi \vee \psi) \in \mathcal{L}_{\mathrm{P}},
\end{array}
$$

The propositional language

The language \mathcal{L}_{P} is a set of formulas satisfying:
(1) All the basic propositions are in \mathcal{L}_{P} :

$$
\boldsymbol{p} \in \mathcal{L}_{\mathrm{P}}, \quad \boldsymbol{q} \in \mathcal{L}_{\mathrm{P}}, \quad r \in \mathcal{L}_{\mathrm{P}}, \quad \ldots
$$

(2) If $\varphi \in \mathcal{L}_{\mathrm{P}}$ and $\psi \in \mathcal{L}_{\mathrm{P}}$, then

$$
\begin{array}{lll}
\neg \varphi \in \mathcal{L}_{\mathrm{P}}, & (\varphi \wedge \psi) \in \mathcal{L}_{\mathrm{P}}, & (\varphi \rightarrow \psi) \in \mathcal{L}_{\mathrm{P}} \\
& (\varphi \vee \psi) \in \mathcal{L}_{\mathrm{P}}, & (\varphi \leftrightarrow \psi) \in \mathcal{L}_{\mathrm{P}} .
\end{array}
$$

The propositional language

The language \mathcal{L}_{P} is a set of formulas satisfying:
(1) All the basic propositions are in \mathcal{L}_{P} :

$$
\boldsymbol{p} \in \mathcal{L}_{\mathrm{P}}, \quad \boldsymbol{q} \in \mathcal{L}_{\mathrm{P}}, \quad r \in \mathcal{L}_{\mathrm{P}}, \quad \ldots
$$

(2) If $\varphi \in \mathcal{L}_{\mathrm{P}}$ and $\psi \in \mathcal{L}_{\mathrm{P}}$, then

$$
\begin{array}{lll}
\neg \varphi \in \mathcal{L}_{\mathrm{P}}, & (\varphi \wedge \psi) \in \mathcal{L}_{\mathrm{P}}, & (\varphi \rightarrow \psi) \in \mathcal{L}_{\mathrm{P}} \\
& (\varphi \vee \psi) \in \mathcal{L}_{\mathrm{P}}, & (\varphi \leftrightarrow \psi) \in \mathcal{L}_{\mathrm{P}} .
\end{array}
$$

(3) Nothing else is in \mathcal{L}_{P}.

The propositional language

The language \mathcal{L}_{P} is a set of formulas satisfying:
(1) All the basic propositions are in \mathcal{L}_{P} :

$$
\boldsymbol{p} \in \mathcal{L}_{\mathrm{P}}, \quad \boldsymbol{q} \in \mathcal{L}_{\mathrm{P}}, \quad r \in \mathcal{L}_{\mathrm{P}}, \quad \ldots
$$

(2) If $\varphi \in \mathcal{L}_{\mathrm{P}}$ and $\psi \in \mathcal{L}_{\mathrm{P}}$, then

$$
\begin{array}{lll}
\neg \varphi \in \mathcal{L}_{\mathrm{P}}, & (\varphi \wedge \psi) \in \mathcal{L}_{\mathrm{P}}, & (\varphi \rightarrow \psi) \in \mathcal{L}_{\mathrm{P}} \\
& (\varphi \vee \psi) \in \mathcal{L}_{\mathrm{P}}, & (\varphi \leftrightarrow \psi) \in \mathcal{L}_{\mathrm{P}}
\end{array}
$$

(3) Nothing else is in \mathcal{L}_{P}.

In practice, we will avoid parenthesis if they are not necessary.

Constructing formulas

The construction of a formula can be seen as building a tree.

Constructing formulas

The construction of a formula can be seen as building a tree.

$$
((\neg p \vee q) \rightarrow r)
$$

Constructing formulas

The construction of a formula can be seen as building a tree.

$$
\begin{gathered}
((\neg p \vee q) \\
\xrightarrow{\mid}
\end{gathered}
$$

Constructing formulas

The construction of a formula can be seen as building a tree.

Constructing formulas

The construction of a formula can be seen as building a tree.

Constructing formulas

The construction of a formula can be seen as building a tree.

Constructing formulas

The construction of a formula can be seen as building a tree.

Constructing formulas

The construction of a formula can be seen as building a tree.

Constructing formulas

The construction of a formula can be seen as building a tree.

Constructing formulas

The construction of a formula can be seen as building a tree.

Constructing formulas

The construction of a formula can be seen as building a tree.

Constructing formulas

The construction of a formula can be seen as building a tree.

Constructing formulas

The construction of a formula can be seen as building a tree.

Constructing formulas

The construction of a formula can be seen as building a tree.

Constructing formulas

The construction of a formula can be seen as building a tree.

Evaluating formulas

How do we know if a given formula φ is true or false?

Evaluating formulas

How do we know if a given formula φ is true or false?

- We need the truth-values of the basic propositions $\boldsymbol{p}, \boldsymbol{q}, \boldsymbol{r}, \ldots$ that appear in φ.

Evaluating formulas

How do we know if a given formula φ is true or false?

- We need the truth-values of the basic propositions $\boldsymbol{p}, \boldsymbol{q}, \boldsymbol{r}, \ldots$ that appear in φ.
- We need to know the meaning of $\neg, \wedge, \vee, \rightarrow$ and \leftrightarrow.

Behaviour of the connectives (1)

Use 1 for true, and 0 for false.
For negation \neg

Behaviour of the connectives (1)

Use 1 for true, and 0 for false.
For negation \neg

Behaviour of the connectives (1)

Use 1 for true, and 0 for false.
For negation \neg

φ	$\neg \varphi$
1	0
0	

Behaviour of the connectives (1)

Use 1 for true, and 0 for false.
For negation \neg

φ	$\neg \varphi$
1	0
0	1

Behaviour of the connectives (1)

Use 1 for true, and 0 for false.
For negation \neg

φ	$\neg \varphi$
1	0
0	1

or, in a shorter format:

Behaviour of the connectives (1)

Use 1 for true, and 0 for false.
For negation \neg

or, in a shorter format:

Behaviour of the connectives (1)

Use 1 for true, and 0 for false.
For negation \neg

or, in a shorter format:

Behaviour of the connectives (1)

Use 1 for true, and 0 for false.
For negation \neg

or, in a shorter format:

Behaviour of the connectives (2)

For conjunction \wedge

Behaviour of the connectives (2)

For conjunction \wedge

$\boldsymbol{\varphi}$	\wedge	ψ
1		1
1		0
0		1
0		0

Behaviour of the connectives (2)

For conjunction \wedge

φ	\wedge	ψ
1	$\mathbf{1}$	1
1		0
0		1
0		0

Behaviour of the connectives (2)

For conjunction \wedge

φ	\wedge	ψ
1	$\mathbf{1}$	1
1	$\mathbf{0}$	0
0		1
0		0

Behaviour of the connectives (2)

For conjunction \wedge

φ	\wedge	ψ
1	$\mathbf{1}$	1
1	$\mathbf{0}$	0
0	$\mathbf{0}$	1
0		0

Behaviour of the connectives (2)

For conjunction \wedge

φ	\wedge	ψ
1	$\mathbf{1}$	1
1	$\mathbf{0}$	0
0	$\mathbf{0}$	1
0	$\mathbf{0}$	0

Behaviour of the connectives (2)

For conjunction \wedge

$\boldsymbol{\varphi}$	\wedge	ψ
1	$\mathbf{1}$	1
1	$\mathbf{0}$	0
0	$\mathbf{0}$	1
0	$\mathbf{0}$	0

For disjunction \vee

Behaviour of the connectives (2)

For conjunction \wedge

φ	\wedge	ψ
1	$\mathbf{1}$	1
1	$\mathbf{0}$	0
0	$\mathbf{0}$	1
0	$\mathbf{0}$	0

For disjunction \vee

φ	\vee	ψ
1		1
1		0
0		1
0		0

Behaviour of the connectives (2)

For conjunction \wedge

φ	\wedge	ψ
1	$\mathbf{1}$	1
1	$\mathbf{0}$	0
0	$\mathbf{0}$	1
0	$\mathbf{0}$	0

For disjunction \vee

φ	\vee	ψ
1	$\mathbf{1}$	1
1		0
0		1
0		0

Behaviour of the connectives (2)

For conjunction \wedge

φ	\wedge	ψ
1	$\mathbf{1}$	1
1	$\mathbf{0}$	0
0	$\mathbf{0}$	1
0	$\mathbf{0}$	0

For disjunction \vee

φ	\vee	ψ
1	$\mathbf{1}$	1
1	$\mathbf{1}$	0
0		1
0		0

Behaviour of the connectives (2)

For conjunction \wedge

φ	\wedge	ψ
1	$\mathbf{1}$	1
1	$\mathbf{0}$	0
0	$\mathbf{0}$	1
0	$\mathbf{0}$	0

For disjunction \vee

φ	\vee	ψ
1	$\mathbf{1}$	1
1	$\mathbf{1}$	0
0	$\mathbf{1}$	1
0		0

Behaviour of the connectives (2)

For conjunction \wedge

φ	\wedge	ψ
1	$\mathbf{1}$	1
1	$\mathbf{0}$	0
0	$\mathbf{0}$	1
0	$\mathbf{0}$	0

For disjunction \vee

φ	\vee	ψ
1	$\mathbf{1}$	1
1	$\mathbf{1}$	0
0	$\mathbf{1}$	1
0	$\mathbf{0}$	0

Behaviour of the connectives (3)

For equivalence \leftrightarrow

Behaviour of the connectives (3)

For equivalence \leftrightarrow

$\boldsymbol{\varphi}$	\leftrightarrow	ψ
1		1
1		0
0		1
0		0

Behaviour of the connectives (3)

For equivalence \leftrightarrow

φ	\leftrightarrow	ψ
1	$\mathbf{1}$	1
1		0
0		1
0		0

Behaviour of the connectives (3)

For equivalence \leftrightarrow

φ	\leftrightarrow	ψ
1	$\mathbf{1}$	1
1	$\mathbf{0}$	0
0		1
0		0

Behaviour of the connectives (3)

For equivalence \leftrightarrow

φ	\leftrightarrow	ψ
1	$\mathbf{1}$	1
1	$\mathbf{0}$	0
0	$\mathbf{0}$	1
0		0

Behaviour of the connectives (3)

For equivalence \leftrightarrow

φ	\leftrightarrow	ψ
1	$\mathbf{1}$	1
1	$\mathbf{0}$	0
0	$\mathbf{0}$	1
0	$\mathbf{1}$	0

Behaviour of the connectives (3)

For equivalence \leftrightarrow

φ	\leftrightarrow	ψ
1	$\mathbf{1}$	1
1	$\mathbf{0}$	0
0	$\mathbf{0}$	1
0	$\mathbf{1}$	0

For implication \rightarrow

Behaviour of the connectives (3)

For equivalence \leftrightarrow

φ	\leftrightarrow	ψ
1	$\mathbf{1}$	1
1	$\mathbf{0}$	0
0	$\mathbf{0}$	1
0	$\mathbf{1}$	0

For implication \rightarrow

$\boldsymbol{\varphi}$	\rightarrow	$\boldsymbol{\psi}$
1		1
1		0
0		1
0		0

Behaviour of the connectives (3)

For equivalence \leftrightarrow

φ	\leftrightarrow	ψ
1	$\mathbf{1}$	1
1	$\mathbf{0}$	0
0	$\mathbf{0}$	1
0	$\mathbf{1}$	0

For implication \rightarrow

$\boldsymbol{\varphi}$	\rightarrow	ψ
1	$\mathbf{1}$	1
1		0
0		1
0		0

Behaviour of the connectives (3)

For equivalence \leftrightarrow

φ	\leftrightarrow	ψ
1	$\mathbf{1}$	1
1	$\mathbf{0}$	0
0	$\mathbf{0}$	1
0	$\mathbf{1}$	0

For implication \rightarrow

φ	\rightarrow	ψ
1	$\mathbf{1}$	1
1	$\mathbf{0}$	0
0		1
0		0

Behaviour of the connectives (3)

For equivalence \leftrightarrow

φ	\leftrightarrow	ψ
1	$\mathbf{1}$	1
1	$\mathbf{0}$	0
0	$\mathbf{0}$	1
0	$\mathbf{1}$	0

For implication \rightarrow

φ	\rightarrow	ψ
1	$\mathbf{1}$	1
1	$\mathbf{0}$	0
0	$\mathbf{1}$	1
0		0

Behaviour of the connectives (3)

For equivalence \leftrightarrow

φ	\leftrightarrow	ψ
1	$\mathbf{1}$	1
1	$\mathbf{0}$	0
0	$\mathbf{0}$	1
0	$\mathbf{1}$	0

For implication \rightarrow

φ	\rightarrow	ψ
1	$\mathbf{1}$	1
1	$\mathbf{0}$	0
0	$\mathbf{1}$	1
0	$\mathbf{1}$	0

Valuations

Valuation. Let $\mathrm{P}=\{\boldsymbol{p}, \boldsymbol{q}, \boldsymbol{r}, \ldots\}$ be a set of atomic propositions. A valuation V from P to $\{0,1\}$ assigns to each element of P a unique truth-value.

Valuations

Valuation. Let $\mathrm{P}=\{\boldsymbol{p}, \boldsymbol{q}, \boldsymbol{r}, \ldots\}$ be a set of atomic propositions. A valuation V from P to $\{0,1\}$ assigns to each element of P a unique truth-value.

Example: assume $P=\{p, q\}$.

Valuations

Valuation. Let $\mathrm{P}=\{\boldsymbol{p}, \boldsymbol{q}, \boldsymbol{r}, \ldots\}$ be a set of atomic propositions. A valuation V from P to $\{0,1\}$ assigns to each element of P a unique truth-value.

Example: assume $P=\{p, q\}$.
There are four different valuations (four different situations):

Valuations

Valuation. Let $\mathrm{P}=\{\boldsymbol{p}, \boldsymbol{q}, \boldsymbol{r}, \ldots\}$ be a set of atomic propositions. A valuation V from P to $\{0,1\}$ assigns to each element of P a unique truth-value.

Example: assume $P=\{p, q\}$.
There are four different valuations (four different situations):

$$
V_{1}(\boldsymbol{p})=1 \quad V_{1}(\boldsymbol{q})=1
$$

Valuations

Valuation. Let $\mathrm{P}=\{\boldsymbol{p}, \boldsymbol{q}, \boldsymbol{r}, \ldots\}$ be a set of atomic propositions. A valuation V from P to $\{0,1\}$ assigns to each element of P a unique truth-value.

Example: assume $P=\{p, q\}$.
There are four different valuations (four different situations):

$$
\begin{array}{ll}
V_{1}(\boldsymbol{p})=1 & V_{1}(\boldsymbol{q})=1 \\
\hline V_{2}(\boldsymbol{p})=1 & V_{2}(\boldsymbol{q})=0
\end{array}
$$

Valuations

Valuation. Let $\mathrm{P}=\{\boldsymbol{p}, \boldsymbol{q}, \boldsymbol{r}, \ldots\}$ be a set of atomic propositions. A valuation V from P to $\{0,1\}$ assigns to each element of P a unique truth-value.

Example: assume $P=\{p, q\}$.
There are four different valuations (four different situations):

$$
\begin{array}{ll}
V_{1}(\boldsymbol{p})=1 & V_{1}(\boldsymbol{q})=1 \\
\hline V_{2}(\boldsymbol{p})=1 & V_{2}(\boldsymbol{q})=0 \\
\hline V_{3}(\boldsymbol{p})=0 & V_{3}(\boldsymbol{q})=1 \\
\hline
\end{array}
$$

Valuations

Valuation. Let $\mathrm{P}=\{\boldsymbol{p}, \boldsymbol{q}, \boldsymbol{r}, \ldots\}$ be a set of atomic propositions. A valuation V from P to $\{0,1\}$ assigns to each element of P a unique truth-value.

Example: assume $P=\{p, q\}$.
There are four different valuations (four different situations):

$$
\begin{array}{ll}
\hline V_{1}(\boldsymbol{p})=1 & V_{1}(\boldsymbol{q})=1 \\
\hline V_{2}(\boldsymbol{p})=1 & V_{2}(\boldsymbol{q})=0 \\
\hline V_{3}(\boldsymbol{p})=0 & V_{3}(\boldsymbol{q})=1 \\
\hline V_{4}(\boldsymbol{p})=0 & V_{4}(\boldsymbol{q})=0
\end{array}
$$

Valuations

Valuation. Let $\mathrm{P}=\{\boldsymbol{p}, \boldsymbol{q}, \boldsymbol{r}, \ldots\}$ be a set of atomic propositions. A valuation V from P to $\{0,1\}$ assigns to each element of P a unique truth-value.

Example: assume $P=\{p, q\}$.
There are four different valuations (four different situations):

$$
\begin{array}{ll}
\hline V_{1}(\boldsymbol{p})=1 & V_{1}(\boldsymbol{q})=1 \\
\hline V_{2}(\boldsymbol{p})=1 & V_{2}(\boldsymbol{q})=0 \\
\hline V_{3}(\boldsymbol{p})=0 & V_{3}(\boldsymbol{q})=1 \\
\hline V_{4}(\boldsymbol{p})=0 & V_{4}(\boldsymbol{q})=0 \\
\hline
\end{array}
$$

How many for $\mathrm{P}=\{p\}$? How many for $\mathrm{P}=\{p, q, r\}$?

Evaluating formulas in one situation

$$
(\neg \quad p) \wedge q
$$

Evaluating formulas in one situation

$$
\left.V: \begin{array}{cc}
(\neg & p) \\
0
\end{array}\right) \wedge \begin{gathered}
q \\
1
\end{gathered}
$$

Evaluating formulas in one situation

$$
\begin{array}{lcccc}
& (\neg & p) & \wedge & q \\
V: & 1 & 0 & & 1
\end{array}
$$

\square

Evaluating formulas in one situation

$$
\begin{aligned}
& \\
& V:
\end{aligned} \begin{array}{cccc}
(\neg & p) & \wedge & q \\
1 & 0 & 1 & 1
\end{array}
$$

\square

Evaluating formulas in one situation

$$
V: \begin{array}{ccccc}
(\neg & p) & \wedge & q & \quad V \models(\neg p) \wedge q \\
1 & 0 & 1 & 1 &
\end{array}
$$

Evaluating formulas in one situation

$$
\begin{aligned}
& V: \begin{array}{ccccc}
(\neg & p) & \wedge & q & \underline{V \models(\neg p) \wedge q} \\
1 & 0 & 1 & 1 & \\
\hline
\end{array} \\
& (p \wedge(p \rightarrow q)) \rightarrow q
\end{aligned}
$$

Evaluating formulas in one situation

$$
\begin{aligned}
& V: \begin{array}{ccccc}
(\neg & p) & \wedge & q & \underline{V \models(\neg p) \wedge q} \\
1 & 0 & 1 & 1 & \\
\hline
\end{array} \\
& V: \stackrel{(p}{1} \wedge \underset{1}{(p} \rightarrow \underset{0}{q)}) \rightarrow \underset{0}{q}
\end{aligned}
$$

Evaluating formulas in one situation

$$
\begin{aligned}
& V: \begin{array}{ccccc}
(\neg & p) & \wedge & q & \underline{V \models(\neg p) \wedge q} \\
1 & 0 & 1 & 1 & \\
\hline
\end{array} \\
& V: \quad \underset{1}{(p} \wedge \underset{1}{(p} \underset{0}{\rightarrow} \quad \underset{0}{q)}) \rightarrow \underset{0}{q}
\end{aligned}
$$

Evaluating formulas in one situation

$$
\begin{aligned}
& V: \begin{array}{ccccc}
(\neg & p & \wedge & q & \underline{|V \models(\neg p) \wedge q|} \\
& 1 & 0 & 1 & 1
\end{array} \underline{ } \begin{array}{l}
\\
V: \\
\end{array} \begin{array}{ccccccc}
p & \wedge & (p & \rightarrow & q)) & \rightarrow & q \\
\hline
\end{array} \\
& \hline
\end{aligned}
$$

Evaluating formulas in one situation

$$
\begin{aligned}
& V: \begin{array}{ccccc}
(\neg & p) & \wedge & q & \underline{V \models(\neg p) \wedge q} \\
1 & 0 & 1 & 1 & \\
\hline
\end{array} \\
& V: \quad \begin{array}{ccccccc}
(p & \wedge & (p & \overrightarrow{1} & q)) & \overrightarrow{1} & q \\
1 & 0 & 1 & 0 & 0 & 1 & 0
\end{array}
\end{aligned}
$$

Evaluating formulas in one situation

$$
\begin{aligned}
& V: \begin{array}{ccccc}
(\neg & p) & \wedge & q & \quad V \models(\neg p) \wedge q \\
1 & 0 & 1 & 1
\end{array} \\
& V: \begin{array}{ccccccc}
(p & \wedge & (p & \rightarrow & q)) & \rightarrow & q \\
1 & 0 & 1 & 0 & 0 & \mathbf{1} & 0
\end{array} \quad|\quad| \models(p \wedge(p \rightarrow q)) \rightarrow q
\end{aligned}
$$

Evaluating formulas in one situation

$$
\begin{aligned}
& V: \begin{array}{ccccc}
(\neg & p) & \wedge & q & \underline{V \models(\neg p) \wedge q} \\
1 & 0 & 1 & 1 & \\
\hline V
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \neg \neg p \square
\end{aligned}
$$

Evaluating formulas in one situation

$$
\begin{aligned}
& V: \begin{array}{ccccc}
(\neg & p) & \wedge & q & \quad V \models(\neg p) \wedge q \\
1 & 0 & 1 & 1
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& V: \quad \neg \quad \neg \begin{array}{l}
p \\
0
\end{array} \quad \square
\end{aligned}
$$

Evaluating formulas in one situation

$$
\begin{aligned}
& V: \begin{array}{ccccc}
(\neg & p) & \wedge & q & \quad V \models(\neg p) \wedge q \\
1 & 0 & 1 & 1
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& V: \begin{array}{cccc}
\\
V & \neg & \neg & \boldsymbol{p} \\
1 & 0 & \square
\end{array}
\end{aligned}
$$

Evaluating formulas in one situation

$$
\begin{aligned}
& V: \begin{array}{ccccc}
(\neg & p) & \wedge & q & \quad V \models(\neg p) \wedge q \\
1 & 0 & 1 & 1
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& V: \begin{array}{cccc}
& \neg & \neg & \boldsymbol{p} \\
\mathbf{0} & 1 & 0 & \square
\end{array}
\end{aligned}
$$

Evaluating formulas in one situation

$$
\begin{aligned}
& V: \begin{array}{ccccc}
(\neg & p) & \wedge & q & \quad V \models(\neg p) \wedge q \\
1 & 0 & 1 & 1
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& V: \begin{array}{ccccc}
& \neg & \neg & \boldsymbol{p} & \mid V \not \vDash \neg \neg p \\
\mathbf{0} & 1 & 0 & \underline{\mid}
\end{array}
\end{aligned}
$$

Evaluating formulas in one situation

$$
\begin{aligned}
& V: \begin{array}{ccccc}
(\neg & p) & \wedge & q & \underline{V \models(\neg p) \wedge q} \\
1 & 0 & 1 & 1 & \\
\hline
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& (p \rightarrow q) \vee(q \rightarrow p)
\end{aligned}
$$

Evaluating formulas in one situation

$$
\begin{aligned}
& V: \begin{array}{ccccc}
\left(\begin{array}{cc}
\neg & p) \\
1 & 1 \\
0 & 1 \\
q & 1
\end{array} \quad \underline{\mid V \models(\neg p) \wedge q}\right.
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& V: \begin{array}{lllll}
& \urcorner & \urcorner & p \\
& 0 & 1 & 0 & \underline{V \not \vDash \neg \neg p} \\
\hline
\end{array} \\
& V: \quad \begin{array}{c}
(p \\
0
\end{array} \rightarrow \underset{1}{q)} \vee \underset{1}{(q} \rightarrow \underset{0}{p)}
\end{aligned}
$$

Evaluating formulas in one situation

$$
\begin{aligned}
& V: \begin{array}{ccccc}
(\neg & p) & \wedge & q & \underline{V \models(\neg p) \wedge q} \\
1 & 0 & 1 & 1 & \underline{|c|}
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& V: \begin{array}{lllll}
& \neg & \urcorner & p \\
& 0 & 1 & 0 & \underline{V \nmid \vDash \neg \neg p} \\
\hline
\end{array} \\
& \left.V: \quad \begin{array}{ccccccc}
(p & \rightarrow & q) \\
0 & 1 & 1 & & & (q & \rightarrow \\
p
\end{array}\right)
\end{aligned}
$$

Evaluating formulas in one situation

$$
\begin{aligned}
& V: \begin{array}{ccccc}
(\neg & p) & \wedge & q & \underline{V \models(\neg p) \wedge q} \\
1 & 0 & 1 & 1 & \underline{|c|}
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& V: \begin{array}{lllll}
& \neg & \urcorner & p \\
& 0 & 1 & 0 & \underline{V \nmid \vDash \neg \neg p} \\
\hline
\end{array} \\
& V: \quad \begin{array}{ccccccc}
(p & \overrightarrow{1} & q) & \vee & (q & \vec{p} & p) \\
0 & 1 & 1 & & 1 & 0 & 0
\end{array}
\end{aligned}
$$

Evaluating formulas in one situation

$$
\begin{aligned}
& V: \begin{array}{ccccc}
\left(\begin{array}{cc}
\neg & p) \\
1 & 1 \\
0 & 1 \\
q & 1
\end{array} \quad \underline{\mid V \models(\neg p) \wedge q}\right.
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& V: \begin{array}{ccccccc}
(p & \rightarrow & q) & \vee & (q & \vec{~} & p) \\
0 & 1 & 1 & 1 & 1 & 0 & 0
\end{array}
\end{aligned}
$$

Evaluating formulas in one situation

$$
\begin{aligned}
& V: \begin{array}{ccccc}
\left(\begin{array}{cc}
\neg & p) \\
1 & 1 \\
0 & 1 \\
q & 1
\end{array} \quad \underline{\mid V \models(\neg p) \wedge q}\right.
\end{array} \\
& V: \quad \begin{array}{cccccccc}
(p & \wedge & (p & \rightarrow & q)) & \vec{q} & q & \quad V \models(p \wedge(p \rightarrow q)) \rightarrow q \\
1 & 0 & 1 & 0 & 0 & \overrightarrow{1} & 0
\end{array} \\
& V: \begin{array}{lllll}
& \neg & \urcorner & p \\
& 0 & 1 & 0 & \underline{V \nmid \vDash \neg \neg p} \\
\hline
\end{array} \\
& V: \begin{array}{cccccccc}
\quad(p & \rightarrow & q) & \vee & (q & \vec{c} & p) \\
0 & 1 & 1 & 1 & 1 & 0 & 0
\end{array} \quad \underline{V \models(p \rightarrow q) \vee(q \rightarrow p)}
\end{aligned}
$$

Evaluating formulas in all possible situations

$$
(p \wedge(p \rightarrow q)) \rightarrow q
$$

Evaluating formulas in all possible situations

$(\boldsymbol{p}$	\wedge	$(\boldsymbol{p}$	\rightarrow	$q))$	\rightarrow
1	1		1		1
1		1		0	
0		0		1	
0		0		0	

Evaluating formulas in all possible situations

$(\boldsymbol{p}$	\wedge	$(\boldsymbol{p}$	\rightarrow	$\boldsymbol{q}))$	\rightarrow
1		1	1	1	
1		1	0	0	
0		0	1	1	
0		0	1	0	

Evaluating formulas in all possible situations

$(\boldsymbol{p}$	\wedge	$(\boldsymbol{p}$	\rightarrow	$\boldsymbol{q}))$	\rightarrow	\boldsymbol{q}
1	1	1	1	1		1
1	0	1	0	0		0
0	0	0	1	1		1
0	0	0	1	0		0

Evaluating formulas in all possible situations

$(\boldsymbol{p}$	\wedge	$(\boldsymbol{p}$	\rightarrow	$\boldsymbol{q}))$	\rightarrow	\boldsymbol{q}
1	1	1	1	1	$\mathbf{1}$	1
1	0	1	0	0	$\mathbf{1}$	0
0	0	0	1	1	$\mathbf{1}$	1
0	0	0	1	0	$\mathbf{1}$	0

Evaluating formulas in all possible situations

$(\boldsymbol{p}$	\wedge	$(\boldsymbol{p}$	\rightarrow	$\boldsymbol{q}))$	\rightarrow	\boldsymbol{q}
1	1	1	1	1	$\mathbf{1}$	1
1	0	1	0	0	$\mathbf{1}$	0
0	0	0	1	1	$\mathbf{1}$	1
0	0	0	1	0	$\mathbf{1}$	0
		\neg	\neg	\boldsymbol{p}		

Evaluating formulas in all possible situations

Evaluating formulas in all possible situations

$(\boldsymbol{p}$	\wedge	$(\boldsymbol{p}$	\rightarrow	$\boldsymbol{q}))$	\rightarrow	\boldsymbol{q}
1	1	1	1	1	$\mathbf{1}$	1
1	0	1	0	0	$\mathbf{1}$	0
0	0	0	1	1	$\mathbf{1}$	1
0	0	0	1	0	$\mathbf{1}$	0
		\neg	\neg	\boldsymbol{p}		
			0	1		
			1	0		

Evaluating formulas in all possible situations

$(\boldsymbol{p}$	\wedge	$(\boldsymbol{p}$	\rightarrow	$\boldsymbol{q}))$	\rightarrow	\boldsymbol{q}
1	1	1	1	1	$\mathbf{1}$	1
1	0	1	0	0	$\mathbf{1}$	0
0	0	0	1	1	$\mathbf{1}$	1
0	0	0	1	0	$\mathbf{1}$	0
		\neg	\neg	\boldsymbol{p}		
		$\mathbf{1}$	0	1		
		$\mathbf{0}$	1	0		

Classification of formulas according to their behaviour

Classification of formulas according to their behaviour

- Those that are never true (contradiction):

$$
p \wedge(\neg p), \ldots
$$

Classification of formulas according to their behaviour

- Those that are never true (contradiction):

$$
p \wedge(\neg p), \ldots
$$

- Those that can be true (satisfiable):

$$
(\neg p) \vee q, \ldots
$$

Classification of formulas according to their behaviour

- Those that are never true (contradiction):

$$
p \wedge(\neg p), \ldots
$$

- Those that can be true (satisfiable):

$$
(\neg p) \vee q, \ldots
$$

- Those that are always true (valid, tautology):

$$
(p \wedge(p \rightarrow q)) \rightarrow q, \ldots
$$

If the formula φ is valid, we write $\models \varphi$

Valid inference

Valid inference

$$
\text { Inference: } \frac{\varphi_{1}, \ldots, \varphi_{n}}{\psi}
$$

Valid inference. An inference is valid if and only if every time (every situation) in which all premises $\varphi_{1}, \ldots, \varphi_{n}$ are true, ψ is also true.

Valid inference

Valid inference. An inference is valid if and only if every time (every situation) in which all premises $\varphi_{1}, \ldots, \varphi_{n}$ are true, ψ is also true.

We also say ψ is a logical consequence of $\varphi_{1}, \ldots, \varphi_{n}$.

Valid inference

Valid inference. An inference is valid if and only if every time (every situation) in which all premises $\varphi_{1}, \ldots, \varphi_{n}$ are true, ψ is also true.

We also say ψ is a logical consequence of $\varphi_{1}, \ldots, \varphi_{n}$. We will write $\varphi_{1}, \ldots, \varphi_{n} \models \psi$

Examples

Our previous patterns:

$$
p \mid(p \quad \rightarrow \quad q) \| q
$$

Examples

Our previous patterns:

p	$(\boldsymbol{p}$	\rightarrow	$q)$	\boldsymbol{q}
$\mathbf{1}$	1	$\mathbf{1}$	1	$\mathbf{1}$
$\mathbf{1}$	1	$\mathbf{0}$	0	$\mathbf{0}$
$\mathbf{0}$	0	$\mathbf{1}$	1	$\mathbf{1}$
$\mathbf{0}$	0	$\mathbf{1}$	0	$\mathbf{0}$

Examples

Our previous patterns:

	p	$(p$	\rightarrow	$q)$	q
\rightarrow	1	1	1	1	$\mid r$
	1	1	0	0	0
	0	0	1	1	1
	0	0	1	0	0

Examples

Our previous patterns:

	p	$(p$	\rightarrow	$q)$	q
\rightarrow	1	1	1	1	1
	1	1	0	0	0
	0	0	1	1	1
	0	0	1	0	0

$\neg q \mid(p \quad \rightarrow \quad q) \| \neg p$

Examples

Our previous patterns:

	p	$(p$	\rightarrow	$q)$	q
\rightarrow	$\mathbf{1}$	1	$\mathbf{1}$	1	$\mathbf{1}$
	$\mathbf{1}$	1	$\mathbf{0}$	0	$\mathbf{0}$
	$\mathbf{0}$	0	1	1	$\mathbf{1}$
	$\mathbf{0}$	0	$\mathbf{1}$	0	$\mathbf{0}$

$\neg q$	$(p$	\rightarrow	$q)$	$\neg p$
$\mathbf{0}$	1	$\mathbf{1}$	1	0
$\mathbf{1}$	1	0	0	0
$\mathbf{0}$	0	1	1	1
$\mathbf{1}$	0	$\mathbf{1}$	0	1

Examples

Our previous patterns:

	p	$(p$	\rightarrow	$q)$	q
\rightarrow	1	1	1	1	1
	1	1	0	0	0
	0	0	1	1	1
	0	0	1	0	0

	$\neg \boldsymbol{q}$	$(\boldsymbol{p}$	\rightarrow	$q)$	$\neg p$
	$\mathbf{0}$	1	1	1	$\mathbf{0}$
	1	1	0	0	0
	0	0	1	1	1
\rightarrow	1	0	1	0	1

Examples

Our previous patterns:

	p	$(p$	\rightarrow	$q)$	q
\rightarrow	$\mathbf{1}$	1	1	1	1
	$\mathbf{1}$	1	$\mathbf{0}$	0	$\mathbf{0}$
	$\mathbf{0}$	0	1	1	$\mathbf{1}$
	$\mathbf{0}$	0	1	0	0

	$\neg q$	$(p$	\rightarrow	$q)$	$\neg p$
	$\mathbf{0}$	1	1	1	0
	$\mathbf{1}$	1	0	0	0
	$\mathbf{0}$	0	1	1	1
\rightarrow	1	0	1	0	1

What about the others?

Further definitions

Further definitions

- Two formulas φ and ψ are logically equivalent $(\varphi \equiv \psi)$ if and only if $\varphi \models \psi$ and $\psi \models \varphi$.

Further definitions

- Two formulas φ and ψ are logically equivalent $(\varphi \equiv \psi)$ if and only if $\varphi \models \psi$ and $\psi \models \varphi$.
- A set of formulas \boldsymbol{X} is satisfiable if and only if there is one valuation that makes every formula in \boldsymbol{X} true.

Symbolic inference

Symbolic inference

- A proof is a finite sequence of formulas where each formula is either an axiom or else it has been infered from previous formulas by using an inference rule.

Symbolic inference

- A proof is a finite sequence of formulas where each formula is either an axiom or else it has been infered from previous formulas by using an inference rule.
- A formula is a theorem if it occurs in a proof.

Symbolic inference

- A proof is a finite sequence of formulas where each formula is either an axiom or else it has been infered from previous formulas by using an inference rule.
- A formula is a theorem if it occurs in a proof.
- A set of axioms and rules is called an axiom system or an axiomatization.

Symbolic inference

- A proof is a finite sequence of formulas where each formula is either an axiom or else it has been infered from previous formulas by using an inference rule.
- A formula is a theorem if it occurs in a proof.
- A set of axioms and rules is called an axiom system or an axiomatization.
- An axiom system is sound for a logic if every theorem is valid in the logic.

Symbolic inference

- A proof is a finite sequence of formulas where each formula is either an axiom or else it has been infered from previous formulas by using an inference rule.
- A formula is a theorem if it occurs in a proof.
- A set of axioms and rules is called an axiom system or an axiomatization.
- An axiom system is sound for a logic if every theorem is valid in the logic.
- An axiom system is complete if every valid formula of the logic is a theorems.

Proof system

The following axiom system is sound and complete for propositional logic:

Proof system

The following axiom system is sound and complete for propositional logic:
(1) $(\varphi \rightarrow(\psi \rightarrow \varphi))$.

Proof system

The following axiom system is sound and complete for propositional logic:
(1) $(\varphi \rightarrow(\psi \rightarrow \varphi))$.
(2) $((\varphi \rightarrow(\psi \rightarrow \chi)) \rightarrow((\varphi \rightarrow \psi) \rightarrow(\varphi \rightarrow \chi)))$.

Proof system

The following axiom system is sound and complete for propositional logic:
(1) $(\varphi \rightarrow(\psi \rightarrow \varphi))$.
(2) $((\varphi \rightarrow(\psi \rightarrow \chi)) \rightarrow((\varphi \rightarrow \psi) \rightarrow(\varphi \rightarrow \chi)))$.
(3) $((\neg \varphi \rightarrow \neg \psi) \rightarrow(\psi \rightarrow \varphi))$.

Proof system

The following axiom system is sound and complete for propositional logic:
(1) $(\varphi \rightarrow(\psi \rightarrow \varphi))$.
(2) $((\varphi \rightarrow(\psi \rightarrow \chi)) \rightarrow((\varphi \rightarrow \psi) \rightarrow(\varphi \rightarrow \chi)))$.
(3) $((\neg \varphi \rightarrow \neg \psi) \rightarrow(\psi \rightarrow \varphi))$.
(4) Modus ponens (MP): from φ and $\varphi \rightarrow \psi$, infer ψ.

Example

Example

1.

$$
p \rightarrow((q \rightarrow p) \rightarrow p)
$$

Instance of axiom 1

Example

$$
\begin{array}{ll}
\text { 1. } & \boldsymbol{p} \rightarrow((\boldsymbol{q} \rightarrow \boldsymbol{p}) \rightarrow \boldsymbol{p})
\end{array} \quad \text { Instance of axiom 1 }
$$

Example

1.	$\boldsymbol{p} \rightarrow((\boldsymbol{q} \rightarrow \boldsymbol{p}) \rightarrow \boldsymbol{p})$	Instance of axiom 1
2. $(p \rightarrow((q \rightarrow p) \rightarrow p)) \longrightarrow((p \rightarrow(q \rightarrow p)) \rightarrow(p \rightarrow p))$	Instance of axiom 2	
3.	$(p \rightarrow(q \rightarrow p)) \rightarrow(p \rightarrow p)$	MP from steps 1 and 2

Example

Example

Example

Hence, $\boldsymbol{p} \rightarrow \boldsymbol{p}$ is a theorem.

Example

Mrs White is guilty. \boldsymbol{w}
Miss Scarlet is guilty. s
Colonel Mustard is guilty. m

Example

Mrs White is guilty. w
Miss Scarlet is guilty. S
Colonel Mustard is guilty. m

- At least one of them is guilty.
- Not all of them are guilty.
- If Mrs White is guilty, then Colonel Mustard helped her.
- If Miss Scarlet is innocent then so is Colonel Mustard.

Example

Mrs White is guilty. \boldsymbol{w}
Miss Scarlet is guilty. s
Colonel Mustard is guilty. m

- At least one of them is guilty.
- Not all of them are guilty.
- If Mrs White is guilty, then Colonel Mustard helped

$$
\begin{aligned}
& w \vee s \vee m \\
& \neg(w \wedge s \wedge m) \\
& w \rightarrow m \\
& \neg s \rightarrow \neg m
\end{aligned}
$$ her.

- If Miss Scarlet is innocent then so is Colonel Mustard.

The questions

Define

$$
\Phi:=\{w \vee s \vee m, \neg(w \wedge s \wedge m), w \rightarrow m, \neg s \rightarrow \neg m\}
$$

The questions

Define

$$
\Phi:=\{w \vee s \vee m, \neg(w \wedge s \wedge m), w \rightarrow m, \neg s \rightarrow \neg m\}
$$

- $\Phi \vDash s$?

The questions

Define

$$
\Phi:=\{w \vee s \vee m, \neg(w \wedge s \wedge m), w \rightarrow m, \neg s \rightarrow \neg m\}
$$

- $\Phi \vDash s$?
- $\Phi \vDash \neg \boldsymbol{w}$?

The questions

Define

$$
\Phi:=\{w \vee s \vee m, \neg(w \wedge s \wedge m), w \rightarrow m, \neg s \rightarrow \neg m\}
$$

- $\Phi \vDash s$?
- $\Phi \vDash \neg \boldsymbol{w}$?
- $\Phi \vDash m$?

The questions

Define

$$
\Phi:=\{w \vee s \vee m, \neg(w \wedge s \wedge m), w \rightarrow m, \neg s \rightarrow \neg m\}
$$

- $\Phi \vDash s$?
- $\Phi \vDash \neg \boldsymbol{w}$?
- $\Phi \vDash m$?
- $\Phi \vDash \neg m$?

Updates

Which are the possibilities?

Updates

Which are the possibilities?
$\} \quad\{\boldsymbol{w}\} \quad\{s\} \quad\{\boldsymbol{m}\} \quad\{\boldsymbol{w}, s\} \quad\{\boldsymbol{w}, \boldsymbol{m}\} \quad\{s, \boldsymbol{m}\} \quad\{\boldsymbol{w}, s, \boldsymbol{m}\}$

Updates

Which are the possibilities?

$$
\} \quad\{\boldsymbol{w}\} \quad\{s\} \quad\{\boldsymbol{m}\} \quad\{\boldsymbol{w}, s\} \quad\{\boldsymbol{w}, \boldsymbol{m}\} \quad\{s, \boldsymbol{m}\} \quad\{\boldsymbol{w}, s, \boldsymbol{m}\}
$$

Remove cases where the first premise $w \vee s \vee m$ is false:

Updates

Which are the possibilities?
$\} \quad\{\boldsymbol{w}\} \quad\{s\} \quad\{\boldsymbol{m}\} \quad\{\boldsymbol{w}, s\} \quad\{\boldsymbol{w}, \boldsymbol{m}\} \quad\{s, \boldsymbol{m}\} \quad\{\boldsymbol{w}, s, \boldsymbol{m}\}$

Remove cases where the first premise $\boldsymbol{w} \vee s \vee m$ is false:
\{\} $\{\boldsymbol{w}\} \quad\{s\} \quad\{\boldsymbol{m}\} \quad\{\boldsymbol{w}, s\} \quad\{\boldsymbol{w}, \boldsymbol{m}\} \quad\{s, \boldsymbol{m}\} \quad\{\boldsymbol{w}, s, \boldsymbol{m}\}$

Updates

Which are the possibilities?
$\} \quad\{\boldsymbol{w}\} \quad\{s\} \quad\{\boldsymbol{m}\} \quad\{\boldsymbol{w}, s\} \quad\{\boldsymbol{w}, \boldsymbol{m}\} \quad\{s, \boldsymbol{m}\} \quad\{\boldsymbol{w}, s, \boldsymbol{m}\}$

Remove cases where the first premise $\boldsymbol{w} \vee s \vee m$ is false:

Remove cases where the second premise $\neg(w \wedge s \wedge m)$ is false:

Updates

Which are the possibilities?
$\} \quad\{\boldsymbol{w}\} \quad\{s\} \quad\{\boldsymbol{m}\} \quad\{\boldsymbol{w}, s\} \quad\{\boldsymbol{w}, \boldsymbol{m}\} \quad\{s, \boldsymbol{m}\} \quad\{\boldsymbol{w}, s, \boldsymbol{m}\}$

Remove cases where the first premise $\boldsymbol{w} \vee s \vee m$ is false:
\{\} $\{\boldsymbol{w}\} \quad\{s\} \quad\{\boldsymbol{m}\} \quad\{\boldsymbol{w}, s\} \quad\{\boldsymbol{w}, \boldsymbol{m}\} \quad\{s, m\} \quad\{\boldsymbol{w}, s, \boldsymbol{m}\}$
Remove cases where the second premise $\neg(w \wedge s \wedge m)$ is false:
\{\} $\{\boldsymbol{w}\} \quad\{s\} \quad\{\boldsymbol{m}\} \quad\{\boldsymbol{w}, s\} \quad\{\boldsymbol{w}, \boldsymbol{m}\} \quad\{s, \boldsymbol{m}\} \quad\{w, s, m\}$

Updates

Which are the possibilities?
$\} \quad\{\boldsymbol{w}\} \quad\{s\} \quad\{\boldsymbol{m}\} \quad\{\boldsymbol{w}, s\} \quad\{\boldsymbol{w}, \boldsymbol{m}\} \quad\{s, \boldsymbol{m}\} \quad\{\boldsymbol{w}, s, \boldsymbol{m}\}$

Remove cases where the first premise $\boldsymbol{w} \vee s \vee m$ is false:
\{\} $\quad\{\boldsymbol{w}\} \quad\{s\} \quad\{\boldsymbol{m}\} \quad\{\boldsymbol{w}, s\} \quad\{\boldsymbol{w}, \boldsymbol{m}\} \quad\{s, \boldsymbol{m}\} \quad\{\boldsymbol{w}, s, \boldsymbol{m}\}$
Remove cases where the second premise $\neg(w \wedge s \wedge m)$ is false:
\{\} $\{\boldsymbol{w}\} \quad\{s\} \quad\{\boldsymbol{m}\} \quad\{\boldsymbol{w}, s\} \quad\{\boldsymbol{w}, \boldsymbol{m}\} \quad\{s, \boldsymbol{m}\} \quad\{w, s, m\}$
Remove cases where the third premise $\boldsymbol{w} \rightarrow \boldsymbol{m}$ is false:

Updates

Which are the possibilities?
$\} \quad\{\boldsymbol{w}\} \quad\{s\} \quad\{\boldsymbol{m}\} \quad\{\boldsymbol{w}, s\} \quad\{\boldsymbol{w}, \boldsymbol{m}\} \quad\{s, \boldsymbol{m}\} \quad\{\boldsymbol{w}, s, \boldsymbol{m}\}$

Remove cases where the first premise $\boldsymbol{w} \vee s \vee m$ is false:
\{\} $\quad\{\boldsymbol{w}\} \quad\{s\} \quad\{\boldsymbol{m}\} \quad\{\boldsymbol{w}, s\} \quad\{\boldsymbol{w}, \boldsymbol{m}\} \quad\{s, \boldsymbol{m}\} \quad\{\boldsymbol{w}, s, \boldsymbol{m}\}$
Remove cases where the second premise $\neg(w \wedge s \wedge m)$ is false:
\{\} $\quad\{\boldsymbol{w}\} \quad\{s\} \quad\{\boldsymbol{m}\} \quad\{\boldsymbol{w}, s\} \quad\{\boldsymbol{w}, \boldsymbol{m}\} \quad\{s, \boldsymbol{m}\} \quad\{w, s, m\}$
Remove cases where the third premise $\boldsymbol{w} \rightarrow \boldsymbol{m}$ is false:
\{\} $\{\omega\} \quad\{s\} \quad\{\boldsymbol{m}\} \quad\{w, s\} \quad\{\boldsymbol{w}, \boldsymbol{m}\} \quad\{\boldsymbol{s}, \boldsymbol{m}\} \quad\{w, s, \boldsymbol{m}\}$

Updates

Which are the possibilities?
$\} \quad\{\boldsymbol{w}\} \quad\{s\} \quad\{\boldsymbol{m}\} \quad\{\boldsymbol{w}, s\} \quad\{\boldsymbol{w}, \boldsymbol{m}\} \quad\{s, \boldsymbol{m}\} \quad\{\boldsymbol{w}, s, \boldsymbol{m}\}$

Remove cases where the first premise $\boldsymbol{w} \vee s \vee m$ is false:
\{\} $\quad\{\boldsymbol{w}\} \quad\{s\} \quad\{\boldsymbol{m}\} \quad\{\boldsymbol{w}, s\} \quad\{\boldsymbol{w}, \boldsymbol{m}\} \quad\{s, \boldsymbol{m}\} \quad\{\boldsymbol{w}, s, \boldsymbol{m}\}$
Remove cases where the second premise $\neg(w \wedge s \wedge m)$ is false:
\{\} $\quad\{\boldsymbol{w}\} \quad\{s\} \quad\{\boldsymbol{m}\} \quad\{\boldsymbol{w}, s\} \quad\{\boldsymbol{w}, \boldsymbol{m}\} \quad\{s, \boldsymbol{m}\} \quad\{w, s, m\}$
Remove cases where the third premise $\boldsymbol{w} \rightarrow \boldsymbol{m}$ is false:

$$
\} \quad\{w\} \quad\{s\} \quad\{\boldsymbol{m}\} \quad\{w, s\} \quad\{\boldsymbol{w}, \boldsymbol{m}\} \quad\{\boldsymbol{s}, \boldsymbol{m}\} \quad\{w, s, \boldsymbol{m}\}
$$

Remove cases where the fourth premise $\neg s \rightarrow \neg m$ is false:

Updates

Which are the possibilities?
$\} \quad\{\boldsymbol{w}\} \quad\{s\} \quad\{\boldsymbol{m}\} \quad\{\boldsymbol{w}, s\} \quad\{\boldsymbol{w}, \boldsymbol{m}\} \quad\{s, \boldsymbol{m}\} \quad\{\boldsymbol{w}, s, \boldsymbol{m}\}$

Remove cases where the first premise $\boldsymbol{w} \vee s \vee m$ is false:
\{\} $\quad\{\boldsymbol{w}\} \quad\{s\} \quad\{\boldsymbol{m}\} \quad\{\boldsymbol{w}, s\} \quad\{\boldsymbol{w}, \boldsymbol{m}\} \quad\{s, \boldsymbol{m}\} \quad\{\boldsymbol{w}, s, \boldsymbol{m}\}$
Remove cases where the second premise $\neg(w \wedge s \wedge m)$ is false:
\{\} $\quad\{\boldsymbol{w}\} \quad\{s\} \quad\{\boldsymbol{m}\} \quad\{\boldsymbol{w}, s\} \quad\{\boldsymbol{w}, \boldsymbol{m}\} \quad\{s, \boldsymbol{m}\} \quad\{w, s, m\}$
Remove cases where the third premise $\boldsymbol{w} \rightarrow \boldsymbol{m}$ is false:

$$
\} \quad\{w\} \quad\{s\} \quad\{\boldsymbol{m}\} \quad\{w, s\} \quad\{\boldsymbol{w}, \boldsymbol{m}\} \quad\{\boldsymbol{s}, \boldsymbol{m}\} \quad\{w, s, m\}
$$

Remove cases where the fourth premise $\neg s \rightarrow \neg m$ is false:
$\}$

$\{s\}$

$\{s, \boldsymbol{m}\}$

Updates

Only the following possibilities make all premises in $\boldsymbol{\Phi}$ true:
\{\}
$\{w\}$
$\{s\}$
$\{m\}$
$\{w, s\}$
$\{w, m\}$
$\{s, m\}$
$\{w, s, m\}$

Updates

Only the following possibilities make all premises in $\boldsymbol{\Phi}$ true:
\{\} $\{w\}$
$\{s\}$
$\{m\}$
$\{w, s\}$
$\{w, m\}$
$\{s, m\}$
$\{w, s, m\}$

- $\Phi \models s$?

Updates

Only the following possibilities make all premises in $\boldsymbol{\Phi}$ true:

\{w\}
$\{s\}$
$\{m\}$
$\{w, s\}$
$\{w, m\}$
$\{s, m\}$
$\{w, s, m\}$

- $\Phi \vDash s$? Yes!

Updates

Only the following possibilities make all premises in $\boldsymbol{\Phi}$ true:
$\{1$
$\{w\}$
$\{s\}$
$\{m\}$
$\{w, s\}$
$\{w, m\}$
$\{s, m\}$
$\{w, s, m\}$

- $\Phi \vDash s$? Yes!
- $\Phi \vDash \neg \boldsymbol{w}$?

Updates

Only the following possibilities make all premises in $\boldsymbol{\Phi}$ true:
$\}$
$\{w\}$
$\{s\}$
$\{m\}$
$\{w, s\}$
$\{w, m\}$
$\{s, m\}$
$\{w, s, m\}$

- $\Phi \vDash s$? Yes!
- $\Phi \vDash \neg \boldsymbol{w}$? Yes!

Updates

Only the following possibilities make all premises in $\boldsymbol{\Phi}$ true:
\{\} $\{w\} \quad\{s\} \quad\{m\} \quad\{w, s\} \quad\{w, m\} \quad\{s, \boldsymbol{m}\} \quad\{w, s, m\}$

- $\Phi \vDash s$? Yes!
- $\Phi \vDash \neg \boldsymbol{w}$? Yes!
- $\Phi \vDash m$?

Updates

Only the following possibilities make all premises in $\boldsymbol{\Phi}$ true:
\{\} $\{w\} \quad\{s\} \quad\{m\} \quad\{w, s\} \quad\{w, m\} \quad\{s, \boldsymbol{m}\} \quad\{w, s, m\}$

- $\Phi \vDash s$? Yes!
- $\Phi \vDash \neg \boldsymbol{w}$? Yes!
- $\Phi \vDash m$? No!

Updates

Only the following possibilities make all premises in $\boldsymbol{\Phi}$ true:

- $\Phi \vDash s$? Yes!
- $\Phi \vDash \neg \boldsymbol{w}$? Yes!
- $\Phi \vDash m$? No!
- $\Phi \vDash \neg m$?

Updates

Only the following possibilities make all premises in $\boldsymbol{\Phi}$ true:

- $\Phi \vDash s$? Yes!
- $\Phi \vDash \neg \boldsymbol{w}$? Yes!
- $\Phi \vDash m$? No!
- $\Phi \vDash \neg m$? No!

Do we need all that we have?

Decide whether the following formulas are logically equivalent:

Do we need all that we have?

Decide whether the following formulas are logically equivalent:

- $\varphi \wedge \psi$ and $\neg(\neg \varphi \vee \neg \psi)$.

Do we need all that we have?

Decide whether the following formulas are logically equivalent:

- $\varphi \wedge \psi$ and $\neg(\neg \varphi \vee \neg \psi)$.
- $\varphi \rightarrow \psi$ and $\neg \varphi \vee \psi$.

Do we need all that we have?

Decide whether the following formulas are logically equivalent:

- $\varphi \wedge \psi$ and $\neg(\neg \varphi \vee \neg \psi)$.
- $\varphi \rightarrow \psi$ and $\neg \varphi \vee \psi$.
- $\varphi \leftrightarrow \psi$ and $(\varphi \rightarrow \psi) \wedge(\psi \rightarrow \varphi)$.

Do we need all that we have?

Decide whether the following formulas are logically equivalent:

- $\varphi \wedge \psi$ and $\neg(\neg \varphi \vee \neg \psi)$.
- $\varphi \rightarrow \psi$ and $\neg \varphi \vee \psi$.
- $\varphi \leftrightarrow \psi$ and $(\varphi \rightarrow \psi) \wedge(\psi \rightarrow \varphi)$.
- What does this tell us?

Do we need all that we have?

Decide whether the following formulas are logically equivalent:

- $\varphi \wedge \psi$ and $\neg(\neg \varphi \vee \neg \psi)$.
- $\varphi \rightarrow \psi$ and $\neg \varphi \vee \psi$.
- $\varphi \leftrightarrow \psi$ and $(\varphi \rightarrow \psi) \wedge(\psi \rightarrow \varphi)$.
- What does this tell us?
- Can you find other set of operators strong enough to define the rest of them?

Do we have all that we need? (1)

Consider a single atomic proposition \boldsymbol{p}.

$p \mid$

Do we have all that we need? (1)

Consider a single atomic proposition \boldsymbol{p}.

\boldsymbol{p}	
1	
0	

Do we have all that we need? (1)

Consider a single atomic proposition \boldsymbol{p}.

\boldsymbol{p}	φ_{1}
1	1
0	1

Do we have all that we need? (1)

Consider a single atomic proposition \boldsymbol{p}.

\boldsymbol{p}	φ_{1}	φ_{2}
1	1	1
0	1	0

Do we have all that we need? (1)

Consider a single atomic proposition \boldsymbol{p}.

\boldsymbol{p}	φ_{1}	φ_{2}	φ_{3}
1	1	1	0
0	1	0	1

Do we have all that we need? (1)

Consider a single atomic proposition \boldsymbol{p}.

\boldsymbol{p}	φ_{1}	φ_{2}	φ_{3}	φ_{4}
1	1	1	0	0
0	1	0	1	0

Do we have all that we need? (1)

Consider a single atomic proposition \boldsymbol{p}.

\boldsymbol{p}	φ_{1}	φ_{2}	φ_{3}	φ_{4}
1	1	1	0	0
0	1	0	1	0

- Can we define $\varphi_{1}, \varphi_{2}, \varphi_{3}$ and φ_{4} in our setting?

Do we have all that we need? (1)

Consider a single atomic proposition \boldsymbol{p}.

\boldsymbol{p}	φ_{1}	φ_{2}	φ_{3}	φ_{4}
1	1	1	0	0
0	1	0	1	0

- Can we define $\varphi_{1}, \varphi_{2}, \varphi_{3}$ and φ_{4} in our setting?
- Can we define each φ_{i} by using only p and our five connectives \neg, $\wedge, \vee, \rightarrow$ and \leftrightarrow ?

Do we have all that we need? (2)

Consider two atomic propositions p and q.

Do we have all that we need? (2)

Consider two atomic propositions \boldsymbol{p} and \boldsymbol{q}.

p	\boldsymbol{q}	
1	1	
1	0	
0	1	
0	0	

Do we have all that we need? (2)

Consider two atomic propositions \boldsymbol{p} and \boldsymbol{q}.

$p q$	$\varphi_{1} \varphi_{2} \varphi_{3} \varphi_{4} \varphi_{5} \varphi_{6} \varphi_{7} \varphi_{8} \varphi_{9} \varphi_{10} \varphi_{11} \varphi_{12} \varphi_{13} \varphi_{14} \varphi_{15} \varphi_{16}$															
1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0
1	0	1	1	1	1	0	0	0	0	1	1	1	1	0	0	0
0	1	1	1	0	0	1	1	0	0	1	1	0	0	1	1	0
0	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1

Do we have all that we need? (2)

Consider two atomic propositions \boldsymbol{p} and \boldsymbol{q}.

$p q$	$\varphi_{1} \varphi_{2} \varphi_{3} \varphi_{4} \varphi_{5} \varphi_{6} \varphi_{7} \varphi_{8} \varphi_{9} \varphi_{10} \varphi_{11} \varphi_{12} \varphi_{13} \varphi_{14} \varphi_{15} \varphi_{16}$																
1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0
1	0	1	1	1	1	0	0	0	0	1	1	1	1	0	0	0	0
0	1	1	1	0	0	1	1	0	0	1	1	0	0	1	1	0	0
0	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0

- Can we define each φ_{i} by using only $\boldsymbol{p}, \boldsymbol{q}$ and our five connectives $\neg, \wedge, \vee, \rightarrow$ and \leftrightarrow ?

Do we have all that we need? (3)

Consider three atomic propositions $\boldsymbol{p}, \boldsymbol{q}$ and \boldsymbol{r}.

Do we have all that we need? (3)

Consider three atomic propositions $\boldsymbol{p}, \boldsymbol{q}$ and \boldsymbol{r}.

Do we have all that we need? (3)

Consider three atomic propositions $\boldsymbol{p}, \boldsymbol{q}$ and \boldsymbol{r}.

Do we have all that we need? (3)

Consider three atomic propositions $\boldsymbol{p}, \boldsymbol{q}$ and \boldsymbol{r}.

| p | q | r |
| :--- | :--- | :--- |$\quad \ldots$

- Can we define each φ_{i} by using only $\boldsymbol{p}, \boldsymbol{q}, \boldsymbol{r}$ and our five connectives $\neg, \wedge, \vee, \rightarrow$ and \leftrightarrow ?

