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Basics of the Language

The new features

The language of predicate logic allow us

@ to talk about objects, their properties and their relations with
other objects, and

@ to make use of universal and existential quantification.
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The ingredients
@ Symbols for constants:
ab,c,...

@ Symbols for variables:
T,Y,Z,...

@ Symbols for predicates:
A BC,.. P,QR,...

Q Logical operators:

_‘7 /\) \/7 _)7 <
@ Quantifiers

Vo (“for all ) and 3Jx (“there exists an z”)
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Formulas, Situations and Pictures

Evaluating predicate logic formulas (1)

Colors (Red, Green, Blue, Purple) and shapes (Square, Circle).

e Ba e Ba A Gb
e JxSxz v Cb e —Sa
e Ra — Sb e Ra —» dxS=z
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Formulas, Situations and Pictures

Evaluating predicate logic formulas (1)

Colors (Red, Green, Blue, Purple) and shapes (Square, Circle).

e Jz(Rz A Cx) e JzRx A 32zCx
o Vx(Cx v Sz) o VxCux v Yz Sz
e JzGz v 3zCx e Jx(Gz v Cx)
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Formulas, Situations and Pictures

Evaluating predicate logic formulas (2)

H: boy o: girl e > M o loves B

o

o Ljk — Lkj o Ljk A Lkj
e —(Ljk A Lkj) e (Ljk A Lpk) — (—Lpj A —Lkj)
o Vx(Bxz — Luzk) e Vo(Gx — Laxx)

e Vx((Bz v Gx) —» —Lzp) e dz(Gx A Lpx A Laj)
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The predicate language

The language is built in two steps.

O A term t is a variable (z,y, z,...) or a constant (a,b,c,...).

@ A formula is built via the following rules.

o If ty,...,t, are terms and P a symbol of a predicate, then the
following is a formula:
Pt,---t,

o If ¢ and v are formulas, then the following are formulas:
e PAY, eV, oo, peod
o If ¢ is a formula and « is a variable, the following are formulas:

Vap, Jxp
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e Lzx A ~Lmx
o Jx Ljx
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Syntax — Formal Definition

Examples of formulas

o Lxx A —Lmx

o Jx Ljx

o Vx Ljx

° V:E(Bm — Jy(Gy A La:y))
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Syntax — Formal Definition

Examples of formulas

Lxx A —Lmzx

Jx Ljx

Va Ljx

V:E(Bm — Jy(Gy A L:cy))
—3z(Gz A Vy(—Lay))
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Examples of formulas

Lxx A —Lmzx

Jx Ljx

Va Ljx

V:E(Bm — Jy(Gy A L:cy))
—3z(Gz A Vy(—Lay))

vz (Jy(Lzy) — 3z(Lzx))
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Examples of formulas

Lxx A —Lmzx

Jx Ljx

Va Ljx

V:E(Bm — Jy(Gy A L:cy))
—3z(Gz A Vy(—Lay))

vz (Jy(Lzy) — 3z(Lzx))
JyVa(Lyx)
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subformula ¢ is said to be the scope of the quantifier ¥ (3).
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@ Scope of a quantifier. In a formula of the form Yayp (Jzy), the
subformula ¢ is said to be the scope of the quantifier ¥ (3).

e Binding a variable. In a formula of the form Va¢ (Jx¢p), the
quantifier V¥ (3) binds any occurrence of « in ¢ that is not bound by

another quantifier inside ¢.

@ Bound variable. An occurrence of a variable x is bound in a formula
 if there is a quantifier in ¢ that binds it.

@ Free variable. An occurrence of a variable x is free in a formula ¢ if
no quantifier in ¢ binds it.
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@ Closed formula. A formula is closed if every occurrence of every
variable in the formula is bound.

e Open formula. A formula is open if it is not open, that is, if it
contains at least one free occurrence of a variable.
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@ Substitution inside a term. Replacing the occurrences of the variable y for
the term ¢ inside the term s produces the term denoted by

@ Formally,

For a constant: (o)f :

(@)} =

(y){ =

For a variable: {

Examples:
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@ Substitution inside a formula. Replacing the free occurrences of the
variable y for the term ¢ inside the formula ¢ produces the formula denoted
by

(@)f
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@ Substitution inside a formula. Replacing the free occurrences of the
variable y for the term ¢ inside the formula ¢ produces the formula denoted

by
(©)?
@ Formally,
(Pt )l = P! (b} (Vap)! = Va(p)V
(=p){ == ()} (vy¢)y = Yy

(@ A )Y = (@) A ()Y .
(o v )Y = () v ()] Y. Jp(0)?
(@ = ¥ == ()l - ()Y { Ei”;ii _ iyff)t
(¢ o P = () o ()Y .
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e D is the domain: a non-empty collection of objects,

o [ is the interpretation function, assigning to each symbol for
constant and symbol for predicate an object in D and a relation
over objects in D), respectively,

@ g is the variable assignment, assigning to each variable an
object an object in D.

For a constant a, sometimes we will abbreviate object I(a) as ar.

For a predicate P, sometimes we will abbreviate relation I(P) as Pr.
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Modifying variable assignments

Given a variable assignment g, a variable x and an object d in D,
we define the variable assignment gp;._q) as

{ 9[z:=d] (y) (y)

=g
g[m::d](w) =d

The variable assignment g[,._q) differs from g only in the value of
x, given now by d.
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Assigning values to terms

Given a model M = (D, I,g), the value of every term t, ﬂt]]é, is
defined as follows.

For a constant a: [a]! := I(a)

For a variable x: [[w]]{] =g(x)
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I(b) :=® I1(C) = {®, ®, ©}
I(c):=© g(z):=®

I(d) :=d] 9(y) =@
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(D,I,g) = Sz iff ®e{d} X

(D,I,g)F 3zSx iff thereis a o€ D such that (D, I,g[z.—0]) F ST
<D7I7g[w:=m]> ': Sw
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(0)=© g =6
d)=d g(3)=@
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(D,I,g) [ Sx
(D,I,g) | JxSx
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iff ® e {d} X
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Example

Shapes (Square, Circle).

& D:-{® ® © [d}
@ I(a) = ® (S) := {d]}
® =0 IC)=-{@ 6 o
©® I()=©®  gl):=0®
I(d) :=[d] ay) =@
(D,I,g)Ca iff @c{® ® ©
(D,I,g) = Sz if ®e{d)} X

(D,1,g9) | JxSz

iff ~there is a 0 € D such that (D, I, g[s.—0c]) F ST
9lz:=a) () € I(S)
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I(a) =@ (S) = {[d}}
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I(c):=© g(z):=®
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D:={@, ®, © d}}

I(a) =@ (S) = {[d}}

I(b) :=® I1(C) = {®, ®, ©}
I(c):=© g(z):=®
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Definitions (1)

e A formula ¢ is (logically) valid if, for every model M, we have
M = ¢. In such case, we will write = ¢.
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Definitions (1)

e A formula ¢ is (logically) valid if, for every model M, we have
M = . In such case, we will write = ¢.

e An inference 1, ...,¢,/® is (logically) valid if, for every model

M for which we have M = o1, ..., M | @, we also have
M = ). In such case we will write ¢1,...,¢n E 1.
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Definitions (2)

In particular, for two formulas ¢ and b,
e 1 (logically) follows from ¢ if
pEYP

e 1 is (logically) equivalent to ¢ if

pEY and P Ep
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Proof system

The valid formulas of predicate logic can be derived from the following principles:

@ All propositional tautologies.

@ Vzp — (p)f, provided that no variable in ¢ occurs bounded in ¢.
Q Va(p — ¢) — (Vop — Vaip).

Q@ ¢ — Vzxyp, provided that  does not occur free in .

Q Izp & ~Vz—op.

@ Modus ponens (MP): from ¢ and ¢ — 1, infer ¢.

@ Universal generalization (UG): from ¢ infer Va ¢, provided that « does
not occur free in any premise which has been used in the proof of ¢.

A formula that can be derived by following these principles in a finite number of

steps is called a theorem.
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Example
L Ve—p — (—)f
2. Ve — —=(p)f
3. (Vmwp - ﬂ(cp)f) - ((LP)%” - ﬂVmﬂcp)
4. (p)f = —Vz—p
5. (p)f — 3z

Hence, (¢)7 — Iz is a theorem.
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Proof system

The given proof system has two properties:

@ Soundness: every derivable theorem is a valid formula.

o Completeness: every valid formula is a derivable theorem.
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Identity

The predicate for identity “=".

o If t1 and o are terms, then t; = t5 is a formula.

e Example: “John loves Mary and Bill loves another girl”

Ljm A 3z(Gz A —(x = m) A Lbx)

o (D, I,g)kEt; =ty iff [[tl]]{] and [[tz]]é are the same object.
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Function symbols

Symbols for functions:
f7 g? h7 R

If t1,...,tn are terms and f is a function symbol, f(t1,...,tn) is a term.

@ Example: “The successor of every number is bigger than the number”
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symbol f, a function I(f) over D.
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Identity and Function Symbols

Function symbols

@ Symbols for functions:
f7 g? h7 R

@ If t1,...,t, are terms and f is a function symbol, f(¢t1,...,%) is a term.
@ Example: “The successor of every number is bigger than the number”
Vae(z < s(x))

@ In a model (D, I, g), the interpretation function assigns, to each function
symbol f, a function I(f) over D.

@ The value of a function: [f(t1,...,tn)]y = I(f)([t]s,---, [tnls)-

@ Example: the successor function s is given by I(s)(n) :=n + 1.
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