Logic in Action

Chapter 4: The World according to Predicate Logic

http://www.logicinaction.org/

Statement	Propositional translation
John reads	
John walks	

Statement	Propositional translation
John reads John walks	p

Statement	Propositional translation	
John reads	$oldsymbol{p}$	
John walks	$oldsymbol{q}$	

Statement	Propositional translation
John reads	$oldsymbol{p}$
John walks	q

But the fact that both statements talk about "John" is lost.

Statement	Propositional translation
John reads	$oldsymbol{p}$
John walks	$oldsymbol{q}$

But the fact that both statements talk about "John" is lost.

With a language including predicates ...

Statement	Propositional translation
John reads	$oldsymbol{p}$
John walks	q

But the fact that both statements talk about "John" is lost.

With a language including predicates . . .

Statement	Predicate translation
John reads John walks	

Statement	Propositional translation
John reads	\boldsymbol{p}
John walks	q

But the fact that both statements talk about "John" is lost.

With a language including predicates . . .

Statement	Predicate translation
John reads John walks	Rj

Statement	Propositional translation
John reads	$oldsymbol{p}$
John walks	$oldsymbol{q}$

But the fact that both statements talk about "John" is lost.

With a language including predicates . . .

Statement	Predicate translation
John reads	Rj
John walks	Wj

The new features

The language of **predicate logic** allow us

The new features

The language of **predicate logic** allow us

• to talk about objects, their properties and their relations with other objects, and

The new features

The language of **predicate logic** allow us

- to talk about objects, their properties and their relations with other objects, and
- 2 to make use of **universal** and **existential** quantification.

• Symbols for **constants**:

 $\boldsymbol{a}, \boldsymbol{b}, \boldsymbol{c}, \dots$

Symbols for constants:

$$\boldsymbol{a}, \boldsymbol{b}, \boldsymbol{c}, \dots$$

2 Symbols for variables:

$$oldsymbol{x},oldsymbol{y},oldsymbol{z},\dots$$

• Symbols for constants:

$$\boldsymbol{a}, \boldsymbol{b}, \boldsymbol{c}, \dots$$

2 Symbols for variables:

$$oldsymbol{x},oldsymbol{y},oldsymbol{z},\dots$$

3 Symbols for **predicates**:

$$A, B, C, \dots P, Q, R, \dots$$

Symbols for constants:

$$\boldsymbol{a}, \boldsymbol{b}, \boldsymbol{c}, \dots$$

2 Symbols for variables:

$$oldsymbol{x},oldsymbol{y},oldsymbol{z},\dots$$

Symbols for predicates:

$$A, B, C, \ldots P, Q, R, \ldots$$

4 Logical operators:

$$\neg, \land, \lor, \rightarrow, \leftrightarrow$$

• Symbols for constants:

$$\boldsymbol{a}, \boldsymbol{b}, \boldsymbol{c}, \dots$$

2 Symbols for variables:

$$oldsymbol{x},oldsymbol{y},oldsymbol{z},\dots$$

Symbols for predicates:

$$A, B, C, \ldots P, Q, R, \ldots$$

4 Logical operators:

$$\neg, \land, \lor, \rightarrow, \leftrightarrow$$

Quantifiers

$$\forall x \text{ ("for all } x\text{")} \quad \text{and} \quad \exists x \text{ ("there exists an } x\text{")}$$

All A are B

$$\forall x (Ax \to Bx)$$

$$\forall x (Ax \rightarrow Bx)$$

All A are B

 $\forall x (Ax \to Bx)$

Some A are B

 $\exists x (Ax \wedge Bx)$

$$\forall x (Ax \to Bx)$$

$$\exists x (Ax \land Bx)$$

All A are B

Some A are B

All A are not B (No A is B)

$$\forall x (Ax \rightarrow Bx)$$

$$\forall x (Ax \rightarrow Bx)$$

$$\exists x (Ax \wedge Bx)$$

$$\forall x(Ax o \neg Bx) \ (\neg \exists x(Ax \land Bx))$$

$$egin{aligned} orall oldsymbol{x}(oldsymbol{A}oldsymbol{x}
ightarrow oldsymbol{B}oldsymbol{x}) \ \left(
eg \exists oldsymbol{x}(oldsymbol{A}oldsymbol{x} \wedge oldsymbol{B}oldsymbol{x})
ight) \end{aligned}$$

 $\exists x (Ax \wedge Bx)$

All A are B

Some A are B

All A are not B (No A is B)

Some A are not B (Not all A are B)

$$\forall x (Ax \to Bx)$$

$$\forall x (Ax \rightarrow Bx)$$

$$\exists x (Ax \wedge Bx)$$

$$\forall x (Ax \rightarrow \neg Bx) \ (\neg \exists x (Ax \land Bx))$$

 $\exists x (Ax \land \neg Bx) \ (\neg \forall x (Ax \rightarrow Bx))$

$$egin{aligned} orall oldsymbol{x}(oldsymbol{A}oldsymbol{x}
ightarrow
eg oldsymbol{x}(oldsymbol{A}oldsymbol{x} \wedge oldsymbol{B}oldsymbol{x}) \end{aligned}$$

$$\exists x (Ax \wedge Bx)$$

$$\exists oldsymbol{x} (oldsymbol{A} oldsymbol{x} \wedge
eg oldsymbol{B} oldsymbol{x}) \ ig(
eg oldsymbol{v} oldsymbol{x} (oldsymbol{A} oldsymbol{x} o oldsymbol{B} oldsymbol{x}) ig)$$

All A are B $\forall x (Ax \rightarrow Bx)$ Some A are B $\exists x (Ax \wedge Bx)$ $\forall x (Ax \to \neg Bx) \ (\neg \exists x (Ax \land Bx))$ All A are not B (No A is B) $\exists x (Ax \land \neg Bx) (\neg \forall x (Ax \rightarrow Bx))$ Some A are not B (Not all A are B) $\forall x (Ax \rightarrow Bx)$ $\exists x (Ax \wedge Bx)$

• We can talk about **relations** between two or more objects:

John sees Mary:

Mary sees John:

John gives Mary the book:

• We can talk about **relations** between two or more objects:

John sees Mary: Sjm
Mary sees John:
John gives Mary the book:

• We can talk about **relations** between two or more objects:

John sees Mary: Sjm
Mary sees John: Smj
John gives Mary the book:

• We can talk about **relations** between two or more objects:

John sees Mary:	Sjm
Mary sees John:	Smj
John gives Mary the book:	Gjmb

• We can talk about **relations** between two or more objects:

John sees Mary: SjmMary sees John: SmjJohn gives Mary the book: Gjmb

• We can express more complicated quantifier petterns:

Everyone sees someone:

Someone sees everyone:

Everyone is seen by someone:

Someone is seen by everyone:

• We can talk about **relations** between two or more objects:

John sees Mary: SjmMary sees John: SmjJohn gives Mary the book: Gjmb

• We can express more complicated quantifier petterns:

Everyone sees someone: $\forall x \exists y (Sxy)$ Someone sees everyone: Everyone is seen by someone: Someone is seen by everyone:

• We can talk about **relations** between two or more objects:

John sees Mary: SjmMary sees John: SmjJohn gives Mary the book: Gjmb

• We can express more complicated quantifier petterns:

Everyone sees someone: $\forall x \exists y (Sxy)$ Someone sees everyone: $\exists x \forall y (Sxy)$ Everyone is seen by someone: Someone is seen by everyone:

• We can talk about **relations** between two or more objects:

John sees Mary:	Sjm
Mary sees John:	Smj
John gives Mary the book:	Gjmb

• We can express more complicated quantifier petterns:

Everyone sees someone:	$\forall oldsymbol{x} \exists oldsymbol{y} (oldsymbol{S} oldsymbol{x} oldsymbol{y})$
Someone sees everyone:	$\exists m{x} \forall m{y}(m{S}m{x}m{y})$
Everyone is seen by someone:	$\forall oldsymbol{x} \exists oldsymbol{y}(oldsymbol{S} oldsymbol{y} oldsymbol{x})$
Someone is seen by everyone:	

• We can talk about **relations** between two or more objects:

John sees Mary:	Sjm
Mary sees John:	Smj
John gives Mary the book:	Gjmb

• We can express more complicated quantifier petterns:

Everyone sees someone:	$orall oldsymbol{x} \exists oldsymbol{y} (oldsymbol{S} oldsymbol{x} oldsymbol{y})$
Someone sees everyone:	$\exists m{x} orall m{y}(m{S}m{x}m{y})$
Everyone is seen by someone:	$orall oldsymbol{x} \exists oldsymbol{y}(oldsymbol{S} oldsymbol{y} oldsymbol{x})$
Someone is seen by everyone:	$\exists m{x} orall m{y}(m{S}m{y}m{x})$

Examples

 $\begin{array}{l} \boldsymbol{L}\boldsymbol{x}\boldsymbol{y} - \boldsymbol{x} \text{ loves } \boldsymbol{y} \\ \boldsymbol{G}\boldsymbol{x} - \boldsymbol{x} \text{ is a girl} \\ \boldsymbol{B}\boldsymbol{x} - \boldsymbol{x} \text{ is a boy} \end{array}$

Examples

Lxy - x loves y Gx - x is a girl Bx - x is a boy

Every boy loves a girl

Lxy - x loves y Gx - x is a girl Bx - x is a boy

Every boy loves a girl

$$\forall oldsymbol{x} ig(oldsymbol{B} oldsymbol{x} o oldsymbol{arphi}(oldsymbol{x}) ig)$$

$$Lxy - x$$
 loves y
 $Gx - x$ is a girl
 $Bx - x$ is a boy

Every boy loves a girl
$$\forall \boldsymbol{x} \big(\boldsymbol{B} \boldsymbol{x} \to \underline{\boldsymbol{\varphi}(\boldsymbol{x})} \big)$$

$$\underline{\qquad \qquad \boldsymbol{x} \text{ loves a girl} \qquad \qquad \boldsymbol{\varphi}(\boldsymbol{x})}$$

$$Lxy - x$$
 loves y
 $Gx - x$ is a girl
 $Bx - x$ is a boy

Every boy loves a girl
$$\forall x \left(Bx \to \underline{\varphi}(x) \right)$$

 $\underline{\qquad} x \text{ loves a girl} \qquad \exists y (Gy \land Lxy)$

$$Lxy - x$$
 loves y
 $Gx - x$ is a girl
 $Bx - x$ is a boy

Every boy loves a girl

$$\forall oldsymbol{x} ig(oldsymbol{B} oldsymbol{x}
ightarrow oldsymbol{\underline{\exists}} oldsymbol{y} (oldsymbol{G} oldsymbol{y} \wedge oldsymbol{L} oldsymbol{x} oldsymbol{y}) ig)$$

$$Lxy - x \text{ loves } y$$

$$Gx - x \text{ is a girl}$$

$$Bx - x \text{ is a boy}$$

Every boy loves a girl

$$\forall x (Bx \rightarrow \exists y (Gy \land Lxy))$$

$$Lxy - x$$
 loves y
 $Gx - x$ is a girl
 $Bx - x$ is a boy

Every boy loves a girl

$$\forall x (Bx \rightarrow \exists y (Gy \land Lxy))$$

Every girl who loves all boys does not love every girl

$$Lxy - x$$
 loves y
 $Gx - x$ is a girl
 $Bx - x$ is a boy

Every boy loves a girl

$$\forall x (Bx \rightarrow \exists y (Gy \land Lxy))$$

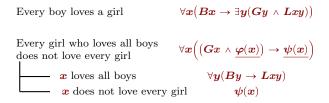
Every girl who loves all boys does not love every girl

$$orall oldsymbol{x} \Big(ig(oldsymbol{G} oldsymbol{x} \wedge \underline{oldsymbol{arphi}(oldsymbol{x})} ig)
ightarrow \underline{oldsymbol{\psi}(oldsymbol{x})} \Big)$$

Lxy - x loves y Gx - x is a girl Bx - x is a boy

Every boy loves a girl	$\forall x ig(Bx ightarrow \exists y (Gy \wedge Lxy) ig)$
Every girl who loves all boys does not love every girl	$orall oldsymbol{x} \Big(ig(oldsymbol{G} oldsymbol{x} \wedge oldsymbol{arphi}(oldsymbol{x}) \Big) ightarrow oldsymbol{\psi}(oldsymbol{x}) \Big)$
\boldsymbol{x} loves all boys	$oldsymbol{arphi}(oldsymbol{x})$
x does not love every	girl $oldsymbol{\psi}(oldsymbol{x})$

Lxy - x loves y Gx - x is a girl Bx - x is a boy



Lxy - x loves y Gx - x is a girl Bx - x is a boy

$$Lxy - x$$
 loves y
 $Gx - x$ is a girl
 $Bx - x$ is a boy

Every boy loves a girl

$$\forall x (Bx \rightarrow \exists y (Gy \land Lxy))$$

Every girl who loves all boys does not love every girl

$$orall oldsymbol{x} \Big(ig(oldsymbol{Gx} \wedge oldsymbol{\underline{y}} oldsymbol{By}
ightarrow oldsymbol{Lxy} ig) ig)
ightarrow oldsymbol{\underline{\psi}} ig(oldsymbol{x} ig)$$

$$Lxy - x$$
 loves y
 $Gx - x$ is a girl
 $Bx - x$ is a boy

Every boy loves a girl $\forall \boldsymbol{x} \big(\boldsymbol{B} \boldsymbol{x} \to \exists \boldsymbol{y} (\boldsymbol{G} \boldsymbol{y} \wedge \boldsymbol{L} \boldsymbol{x} \boldsymbol{y}) \big)$ Every girl who loves all boys does not love every girl $\forall \boldsymbol{x} \Big(\big(\boldsymbol{G} \boldsymbol{x} \wedge \forall \boldsymbol{y} (\boldsymbol{B} \boldsymbol{y} \to \boldsymbol{L} \boldsymbol{x} \boldsymbol{y}) \big) \to \\ \neg \forall \boldsymbol{x} (\boldsymbol{G} \boldsymbol{z} \to \boldsymbol{L} \boldsymbol{x} \boldsymbol{z}) \Big)$

Lxy - x loves y Gx - x is a girl Bx - x is a boy

Every boy loves a girl
$$\forall \boldsymbol{x} \big(\boldsymbol{B} \boldsymbol{x} \to \exists \boldsymbol{y} (\boldsymbol{G} \boldsymbol{y} \wedge \boldsymbol{L} \boldsymbol{x} \boldsymbol{y}) \big)$$
 Every girl who loves all boys
$$\forall \boldsymbol{x} \Big(\big(\boldsymbol{G} \boldsymbol{x} \wedge \forall \boldsymbol{y} (\boldsymbol{B} \boldsymbol{y} \to \boldsymbol{L} \boldsymbol{x} \boldsymbol{y}) \big) \to$$
 does not love every girl
$$\neg \forall \boldsymbol{z} (\boldsymbol{G} \boldsymbol{z} \to \boldsymbol{L} \boldsymbol{x} \boldsymbol{z}) \Big)$$

• $\neg \forall x \varphi x$ is equivalent to $\exists x \neg \varphi x$

• $\neg \forall x \varphi x$ is equivalent to $\exists x \neg \varphi x$ • $\neg \exists x \varphi x$ is equivalent to $\forall x \neg \varphi x$

•	$\neg \forall x \varphi x$	is equivalent to	$\exists x egarphi x$
•	$\neg\exists x\varphi x$	is equivalent to	$orall oldsymbol{x} eg oldsymbol{arphi} oldsymbol{x}$
•	orall x arphi x	is equivalent to	$\neg \exists x \neg \varphi x$

•	$ eg \forall x oldsymbol{arphi} x$	is equivalent to	$\exists x eg arphi x$
•	$\neg\exists \boldsymbol{x}\boldsymbol{\varphi}\boldsymbol{x}$	is equivalent to	$orall oldsymbol{x} eg oldsymbol{arphi} oldsymbol{x}$
•	$orall oldsymbol{x} oldsymbol{arphi} oldsymbol{x}$	is equivalent to	$ eg \exists x eg \varphi x$
•	$\exists x arphi x$	is equivalent to	$ eg \forall x eg \varphi x$

•	$ eg orall oldsymbol{x} oldsymbol{arphi} oldsymbol{x}$	is equivalent to	$\exists x\neg\varphi x$
•	$ eg \exists x arphi x$	is equivalent to	$\forall x\neg\varphi x$
•	$orall oldsymbol{x} oldsymbol{arphi} oldsymbol{x}$	is equivalent to	$\neg \exists x \neg \varphi x$
•	$\exists oldsymbol{x} oldsymbol{arphi} oldsymbol{x}$	is equivalent to	$\neg \forall \boldsymbol{x} \neg \boldsymbol{\varphi} \boldsymbol{x}$
•	$ eg \forall x \left(arphi x ightarrow \psi x ight)$	is equivalent to	$\exists x \lnot (arphi x o \psi x)$

•	$ eg \forall x arphi x$	is equivalent to	$\exists x\neg\varphi x$
•	$\neg \exists \boldsymbol{x} \boldsymbol{\varphi} \boldsymbol{x}$	is equivalent to	$\forall \boldsymbol{x}\neg\boldsymbol{\varphi}\boldsymbol{x}$
•	$orall oldsymbol{x} oldsymbol{arphi} oldsymbol{x}$	is equivalent to	$\neg \exists \boldsymbol{x} \neg \boldsymbol{\varphi} \boldsymbol{x}$
•	$\exists x arphi x$	is equivalent to	$\neg \forall \boldsymbol{x} \neg \boldsymbol{\varphi} \boldsymbol{x}$
•	$ eg \forall x \left(arphi x ightarrow \psi x ight)$	is equivalent to	$\exists x \neg (\varphi x o \psi x)$
		is equivalent to	$\exists oldsymbol{x} \left(oldsymbol{arphi} oldsymbol{x} \wedge eg oldsymbol{\psi} ight)$

```
is equivalent to
                                                                                         \exists x \, \neg \varphi x
                \neg \forall x \, \varphi x

eg \exists x \, arphi x
                                           is equivalent to
                                                                                        \forall x \neg \varphi x
                orall oldsymbol{x} oldsymbol{arphi} oldsymbol{x}
                                            is equivalent to

eg \exists x \, 
eg \varphi x
                  \exists x \, \varphi x
                                            is equivalent to
                                                                                      \neg orall x \, 
eg \varphi x
     \neg orall x \left( arphi x 
ightarrow \psi x 
ight)
                                                                                 \exists x \neg (\varphi x \rightarrow \psi x)
                                            is equivalent to
                                            is equivalent to \exists x (\varphi x \land \neg \psi)
• \forall x (\varphi x \rightarrow \neg \psi x)
                                            is equivalent to \neg \exists x \neg (\varphi x \rightarrow \neg \psi x)
```

```
is equivalent to
                 \neg \forall x \varphi x
                                                                                               \exists x\, 
eg \varphi x

eg \exists x \, \varphi x
                                               is equivalent to
                                                                                               \forall x \neg \varphi x
                  orall oldsymbol{x} oldsymbol{arphi} oldsymbol{x}
                                               is equivalent to

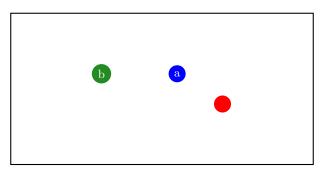
eg \exists x \, 
eg \varphi x
                   \exists x \, \varphi x
                                               is equivalent to
                                                                                             \neg orall x \, 
eg \varphi x
      \neg \forall x (\varphi x \rightarrow \psi x)
                                                                                      \exists x \neg (\varphi x \rightarrow \psi x)
                                               is equivalent to
                                               is equivalent to
                                                                                        \exists x \ (\varphi x \land \neg \psi)
• \forall x (\varphi x \rightarrow \neg \psi x)
                                               is equivalent to \neg \exists x \neg (\varphi x \rightarrow \neg \psi x)
                                                                                     \neg \exists x \ (\varphi x \wedge \psi x)
                                                is equivalent to
```

•	$\neg \forall x \varphi x$	is equivalent to	$\exists x\neg\varphi x$
•	$ eg \exists x arphi x$	is equivalent to	$\forall x\neg\varphi x$
•	$orall oldsymbol{x} oldsymbol{arphi} oldsymbol{x}$	is equivalent to	$\neg \exists \boldsymbol{x} \neg \boldsymbol{\varphi} \boldsymbol{x}$
•	$\exists oldsymbol{x} oldsymbol{arphi} oldsymbol{x}$	is equivalent to	$\neg \forall \boldsymbol{x} \neg \boldsymbol{\varphi} \boldsymbol{x}$
•	$ eg \forall x \left(arphi x ightarrow \psi x ight)$	is equivalent to	$\exists x \neg (\varphi x o \psi x)$
		is equivalent to	$\exists oldsymbol{x} \left(oldsymbol{arphi} oldsymbol{x} \wedge eg oldsymbol{\psi} ight)$
•	$orall x \left(arphi x ightarrow eg \psi x ight)$	is equivalent to	$ eg\exists x eg(arphi x o eg\psi x)$
		is equivalent to	$ eg \exists x \left(arphi x \wedge \psi x ight)$
•	$orall oldsymbol{x} \left(oldsymbol{arphi} oldsymbol{x} \wedge oldsymbol{\psi} oldsymbol{x} ight)$	is equivalent to	$\forall x \varphi x \wedge \forall x \psi x$

•	$\neg \forall x \varphi x$	is equivalent to	$\exists x\neg\varphi x$
•	$ eg \exists oldsymbol{x} oldsymbol{arphi} oldsymbol{x}$	is equivalent to	$\forall x\neg \varphi x$
•	$orall oldsymbol{x} oldsymbol{arphi} oldsymbol{x}$	is equivalent to	$\neg \exists x \neg \varphi x$
•	$\exists oldsymbol{x} oldsymbol{arphi} oldsymbol{x}$	is equivalent to	$\neg \forall x \neg \varphi x$
•	$ eg \forall x \left(arphi x ightarrow \psi x ight)$	is equivalent to	$\exists x \lnotig(arphi x o\psi xig)$
		is equivalent to	$\exists oldsymbol{x} \left(oldsymbol{arphi} oldsymbol{x} \wedge eg oldsymbol{\psi} ight)$
•	$orall x \left(arphi x ightarrow eg \psi x ight)$	is equivalent to	$ eg\exists x \lnot (arphi x o \lnot \psi x)$
		is equivalent to	$ eg \exists x \ (oldsymbol{arphi} x \wedge oldsymbol{\psi} x)$
•	$orall oldsymbol{x} \left(oldsymbol{arphi} oldsymbol{x} \wedge oldsymbol{\psi} oldsymbol{x} ight)$	is equivalent to	$\forall x\varphi x\wedge\forall x\psi x$
•	$\exists x (oldsymbol{arphi} x ee oldsymbol{\psi} x)$	is equivalent to	$\exists x \varphi x \vee \exists x \psi x$

Evaluating predicate logic formulas (1)

Colors (Red, Green, Blue, Purple) and shapes (Square, Circle).

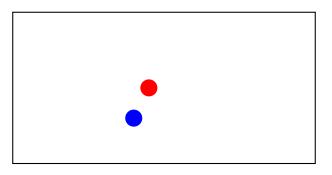


- $\bullet Ba$
- $\exists xSx \lor Cb$
- $Ra \rightarrow Sb$

- $Ba \wedge Gb$
- $\bullet \neg Sa$
- $ullet Ra
 ightarrow \exists x Sx$

Evaluating predicate logic formulas (1)

Colors (Red, Green, Blue, Purple) and shapes (Square, Circle).

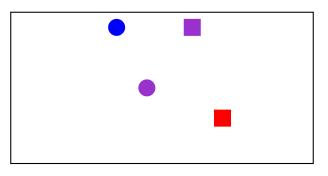


- $\bullet \exists x R x$
- $\exists x (Gx \land Cx)$

- $\bullet \neg \forall x \neg Rx$
- $\bullet \ \forall x (Rx \to Cx) \\ \\ \bullet \ \forall x (Rx \land Cx)$
 - $\bullet \; \exists x (Gx \to Cx)$

Evaluating predicate logic formulas (1)

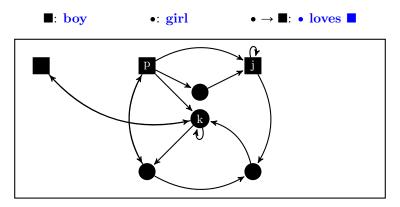
Colors (Red, Green, Blue, Purple) and shapes (Square, Circle).



- $\forall x (Cx \vee Sx)$ $\forall x Cx \vee \forall x Sx$
- ullet $\exists xGx \lor \exists xCx$
- $\exists x (Rx \land Cx)$ $\exists x Rx \land \exists x Cx$

 - $\bullet \ \exists x (Gx \lor Cx)$

Evaluating predicate logic formulas (2)



- $Lik \rightarrow Lki$
- $\neg (Ljk \wedge Lkj)$
- $\forall x (Bx \rightarrow Lxk)$
- $\forall x((Bx \vee Gx) \rightarrow \neg Lxp)$ $\exists x(Gx \wedge Lpx \wedge Lxj)$
- $Lik \wedge Lki$
- $ullet (Ljk \wedge Lpk)
 ightarrow (
 eg Lpj \wedge
 eg Lkj) \ ullet (Gx
 ightarrow Lxx)$

The language is built in two steps.

The language is built in two steps.

1 A term t is a variable (x, y, z, ...) or a constant (a, b, c, ...).

The language is built in two steps.

- **1** A **term** t is a variable (x, y, z, ...) or a constant (a, b, c, ...).
- ② A formula is built via the following rules.

The language is built in two steps.

- **1** A **term** t is a variable (x, y, z, ...) or a constant (a, b, c, ...).
- **2** A **formula** is built via the following rules.
 - If t_1, \ldots, t_n are terms and P a symbol of a predicate, then the following is a formula:

$$Pt_1 \cdots t_n$$

The language is built in two steps.

- **1** A **term** t is a variable (x, y, z, ...) or a constant (a, b, c, ...).
- **2** A **formula** is built via the following rules.
 - If t_1, \ldots, t_n are terms and P a symbol of a predicate, then the following is a formula:

$$Pt_1 \cdots t_n$$

• If φ and ψ are formulas, then the following are formulas:

$$\neg \varphi$$
, $\varphi \wedge \psi$, $\varphi \vee \psi$, $\varphi \rightarrow \psi$, $\varphi \leftrightarrow \psi$

The language is built in two steps.

- **1** A **term** t is a variable (x, y, z, ...) or a constant (a, b, c, ...).
- A formula is built via the following rules.
 - If t_1, \ldots, t_n are terms and P a symbol of a predicate, then the following is a formula:

$$Pt_1 \cdots t_n$$

• If φ and ψ are formulas, then the following are formulas:

$$eg arphi, \quad arphi \wedge \psi, \quad arphi \vee \psi, \quad arphi
ightarrow \psi, \quad arphi \leftrightarrow \psi$$

• If φ is a formula and x is a variable, the following are formulas:

$$\forall x \varphi, \; \exists x \varphi$$

Examples of formulas

Examples of formulas

 \bullet $Lxx \land \neg Lmx$

- \bullet $Lxx \land \neg Lmx$
- $\bullet \exists x Ljx$

- \bullet $Lxx \land \neg Lmx$
- $\bullet \exists x Ljx$
- $\bullet \ \forall x \ Ljx$

- \bullet $Lxx \land \neg Lmx$
- $\bullet \exists x Ljx$
- $\bullet \ \forall x \ Ljx$
- $\bullet \ \forall x \big(\boldsymbol{B} \boldsymbol{x} \to \exists \boldsymbol{y} (\boldsymbol{G} \boldsymbol{y} \wedge \boldsymbol{L} \boldsymbol{x} \boldsymbol{y}) \big)$

- \bullet $Lxx \land \neg Lmx$
- $\bullet \exists x Ljx$
- $\bullet \ \forall x \ Ljx$
- $\bullet \ \forall x \big(Bx \to \exists y (Gy \land Lxy) \big)$
- $\bullet \neg \exists x (Gx \land \forall y (\neg Lxy))$

- \bullet $Lxx \land \neg Lmx$
- $\bullet \exists x Ljx$
- $\bullet \ \forall x \ Ljx$
- $\bullet \ \forall x \big(Bx \to \exists y (Gy \land Lxy) \big)$
- $\bullet \neg \exists x (Gx \land \forall y (\neg Lxy))$
- $\bullet \ \forall x \big(\exists y (Lxy) \to \exists z (Lzx)\big)$

- \bullet $Lxx \land \neg Lmx$
- $\bullet \exists x Ljx$
- $\bullet \ \forall x \ Ljx$
- $\bullet \ \forall x \big(Bx \to \exists y (Gy \land Lxy) \big)$
- $\bullet \neg \exists x (Gx \land \forall y (\neg Lxy))$
- $\bullet \ \forall x \big(\exists y (Lxy) \to \exists z (Lzx)\big)$
- $\bullet \exists y \forall x (Lyx)$

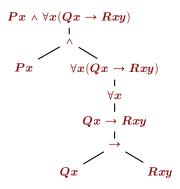
• Scope of a quantifier. In a formula of the form $\forall x \varphi \ (\exists x \varphi)$, the subformula φ is said to be **the scope** of the quantifier $\forall \ (\exists)$.

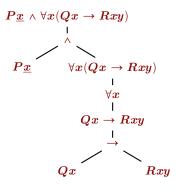
- Scope of a quantifier. In a formula of the form $\forall x \varphi \ (\exists x \varphi)$, the subformula φ is said to be **the scope** of the quantifier $\forall \ (\exists)$.
- Binding a variable. In a formula of the form $\forall x \varphi \ (\exists x \varphi)$, the quantifier $\forall \ (\exists)$ binds any occurrence of x in φ that is not bound by another quantifier inside φ .

- Scope of a quantifier. In a formula of the form $\forall x \varphi \ (\exists x \varphi)$, the subformula φ is said to be **the scope** of the quantifier $\forall \ (\exists)$.
- Binding a variable. In a formula of the form $\forall x \varphi \ (\exists x \varphi)$, the quantifier $\forall \ (\exists)$ binds any occurrence of x in φ that is not bound by another quantifier inside φ .
- Bound variable. An occurrence of a variable x is bound in a formula φ if there is a quantifier in φ that binds it.

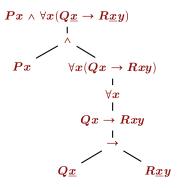
- Scope of a quantifier. In a formula of the form $\forall x \varphi \ (\exists x \varphi)$, the subformula φ is said to be **the scope** of the quantifier $\forall \ (\exists)$.
- Binding a variable. In a formula of the form $\forall x \varphi \ (\exists x \varphi)$, the quantifier $\forall \ (\exists)$ binds any occurrence of x in φ that is not bound by another quantifier inside φ .
- Bound variable. An occurrence of a variable x is bound in a formula φ if there is a quantifier in φ that binds it.
- Free variable. An occurrence of a variable x is free in a formula φ if no quantifier in φ binds it.

$$Px \, \land \, \forall x (Qx \to Rxy)$$

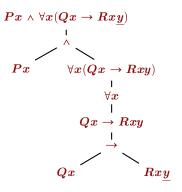




• This occurrence of x is not bound by any quantifier (is free).



- This occurrence of x is **not bound** by any quantifier (is **free**).
- These occurrences of x are bound (by $\forall x$).



- This occurrence of x is **not bound** by any quantifier (is **free**).
- These occurrences of x are bound (by $\forall x$).
- This occurrence of y is not bound by any quantifier (is free).

Kinds of formulas

Kinds of formulas

• Closed formula. A formula is **closed** if every occurrence of every variable in the formula is bound.

Kinds of formulas

- Closed formula. A formula is closed if every occurrence of every variable in the formula is bound.
- Open formula. A formula is open if it is not open, that is, if it contains at least one free occurrence of a variable.

• Substitution inside a <u>term</u>. Replacing the occurrences of the variable y for the term t inside the <u>term</u> s produces the <u>term</u> denoted by

 $(oldsymbol{s})_{oldsymbol{t}}^{oldsymbol{y}}$

• Substitution inside a <u>term</u>. Replacing the occurrences of the variable y for the term t inside the term s produces the term denoted by

$$(s)_t^y$$

• Formally,

For a **constant**:
$$(c)_t^y := c$$
For a **variable**:
$$\begin{cases} (x)_t^y := x & \text{for } x \text{ different from } y \\ (y)_t^y := t \end{cases}$$

• Substitution inside a <u>term</u>. Replacing the occurrences of the variable y for the term t inside the <u>term</u> s produces the <u>term</u> denoted by

$$(s)_t^y$$

• Formally,

For a **constant**:
$$(c)_t^y := c$$
For a **variable**:
$$\begin{cases} (x)_t^y := x & \text{for } x \text{ different from } y \\ (y)_t^y := t \end{cases}$$

Examples:

$$egin{aligned} (oldsymbol{a})_{oldsymbol{c}}^{oldsymbol{x}} &:= oldsymbol{a} \ (oldsymbol{x})_{oldsymbol{u}}^{oldsymbol{x}} &:= oldsymbol{x} \ (oldsymbol{z})_{oldsymbol{u}}^{oldsymbol{z}} &:= oldsymbol{y} \end{aligned}$$

• Substitution inside a formula. Replacing the free occurrences of the variable y for the term t inside the formula φ produces the formula denoted by

 $(oldsymbol{arphi})_{oldsymbol{t}}^{oldsymbol{y}}$

• Substitution inside a formula. Replacing the free occurrences of the variable y for the term t inside the formula φ produces the formula denoted by

$$(\boldsymbol{arphi})_{oldsymbol{t}}^{oldsymbol{y}}$$

• Formally,

$$(\mathbf{P}t_{1}\cdots t_{n})_{t}^{y} := \mathbf{P}(t_{1})_{t}^{y}\cdots (t_{n})_{t}^{y}$$

$$(\neg\varphi)_{t}^{y} := \neg(\varphi)_{t}^{y}$$

$$(\varphi \wedge \psi)_{t}^{y} := (\varphi)_{t}^{y} \wedge (\psi)_{t}^{y}$$

$$(\varphi \vee \psi)_{t}^{y} := (\varphi)_{t}^{y} \vee (\psi)_{t}^{y}$$

$$(\varphi \to \psi)_{t}^{y} := (\varphi)_{t}^{y} \to (\psi)_{t}^{y}$$

$$(\varphi \leftrightarrow \psi)_{t}^{y} := (\varphi)_{t}^{y} \leftrightarrow (\psi)_{t}^{y}$$

$$egin{cases} (orall xarphi)_t^y &:= orall x(arphi)_t^y \ (orall yarphi)_t^y &:= orall yarphi \ (\exists xarphi)_t^y &:= \exists x(arphi)_t^y \ (\exists uarphi)_t^y &:= \exists uarphi \end{cases}$$

A model is a tuple $M = \langle D, I, g \rangle$ where

A model is a tuple $M = \langle D, I, g \rangle$ where

ullet **D** is the **domain**: a non-empty collection of objects,

A model is a tuple $M = \langle D, I, g \rangle$ where

- **D** is the **domain**: a non-empty collection of objects,
- I is the interpretation function, assigning to each symbol for constant and symbol for predicate an object in D and a relation over objects in D, respectively,

A model is a tuple $M = \langle D, I, g \rangle$ where

- **D** is the **domain**: a non-empty collection of objects,
- *I* is the **interpretation function**, assigning to each symbol for constant and symbol for predicate an object in *D* and a relation over objects in *D*, respectively,
- g is the variable assignment, assigning to each variable an object an object in D.

A model is a tuple $M = \langle D, I, g \rangle$ where

- **D** is the **domain**: a non-empty collection of objects,
- *I* is the **interpretation function**, assigning to each symbol for constant and symbol for predicate an object in *D* and a relation over objects in *D*, respectively,
- g is the variable assignment, assigning to each variable an object an object in D.

For a constant \boldsymbol{a} , sometimes we will abbreviate object $\boldsymbol{I}(\boldsymbol{a})$ as $\boldsymbol{a}_{\boldsymbol{I}}$.

A model is a tuple $M = \langle D, I, g \rangle$ where

- **D** is the **domain**: a non-empty collection of objects,
- *I* is the **interpretation function**, assigning to each symbol for constant and symbol for predicate an object in *D* and a relation over objects in *D*, respectively,
- g is the variable assignment, assigning to each variable an object an object in D.

For a constant a, sometimes we will abbreviate object I(a) as a_I . For a predicate P, sometimes we will abbreviate relation I(P) as P_I .

Modifying variable assignments

Given a variable assignment g, a variable x and an object d in D, we define the variable assignment $g_{[x:=d]}$ as

Modifying variable assignments

Given a variable assignment g, a variable x and an object d in D, we define the variable assignment $g_{[x:=d]}$ as

$$\left\{ \begin{array}{l} \boldsymbol{g_{[\boldsymbol{x}:=\boldsymbol{d}]}(\boldsymbol{y})} := \boldsymbol{g(\boldsymbol{y})} \\ \boldsymbol{g_{[\boldsymbol{x}:=\boldsymbol{d}]}(\boldsymbol{x})} := \boldsymbol{d} \end{array} \right.$$

Modifying variable assignments

Given a variable assignment g, a variable x and an object d in D, we define the variable assignment $g_{[x:=d]}$ as

$$\begin{cases} g_{[\boldsymbol{x}:=\boldsymbol{d}]}(\boldsymbol{y}) := g(\boldsymbol{y}) \\ g_{[\boldsymbol{x}:=\boldsymbol{d}]}(\boldsymbol{x}) := \boldsymbol{d} \end{cases}$$

The variable assignment $g_{[\boldsymbol{x}:=\boldsymbol{d}]}$ differs from g only in the value of \boldsymbol{x} , given now by d.

Assigning values to terms

Given a model $M = \langle D, I, g \rangle$, the value of every term t, $[t]_g^I$, is defined as follows.

Assigning values to terms

Given a model $M = \langle D, I, g \rangle$, the value of every term t, $[t]_g^I$, is defined as follows.

For a constant
$$\boldsymbol{a}$$
: $[\![\boldsymbol{a}]\!]_{\boldsymbol{q}}^{\boldsymbol{I}} := \boldsymbol{I}(\boldsymbol{a})$

Assigning values to terms

Given a model $M = \langle D, I, g \rangle$, the value of every term t, $[t]_g^I$, is defined as follows.

For a constant
$$\boldsymbol{a}$$
: $[\![\boldsymbol{a}]\!]_{\boldsymbol{q}}^{\boldsymbol{I}} := \boldsymbol{I}(\boldsymbol{a})$

For a variable
$$x$$
: $[x]_q^I := g(x)$

$$\langle D, I, g \rangle \models Pt_1 \cdots t_n \text{ iff } (\llbracket t_1 \rrbracket_q^I, \dots, \llbracket t_n \rrbracket_q^I) \in I(P)$$

$$egin{aligned} \langle D, I, g
angle &\models \mathbf{P} t_1 \cdots t_n & ext{iff} & \left(\llbracket t_1
rbracket_g^I, \ldots, \llbracket t_n
rbracket_g^I
ight) \in I(\mathbf{P}) \ \\ \langle D, I, g
angle &\models \neg \varphi & ext{iff} & ext{it is not the case that } \langle D, I, g
angle \models \varphi \end{aligned}$$

$$egin{aligned} &\langle D,I,g
angle &\models Pt_1\cdots t_n & ext{iff} & \left(\llbracket t_1
rbracket_g^I,\ldots,\llbracket t_n
rbracket_g^I
ight) \in I(P) \ &\langle D,I,g
angle &\models \neg arphi & ext{iff} & ext{it is not the case that } \langle D,I,g
angle &\models arphi \ &\langle D,I,g
angle &\models arphi & ext{and } \langle D,I,g
angle &\models \psi \end{aligned}$$

$$egin{aligned} &\langle D,I,g
angle &\models \mathbf{P}t_{I}\cdots t_{n} & ext{iff} & (\llbracket t_{1}
rbracket^{I}_{g},\ldots,\llbracket t_{n}
rbracket^{I}_{g}) \in I(\mathbf{P}) \ &\langle D,I,g
angle &\models \neg arphi & ext{iff} & ext{it is not the case that } \langle D,I,g
angle &\models arphi \ &\langle D,I,g
angle &\models arphi & ext{and } \langle D,I,g
angle &\models \psi \ &\langle D,I,g
angle &\models arphi & ext{or } \langle D,I,g
angle &\models \psi \end{aligned}$$

$$egin{aligned} \langle D, I, g
angle &\models \mathbf{P} t_1 \cdots t_n & ext{iff} & \left(\llbracket t_1
rbracket_g^I, \ldots, \llbracket t_n
rbracket_g^I
ight) \in I(\mathbf{P}) \ & \langle D, I, g
angle &\models \neg \varphi & ext{iff} & ext{it is not the case that } \langle D, I, g
angle &\models \varphi \ & \langle D, I, g
angle &\models \varphi \wedge \psi & ext{iff} & \langle D, I, g
angle &\models \varphi & ext{and } \langle D, I, g
angle &\models \psi \ & \langle D, I, g
angle &\models \varphi & ext{or } \langle D, I, g
angle &\models \psi \ & \langle D, I, g
angle &\models \varphi & ext{implies } \langle D, I, g
angle &\models \psi \end{aligned}$$

$$\langle D, I, g \rangle \models \mathbf{P} t_{1} \cdots t_{n} \quad \text{iff} \quad \left(\llbracket t_{1} \rrbracket_{g}^{I}, \dots, \llbracket t_{n} \rrbracket_{g}^{I} \right) \in I(\mathbf{P})$$

$$\langle D, I, g \rangle \models \neg \varphi \quad \text{iff} \quad \text{it is not the case that } \langle D, I, g \rangle \models \varphi$$

$$\langle D, I, g \rangle \models \varphi \wedge \psi \quad \text{iff} \quad \langle D, I, g \rangle \models \varphi \text{ and } \langle D, I, g \rangle \models \psi$$

$$\langle D, I, g \rangle \models \varphi \vee \psi \quad \text{iff} \quad \langle D, I, g \rangle \models \varphi \text{ or } \langle D, I, g \rangle \models \psi$$

$$\langle D, I, g \rangle \models \varphi \rightarrow \psi \quad \text{iff} \quad \langle D, I, g \rangle \models \varphi \text{ implies } \langle D, I, g \rangle \models \psi$$

$$\langle D, I, g \rangle \models \varphi \leftrightarrow \psi \quad \text{iff} \quad \langle D, I, g \rangle \models \varphi \text{ if and only if } \langle D, I, g \rangle \models \psi$$

$$\langle D, I, g \rangle \models Pt_{I} \cdots t_{n} \quad \text{iff} \quad \left(\llbracket t_{1} \rrbracket_{g}^{I}, \dots, \llbracket t_{n} \rrbracket_{g}^{I} \right) \in I(P)$$

$$\langle D, I, g \rangle \models \neg \varphi \qquad \text{iff} \quad \text{it is not the case that } \langle D, I, g \rangle \models \varphi$$

$$\langle D, I, g \rangle \models \varphi \wedge \psi \qquad \text{iff} \quad \langle D, I, g \rangle \models \varphi \text{ and } \langle D, I, g \rangle \models \psi$$

$$\langle D, I, g \rangle \models \varphi \vee \psi \qquad \text{iff} \quad \langle D, I, g \rangle \models \varphi \text{ or } \langle D, I, g \rangle \models \psi$$

$$\langle D, I, g \rangle \models \varphi \rightarrow \psi \qquad \text{iff} \quad \langle D, I, g \rangle \models \varphi \text{ implies } \langle D, I, g \rangle \models \psi$$

$$\langle D, I, g \rangle \models \varphi \leftrightarrow \psi \qquad \text{iff} \quad \langle D, I, g \rangle \models \varphi \text{ if and only if } \langle D, I, g \rangle \models \psi$$

$$\langle D, I, g \rangle \models \forall x \varphi \qquad \text{iff} \quad \text{for every } d \in D \text{ we have } \langle D, I, g_{[x:=d]} \rangle \models \varphi$$

$$\langle D, I, g \rangle \models \mathbf{P} t_{I} \cdots t_{n} \quad \text{iff} \quad (\llbracket t_{1} \rrbracket_{g}^{I}, \dots, \llbracket t_{n} \rrbracket_{g}^{I}) \in I(\mathbf{P})$$

$$\langle D, I, g \rangle \models \neg \varphi \qquad \text{iff} \quad \text{it is not the case that } \langle D, I, g \rangle \models \varphi$$

$$\langle D, I, g \rangle \models \varphi \wedge \psi \qquad \text{iff} \quad \langle D, I, g \rangle \models \varphi \text{ and } \langle D, I, g \rangle \models \psi$$

$$\langle D, I, g \rangle \models \varphi \vee \psi \qquad \text{iff} \quad \langle D, I, g \rangle \models \varphi \text{ or } \langle D, I, g \rangle \models \psi$$

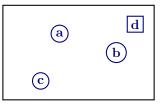
$$\langle D, I, g \rangle \models \varphi \rightarrow \psi \qquad \text{iff} \quad \langle D, I, g \rangle \models \varphi \text{ implies } \langle D, I, g \rangle \models \psi$$

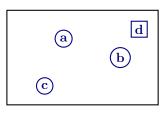
$$\langle D, I, g \rangle \models \varphi \leftrightarrow \psi \qquad \text{iff} \quad \langle D, I, g \rangle \models \varphi \text{ if and only if } \langle D, I, g \rangle \models \psi$$

$$\langle D, I, g \rangle \models \forall x \varphi \qquad \text{iff} \quad \text{for every } d \in D \text{ we have } \langle D, I, g_{[x:=d]} \rangle \models \varphi$$

$$\langle D, I, g \rangle \models \exists x \varphi \qquad \text{iff} \quad \text{there is a } d \in D \text{ such that } \langle D, I, g_{[x:=d]} \rangle \models \varphi$$

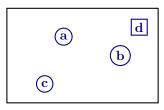
Shapes (\boldsymbol{S} quare, \boldsymbol{C} ircle).





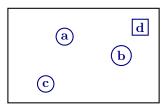
$$D := \{ (a), (b), (c), (d) \}$$

Shapes (Square, Circle).

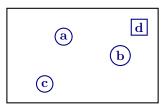


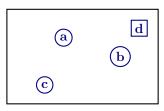
$$egin{aligned} D &:= \{ @, \ @, \ @, \ d \ \} \ & I(a) &:= \ @ \ & I(b) &:= \ @ \ & I(c) &:= \ &$$

 $I(d) := \boxed{\mathbf{d}}$

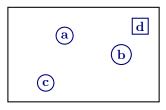


$$\begin{split} &D := \{ \textcircled{a}, \textcircled{b}, \textcircled{c}, \textcircled{d} \} \\ &I(\textbf{a}) := \textcircled{a} \qquad I(\textbf{S}) := \{ \textcircled{d} \} \\ &I(\textbf{b}) := \textcircled{b} \qquad I(\textbf{C}) := \{ \textcircled{a}, \textcircled{b}, \textcircled{c} \} \\ &I(\textbf{c}) := \textcircled{c} \\ &I(\textbf{d}) := \textcircled{d} \end{split}$$

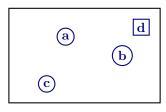




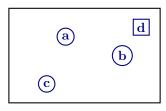
$$egin{aligned} \langle D,I,g
angle &\models Ca & ext{iff} \ \langle D,I,g
angle &\models Sx & ext{iff} \ \langle D,I,g
angle &\models \exists xSx & ext{iff} \end{aligned}$$



$$\begin{split} \langle D, I, g \rangle &\models Ca & \text{iff} & \llbracket a \rrbracket_g^I \in I(C) \\ \langle D, I, g \rangle &\models Sx & \text{iff} \\ \langle D, I, g \rangle &\models \exists x Sx & \text{iff} \end{split}$$

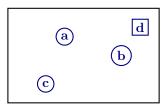


$$\langle D, I, g \rangle \models Ca$$
 iff $I(a) \in I(C)$
 $\langle D, I, g \rangle \models Sx$ iff
 $\langle D, I, g \rangle \models \exists xSx$ iff



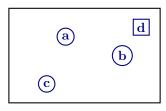
$$egin{aligned} D &:= \{ @, \ @, \ @, \ d \} \ & I(m{a}) &:= \ @ & I(m{S}) &:= \{ \ d \} \ & I(m{b}) &:= \ @ & I(m{C}) &:= \{ @, \ @, \ @, \ e \} \ & I(m{c}) &:= \ @ & g(m{x}) &:= \ @ & I(m{d}) &:= \ & g(m{y}) &:= \ @ &$$

$$egin{aligned} \langle D,I,g
angle &\models Ca & ext{iff} & ext{ (a) } \in I(C) \ \langle D,I,g
angle &\models Sx & ext{iff} \ \langle D,I,g
angle &\models \exists xSx & ext{iff} \end{aligned}$$



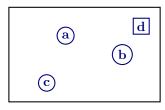
$$egin{aligned} D &:= \{ @, \ @, \ @, \ d \} \ & I(m{a}) &:= \ @ & I(m{S}) &:= \{ \ d \} \ & I(m{b}) &:= \ @ & I(m{C}) &:= \{ @, \ @, \ @, \ e \} \ & I(m{c}) &:= \ @ & g(m{x}) &:= \ @ & I(m{d}) &:= \ & g(m{y}) &:= \ @ &$$

$$\langle D, I, g \rangle \models Ca$$
 iff $\textcircled{a} \in \{\textcircled{a}, \textcircled{b}, \textcircled{c}\}\$
 $\langle D, I, g \rangle \models Sx$ iff $\langle D, I, g \rangle \models \exists xSx$ iff



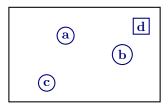
$$egin{aligned} D &:= \{ @, \ @, \ @, \ d \} \ & I(m{a}) &:= \ @ & I(m{S}) &:= \{ \ d \} \ & I(m{b}) &:= \ @ & I(m{C}) &:= \{ @, \ @, \ @, \ e \} \ & I(m{c}) &:= \ @ & g(m{x}) &:= \ @ & I(m{d}) &:= \ & g(m{y}) &:= \ @ &$$

$$\langle D, I, g \rangle \models Ca$$
 iff $\textcircled{a} \in \{\textcircled{a}, \textcircled{b}, \textcircled{c}\} \checkmark$
 $\langle D, I, g \rangle \models Sx$ iff $\langle D, I, g \rangle \models \exists xSx$ iff



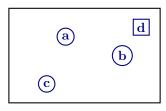
$$\begin{split} &D := \{ \textcircled{a}, \textcircled{b}, \textcircled{c}, \textcircled{d} \} \\ &I(a) := \textcircled{a} \qquad I(S) := \{ \textcircled{d} \} \\ &I(b) := \textcircled{b} \qquad I(C) := \{ \textcircled{a}, \textcircled{b}, \textcircled{c} \} \\ &I(c) := \textcircled{c} \qquad g(x) := \textcircled{b} \\ &I(d) := \textcircled{d} \qquad g(y) := \textcircled{a} \end{split}$$

$$\begin{split} \langle D, I, g \rangle &\models \pmb{Ca} & \text{iff} & \texttt{ (a)} \in \{\texttt{ (a)}, \texttt{ (b)}, \texttt{ (c)} \} \checkmark \\ \langle D, I, g \rangle &\models \pmb{Sx} & \text{iff} & \pmb{\llbracket x \rrbracket_g^I} \in \pmb{I(S)} \\ \langle D, I, g \rangle &\models \exists \pmb{xSx} & \text{iff} \end{split}$$



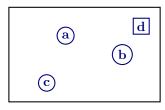
$$egin{aligned} D &:= \{ @, \ @, \ @, \ d \ \} \ & I(m{a}) &:= \ @ & I(m{S}) &:= \{ \ d \ \} \ & I(m{b}) &:= \ @ & I(m{C}) &:= \{ @, \ @, \ @, \ e \ \} \ & I(m{c}) &:= \ @ & g(m{x}) &:= \ @ \ & I(m{d}) &:= \ [\ d \] \ & g(m{y}) &:= \ @ \ & g(m{y}) &:= \ & g(\m{y}) &:= \ &$$

$$egin{aligned} \langle D,I,g
angle &\models \pmb{Ca} & & ext{iff} & & & & & & & & & & & & & & \\ \langle D,I,g
angle &\models \pmb{Sx} & & & & & & & & & & & & & & \\ \langle D,I,g
angle &\models &\exists \pmb{xSx} & & & & & & & & & & & \\ \end{aligned}$$



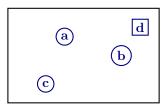
$$egin{aligned} D &:= \{ @, \ @, \ @, \ d \} \ & I(m{a}) &:= \ @ & I(m{S}) &:= \{ \ d \} \ & I(m{b}) &:= \ @ & I(m{C}) &:= \{ @, \ @, \ @, \ e \} \ & I(m{c}) &:= \ @ & g(m{x}) &:= \ @ & I(m{d}) &:= \ & g(m{y}) &:= \ @ &$$

$$\langle D, I, g \rangle \models Ca$$
 iff $\textcircled{a} \in \{\textcircled{a}, \textcircled{b}, \textcircled{c}\} \checkmark$
 $\langle D, I, g \rangle \models Sx$ iff $\textcircled{b} \in I(S)$
 $\langle D, I, g \rangle \models \exists xSx$ iff



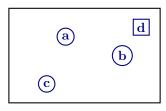
$$egin{aligned} D &:= \{ @, @, @, @, @ \} \ & I(a) &:= @ & I(S) &:= \{ @, \} \ & I(b) &:= & B & I(C) &:= \{ @, @, @, @ \} \ & I(c) &:= & B & g(x) &:= & B \ & I(d) &:= & G & g(y) &:= & B \end{aligned}$$

$$\langle D, I, g \rangle \models Ca$$
 iff $\textcircled{a} \in \{\textcircled{a}, \textcircled{b}, \textcircled{c}\} \checkmark$
 $\langle D, I, g \rangle \models Sx$ iff $\textcircled{b} \in \{\textcircled{d}\}$
 $\langle D, I, g \rangle \models \exists xSx$ iff



$$egin{aligned} D &:= \{ @, \ @, \ @, \ d \} \ & I(m{a}) &:= \ @ & I(m{S}) &:= \{ \ d \} \ & I(m{b}) &:= \ @ & I(m{C}) &:= \{ @, \ @, \ @, \ @ \} \ & I(m{c}) &:= \ @ & g(m{x}) &:= \ @ & I(m{d}) &:= \ & g(m{y}) &:= \ @ &$$

$$\langle D, I, g \rangle \models Ca$$
 iff $\textcircled{a} \in \{\textcircled{a}, \textcircled{b}, \textcircled{c}\} \checkmark$
 $\langle D, I, g \rangle \models Sx$ iff $\textcircled{b} \in \{\textcircled{d}\} \checkmark$
 $\langle D, I, g \rangle \models \exists xSx$ iff

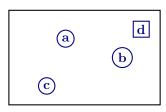


$$egin{aligned} D &:= \{ @, \ @, \ @, \ d \} \ & I(m{a}) := \ @ & I(m{S}) := \{ d \} \ & I(m{b}) := \ @ & I(m{C}) := \{ @, \ @, \ @, \ e \} \ & I(m{c}) := \ @ & g(m{x}) := \ @ & I(m{d}) := \ & g(m{y}) := \ @ & g(m{y}) := \ & g(m{y}) := \ @ & g(m{y}) := \ &$$

$$\langle D, I, g \rangle \models Ca$$
 iff $\textcircled{a} \in \{\textcircled{a}, \textcircled{b}, \textcircled{c}\} \checkmark$
 $\langle D, I, g \rangle \models Sx$ iff $\textcircled{b} \in \{\overrightarrow{d}\} \checkmark$

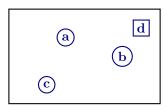
$$\langle D, I, g \rangle \models \exists x S x \quad \text{iff} \quad \text{there is a } o \in D \text{ such that } \langle D, I, g_{[x:=o]} \rangle \models S x$$

Shapes (Square, Circle).



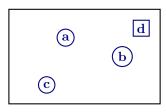
$$egin{aligned} D &:= \{ @, \ @, \ @, \ @ \ \end{bmatrix} \ & I(m{a}) &:= \ @ \ & I(m{S}) &:= \{ \ @, \ @, \ @ \ \end{bmatrix} \ & I(m{b}) &:= \ @ \ & I(m{C}) &:= \{ @, \ @, \ @, \ @ \ \end{bmatrix} \ & I(m{c}) &:= \ @ \ & g(m{x}) &:= \ @ \ & I(m{d}) &:= \ @ \ & g(m{y}) &:= \ @ \ & \end{bmatrix}$$

$$\begin{split} \langle D, I, g \rangle &\models Ca & \text{iff} & \textcircled{a} \in \{\textcircled{a}, \textcircled{b}, \textcircled{c}\} \checkmark \\ \langle D, I, g \rangle &\models Sx & \text{iff} & \textcircled{b} \in \{\textcircled{d}\} \checkmark \\ \langle D, I, g \rangle &\models \exists xSx & \text{iff} & \text{there is a } o \in D \text{ such that } \langle D, I, g_{[x:=o]} \rangle \models Sx \\ & \langle D, I, g_{[x:=a]} \rangle \models Sx \end{split}$$



$$egin{aligned} D &:= \{ @, \&b, \&c, \&d \} \ &I(m{a}) &:= \&a & I(m{S}) &:= \&d \} \ &I(m{b}) &:= \&b & I(m{C}) &:= \&a, \&b, \&c \} \ &I(m{c}) &:= \&c & g(m{x}) &:= \&b \ &I(m{d}) &:= \&d & g(m{y}) &:= \&a \end{aligned}$$

$$\begin{split} \langle D, I, g \rangle &\models Ca & \text{iff} & \textcircled{a} \in \{\textcircled{a}, \textcircled{b}, \textcircled{c}\} \checkmark \\ \langle D, I, g \rangle &\models Sx & \text{iff} & \textcircled{b} \in \{\textcircled{d}\} \checkmark \\ \langle D, I, g \rangle &\models \exists xSx & \text{iff} & \text{there is a } o \in D \text{ such that } \langle D, I, g_{[x:=o]} \rangle &\models Sx \\ & & \|x\|_{g_{[x:=o]}}^{I} \in I(S) \end{split}$$

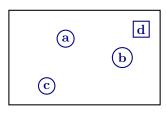


$$egin{aligned} D &:= \{ @, \&b, \&c, \&d \} \ I(a) &:= @ & I(S) := \{\&d\} \ I(b) &:= \&b & I(C) := \{\&a, \&b, \&c\} \ I(c) &:= \&c & g(x) := \&b \ I(d) &:= \&d & g(y) := \&a \end{aligned}$$

$$\begin{split} &\langle D, I, g \rangle \models \pmb{Ca} & \text{iff} & \textcircled{a} \in \{\textcircled{a}, \textcircled{b}, \textcircled{c}\} \checkmark \\ &\langle D, I, g \rangle \models \pmb{Sx} & \text{iff} & \textcircled{b} \in \{\textcircled{d}\} \checkmark \\ &\langle D, I, g \rangle \models \exists \pmb{xSx} & \text{iff} & \text{there is a } o \in D \text{ such that } \langle D, I, g_{[\pmb{x}:=o]} \rangle \models \pmb{Sx} \end{split}$$

$$g_{[x:=@]}(x) \in I(S)$$

Shapes (Square, Circle).

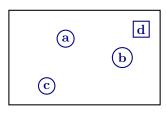


$$egin{aligned} D &:= \{ @, \ @, \ @, \ d \ \} \ & I(a) &:= \ @ & I(S) &:= \{ d \ \} \ & I(b) &:= \ @ & I(C) &:= \{ @, \ @, \ @, \ e \ \} \ & I(c) &:= \ @ & g(x) &:= \ @ & I(d) \ &:= \ & g(y) &:= \ @ & g(y) &:= \ & g(y$$

$$\begin{split} \langle D, I, g \rangle &\models Ca & \text{iff} & \textcircled{a} \in \{\textcircled{a}, \textcircled{b}, \textcircled{c}\} \checkmark \\ \langle D, I, g \rangle &\models Sx & \text{iff} & \textcircled{b} \in \{\textcircled{d}\} \checkmark \\ \langle D, I, g \rangle &\models \exists x Sx & \text{iff} & \text{there is a } o \in D \text{ such that } \langle D, I, g_{[x:=o]} \rangle &\models Sx \end{split}$$

 $\mathbf{a} \in \boldsymbol{I}(\boldsymbol{S})$

Shapes (Square, Circle).

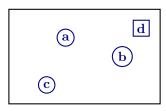


$$egin{aligned} D &:= \{ @, \ @, \ @, \ d \ \} \ & I(a) &:= \ @ & I(S) &:= \{ d \ \} \ & I(b) &:= \ @ & I(C) &:= \{ @, \ @, \ @, \ e \ \} \ & I(c) &:= \ @ & g(x) &:= \ @ & I(d) \ &:= \ & g(y) &:= \ @ & g(y) &:= \ & g(y$$

$$egin{array}{ll} \langle D,I,g
angle \models \pmb{Ca} & ext{iff} & ext{ a) } \in \{\mbox{a)}, \mbox{ c)} \ \checkmark \ \\ \langle \pmb{D},\pmb{I},g
angle \models \pmb{Sx} & ext{iff} & ext{ b) } \in \{\mbox{d]} \ \nearrow \ \\ \langle \pmb{D},\pmb{I},g
angle \models \exists \pmb{xSx} & ext{iff} & ext{there is a } \pmb{o} \in \pmb{D} \text{ such that } \langle \pmb{D},\pmb{I},g_{[\pmb{x}:=\pmb{o}]}
angle \models \pmb{Sx} \ \end{array}$$

(a) ∈ {[d]}

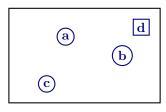
Shapes (Square, Circle).



$$\langle D, I, g \rangle \models Ca$$
 iff $(a) \in \{(a), (b), (c)\}$ \checkmark $\langle D, I, g \rangle \models Sx$ iff $(b) \in \{(d)\}$ \nearrow $\langle D, I, g \rangle \models \exists x Sx$ iff there is a $g \in D$ such

 $\langle D, I, g \rangle \models \exists x S x$ iff there is a $o \in D$ such that $\langle D, I, g_{[x:=o]} \rangle \models S x$

Shapes (Square, Circle).

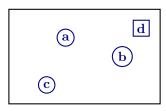


$$\begin{split} & D := \{ \texttt{a}, \, \texttt{b}, \, \texttt{c}, \, \texttt{d} \} \\ & I(\pmb{a}) := \, \texttt{a} \qquad I(\pmb{S}) := \{ \texttt{d} \} \\ & I(\pmb{b}) := \, \texttt{b} \qquad I(\pmb{C}) := \, \{ \texttt{a}, \, \texttt{b}, \, \texttt{c} \} \\ & I(\pmb{c}) := \, \texttt{c} \qquad g(\pmb{x}) := \, \texttt{b} \\ & I(\pmb{d}) := \, \texttt{d} \qquad g(\pmb{y}) := \, \texttt{a} \end{split}$$

$$\langle D, I, g \rangle \models Ca$$
 iff $\textcircled{a} \in \{\textcircled{a}, \textcircled{b}, \textcircled{c}\} \checkmark$
 $\langle D, I, g \rangle \models Sx$ iff $\textcircled{b} \in \{\textcircled{d}\} \checkmark$

 $\langle D, I, g \rangle \models \exists x S x \quad \text{iff} \quad \text{there is a } o \in D \text{ such that } \langle D, I, g_{[x:=o]} \rangle \models S x$

. . .

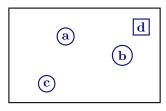


$$egin{aligned} D &:= \{ @, \ @, \ @, \ @ \ \end{bmatrix} \ & I(m{a}) &:= \ @ \ & I(m{S}) &:= \{ \ @ \ \end{bmatrix} \ & I(m{b}) &:= \ @ \ & I(m{C}) &:= \{ @, \ @, \ @ \ \end{bmatrix} \ & I(m{c}) &:= \ @ \ & g(m{x}) &:= \ @ \ & I(m{d}) &:= \ @ \ & g(m{y}) &:= \ & g(\m{y}) &:$$

$$\begin{split} &\langle D, I, g \rangle \models Ca & \text{iff} & \texttt{ (a)} \in \{\texttt{ (a)}, \texttt{ (b)}, \texttt{ (c)} \} \checkmark \\ &\langle D, I, g \rangle \models Sx & \text{iff} & \texttt{ (b)} \in \{\texttt{ (d)} \} \checkmark \\ &\langle D, I, g \rangle \models \exists xSx & \text{iff} & \text{there is a } o \in D \text{ such that } \langle D, I, g_{[x:=o]} \rangle \models Sx \end{split}$$

$$\langle oldsymbol{D}, oldsymbol{I}, oldsymbol{g}_{[oldsymbol{x}:=oldsymbol{d}]}
angle \models oldsymbol{S}oldsymbol{x}$$

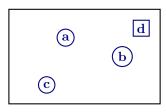
Shapes (Square, Circle).



$$egin{aligned} D &:= \{ @, \ @, \ @, \ d \} \ & I(m{a}) &:= \ @ & I(m{S}) &:= \{ d \} \ & I(m{b}) &:= \ @ & I(m{C}) &:= \{ @, \ @, \ @, \ e \} \ & I(m{c}) &:= \ @ & g(m{x}) &:= \ @ & I(m{d}) &:= \ & I(m{d})$$

- ◆ロト ◆御ト ◆注ト ◆注ト 注 · かへで

Shapes (Square, Circle).

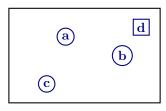


$$egin{aligned} D &:= \{ @, \&b, \&c, \&d \} \ I(a) &:= @ & I(S) &:= \{\&d \} \ I(b) &:= \&b & I(C) &:= \{\&a, \&b, \&c\} \ I(c) &:= \&c & g(x) &:= \&b \ I(d) &:= \&d & g(y) &:= \&a \end{aligned}$$

$$\begin{split} &\langle D, I, g \rangle \models \pmb{Ca} & \text{iff} & \texttt{ @} \in \{\texttt{ @}, \texttt{ @}, \texttt{ @}\} \checkmark \\ &\langle D, I, g \rangle \models \pmb{Sx} & \text{iff} & \texttt{ $$} \textcircled{ $$} \textbf{ $$$$

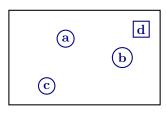
$$g_{[x:=d]}(x) \in I(S)$$

Shapes (Square, Circle).



$$egin{aligned} D &:= \{ @, \ @, \ @, \ d \} \ & I(m{a}) := \ @ & I(m{S}) := \{ \ d \} \ & I(m{b}) := \ @ & I(m{C}) := \{ @, \ @, \ @, \ e \} \ & I(m{c}) := \ @ & g(m{x}) := \ @ & I(m{d}) := \ & g(m{y}) := \ @ & g(m{y}) := \ &$$

Shapes (Square, Circle).



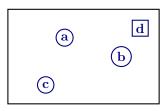
$$egin{aligned} D &:= \{ @, \ @, \ @, \ d \ \} \ & I(a) &:= \ @ & I(S) &:= \{ d \ \} \ & I(b) &:= \ @ & I(C) &:= \{ @, \ @, \ @, \ e \ \} \ & I(c) &:= \ @ & g(x) &:= \ @ & I(d) \ &:= \ & g(y) &:= \ @ & g(y) &:= \ & g(y$$

$$\begin{split} &\langle D, I, g \rangle \models Ca & \text{iff} & \texttt{ (a)} \in \{\texttt{ (a)}, \texttt{ (b)}, \texttt{ (c)} \} \checkmark \\ &\langle D, I, g \rangle \models Sx & \text{iff} & \texttt{ (b)} \in \{\texttt{ (d)} \} \checkmark \\ &\langle D, I, g \rangle \models \exists xSx & \text{iff} & \text{there is a } o \in D \text{ such that } \langle D, I, g_{[x:=o]} \rangle \models Sx \end{split}$$

 $\mathbf{d} \in \{\mathbf{d}\}$

◆ロト ◆御 ト ◆ 恵 ト ◆ 恵 ・ 夕 Q ○

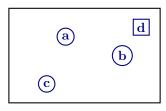
Shapes (Square, Circle).



$$egin{aligned} D &:= \{ @, \ @, \ @, \ d \} \ & I(m{a}) := \ @ & I(m{S}) := \{ d \} \ & I(m{b}) := \ @ & I(m{C}) := \{ @, \ @, \ @, \ e \} \ & I(m{c}) := \ @ & g(m{x}) := \ @ & I(m{d}) := \ & g(m{y}) := \ @ & g(m{y}) := \ & g(m{y}) := \ @ & g(m{y}) := \ & g(m{y}) := \$$

$$egin{array}{ll} \langle D,I,g
angle &\models \pmb{Ca} & ext{iff} &\textcircled{a} \in \{\textcircled{a},\,\textcircled{b},\,\textcircled{c}\} \checkmark \\ \langle D,I,g
angle &\models \pmb{Sx} & ext{iff} &\textcircled{b} \in \{\textcircled{d}\} \end{alignedat} \ \ \langle D,I,g
angle &\models \exists \pmb{xSx} & ext{iff} & ext{there is a } o \in D \text{ such that } \langle D,I,g_{[\pmb{x}:=o]} \rangle &\models \pmb{Sx} \end{array}$$

Shapes (Square, Circle).



$$egin{aligned} D &:= \{ @, @, @, @, @ \} \ & I(a) &:= @ & I(S) &:= \{ @, \} \ & I(b) &:= & B & I(C) &:= \{ @, @, @, @ \} \ & I(c) &:= & B & g(x) &:= & B \ & I(d) &:= & G & g(y) &:= & B \end{aligned}$$

 $\langle D, 1, g \rangle = \exists x \cup x$ in there is a $u \in D$ such that $\langle D, 1, g |_{x := 0} \rangle = \exists x \cup x$

Definitions (1)

Definitions (1)

• A formula φ is (logically) valid if, for every model M, we have $M \models \varphi$. In such case, we will write $\models \varphi$.

Definitions (1)

- A formula φ is (logically) valid if, for every model M, we have $M \models \varphi$. In such case, we will write $\models \varphi$.
- An inference $\varphi_1, \ldots, \varphi_n/\psi$ is (logically) valid if, for every model M for which we have $M \models \varphi_1, \ldots, M \models \varphi_n$, we also have $M \models \psi$. In such case we will write $\varphi_1, \ldots, \varphi_n \models \psi$.

Definitions (2)

In particular, for two formulas φ and ψ ,

Definitions (2)

In particular, for two formulas φ and ψ ,

• ψ (logically) **follows** from φ if

$$arphi \models \psi$$

Definitions (2)

In particular, for two formulas φ and ψ ,

• ψ (logically) follows from φ if

$$arphi \models \psi$$

• ψ is (logically) equivalent to φ if

$$\varphi \models \psi$$
 and $\psi \models \varphi$

The valid formulas of predicate logic can be derived from the following principles:

All propositional tautologies.

- All propositional tautologies.
- $varproption \forall x \varphi \to (\varphi)_t^x$, provided that no variable in t occurs bounded in φ .

- All propositional tautologies.

- All propositional tautologies.

- All propositional tautologies.

- All propositional tautologies.

- **6** Modus ponens (MP): from φ and $\varphi \to \psi$, infer φ .



- All propositional tautologies.

- **6** Modus ponens (MP): from φ and $\varphi \to \psi$, infer φ .
- **1** Universal generalization (UG): from φ infer $\forall x \varphi$, provided that x does not occur free in any premise which has been used in the proof of φ .

The valid formulas of predicate logic can be derived from the following principles:

- All propositional tautologies.

- **6** Modus ponens (MP): from φ and $\varphi \to \psi$, infer φ .
- **1** Universal generalization (UG): from φ infer $\forall x \varphi$, provided that x does not occur free in any premise which has been used in the proof of φ .

A formula that can be derived by following these principles in a *finite* number of steps is called a **theorem**.

1.

$$\forall x \neg \varphi \to (\neg \varphi)_t^x$$

Axiom 2

- 1. $\forall x \neg \varphi \to (\neg \varphi)_t^x$
- $\forall x \neg \varphi \rightarrow \neg (\varphi)_t^x$

Axiom 2

 ${\bf Definition\ of\ substitution}$

1.
$$\forall x \neg \varphi \to (\neg \varphi)_t^x$$

2.
$$\forall x \neg \varphi \rightarrow \neg (\varphi)$$

2.
$$\forall x \neg \varphi \rightarrow \neg (\varphi)_t^x$$
3.
$$(\forall x \neg \varphi \rightarrow \neg (\varphi)_t^x) \rightarrow ((\varphi)_t^x \rightarrow \neg \forall x \neg \varphi)$$

Axiom 2

Definition of substitution

Propositional tautology

$$\begin{aligned} 1. & \forall x \neg \varphi \rightarrow (\neg \varphi)_t^x \\ 2. & \forall x \neg \varphi \rightarrow \neg (\varphi)_t^x \\ 3. & \left(\forall x \neg \varphi \rightarrow \neg (\varphi)_t^x \right) \rightarrow \left((\varphi)_t^x \rightarrow \neg \forall x \neg \varphi \right) \\ 4. & (\varphi)_t^x \rightarrow \neg \forall x \neg \varphi \end{aligned}$$

Axiom 2
Definition of substitution
Propositional tautology

MP from steps 2 and 3

1.
$$\forall x \neg \varphi \rightarrow (\neg \varphi)_t^x$$
2.
$$\forall x \neg \varphi \rightarrow \neg (\varphi)_t^x$$
3.
$$\left(\forall x \neg \varphi \rightarrow \neg (\varphi)_t^x\right) \rightarrow \left((\varphi)_t^x \rightarrow \neg \forall x \neg \varphi\right)$$
4.
$$(\varphi)_t^x \rightarrow \neg \forall x \neg \varphi$$
5.
$$(\varphi)_t^x \rightarrow \exists x \varphi$$

Definition of substitution Propositional tautology MP from steps 2 and 3 Axiom 5

Axiom 2

$$\begin{aligned} 1. & \forall x \neg \varphi \rightarrow (\neg \varphi)_t^x \\ 2. & \forall x \neg \varphi \rightarrow \neg (\varphi)_t^x \\ 3. & \left(\forall x \neg \varphi \rightarrow \neg (\varphi)_t^x \right) \rightarrow \left((\varphi)_t^x \rightarrow \neg \forall x \neg \varphi \right) \\ 4. & (\varphi)_t^x \rightarrow \neg \forall x \neg \varphi \\ 5. & (\varphi)_t^x \rightarrow \exists x \varphi \end{aligned}$$

Hence, $(\varphi)_{t}^{x} \to \exists x \varphi$ is a theorem.

Axiom 2

Definition of substitution

 ${\bf Propositional\ tautology}$

MP from steps 2 and 3

Axiom 5

The given proof system has two properties:

The given proof system has two properties:

• Soundness: every derivable theorem is a valid formula.

The given proof system has two properties:

- Soundness: every derivable theorem is a valid formula.
- Completeness: every valid formula is a derivable theorem.

The predicate for **identity** "=".

The predicate for **identity** "=".

• If t_1 and t_2 are terms, then $t_1 = t_2$ is a formula.

The predicate for **identity** "=".

- If t_1 and t_2 are terms, then $t_1 = t_2$ is a formula.
- Example: "John loves Mary and Bill loves another girl"

$$Ljm \wedge \exists x (Gx \wedge \neg (x = m) \wedge Lbx)$$

The predicate for **identity** "=".

- If t_1 and t_2 are terms, then $t_1 = t_2$ is a formula.
- Example: "John loves Mary and Bill loves another girl"

$$Ljm \wedge \exists x (Gx \wedge \neg (x = m) \wedge Lbx)$$

ullet $\langle D, I, g \rangle \models t_1 = t_2$ iff $\llbracket t_1 \rrbracket_g^I$ and $\llbracket t_2 \rrbracket_g^I$ are the same object.

• Symbols for **functions**:

$$oldsymbol{f}, oldsymbol{g}, oldsymbol{h}, \dots$$

• Symbols for **functions**:

$$oldsymbol{f},oldsymbol{g},oldsymbol{h},\dots$$

• If t_1, \ldots, t_n are terms and f is a function symbol, $f(t_1, \ldots, t_n)$ is a term.

• Symbols for **functions**:

$$oldsymbol{f},oldsymbol{g},oldsymbol{h},\dots$$

- If t_1, \ldots, t_n are terms and f is a function symbol, $f(t_1, \ldots, t_n)$ is a term.
- Example: "The successor of every number is bigger than the number"

$$\forall x (x < s(x))$$

• Symbols for **functions**:

$$oldsymbol{f},oldsymbol{g},oldsymbol{h},\dots$$

- If t_1, \ldots, t_n are terms and f is a function symbol, $f(t_1, \ldots, t_n)$ is a term.
- Example: "The successor of every number is bigger than the number"

$$\forall x (x < s(x))$$

• In a model $\langle D, I, g \rangle$, the interpretation function assigns, to each function symbol f, a function I(f) over D.

• Symbols for **functions**:

$$oldsymbol{f},oldsymbol{g},oldsymbol{h},\dots$$

- If t_1, \ldots, t_n are terms and f is a function symbol, $f(t_1, \ldots, t_n)$ is a term.
- Example: "The successor of every number is bigger than the number"

$$\forall x (x < s(x))$$

- In a model $\langle D, I, g \rangle$, the interpretation function assigns, to each function symbol f, a function I(f) over D.
- ullet The value of a function: $[\![f(t_1,\ldots,t_n)]\!]_g^I:=I(f)([\![t_1]\!]_g^I,\ldots,[\![t_n]\!]_g^I).$

• Symbols for **functions**:

$$oldsymbol{f},oldsymbol{g},oldsymbol{h},\dots$$

- If t_1, \ldots, t_n are terms and f is a function symbol, $f(t_1, \ldots, t_n)$ is a term.
 - Example: "The successor of every number is bigger than the number"

$$\forall x (x < s(x))$$

- In a model $\langle D, I, g \rangle$, the interpretation function assigns, to each function symbol f, a function I(f) over D.
- $\bullet \ \ \text{The value of a function: } \llbracket f(t_1,\ldots,t_n) \rrbracket_g^I := I(f) \big(\llbracket t_1 \rrbracket_g^I,\ldots,\llbracket t_n \rrbracket_g^I \big).$
- Example: the successor function s is given by I(s)(n) := n + 1.

