Logic in Action
 Chapter 6: Logic and Action

http://www.logicinaction.org/

Actions

Many different kinds of actions:

Actions

Many different kinds of actions:

- She turns the light off,

Actions

Many different kinds of actions:

- She turns the light off,
- You put the milk in the fridge,

Actions

Many different kinds of actions:

- She turns the light off,
- You put the milk in the fridge,
- The apple falls to the ground,

Actions

Many different kinds of actions:

- She turns the light off,
- You put the milk in the fridge,
- The apple falls to the ground,
- I submit the application form when it is completed,

Actions

Many different kinds of actions:

- She turns the light off,
- You put the milk in the fridge,
- The apple falls to the ground,
- I submit the application form when it is completed,
- He asks a question only when he knows the answer,

Actions

Many different kinds of actions:

- She turns the light off,
- You put the milk in the fridge,
- The apple falls to the ground,
- I submit the application form when it is completed,
- He asks a question only when he knows the answer,
- They do nothing.

The effect of an action

Actions can be characterized in terms of their result:

The effect of an action

Actions can be characterized in terms of their result:

- After she turns the light off, there will be dark.

The effect of an action

Actions can be characterized in terms of their result:

- After she turns the light off, there will be dark.
- After you put the milk in the fridge, it will be cold.

The effect of an action

Actions can be characterized in terms of their result:

- After she turns the light off, there will be dark.
- After you put the milk in the fridge, it will be cold.
- Once the apple falls to the ground, it will start to rot.

The effect of an action

Actions can be characterized in terms of their result:

- After she turns the light off, there will be dark.
- After you put the milk in the fridge, it will be cold.
- Once the apple falls to the ground, it will start to rot.
- Usually, after I submit the application form, the Jury will receive it, but sometimes it may get lost.

The effect of an action

Actions can be characterized in terms of their result:

- After she turns the light off, there will be dark.
- After you put the milk in the fridge, it will be cold.
- Once the apple falls to the ground, it will start to rot.
- Usually, after I submit the application form, the Jury will receive it, but sometimes it may get lost.
- After the teacher asked a question, the students were completely silent.

The effect of an action

Actions can be characterized in terms of their result:

- After she turns the light off, there will be dark.
- After you put the milk in the fridge, it will be cold.
- Once the apple falls to the ground, it will start to rot.
- Usually, after I submit the application form, the Jury will receive it, but sometimes it may get lost.
- After the teacher asked a question, the students were completely silent.
- After they do nothing, everything stays the same.

Operations over actions

Actions can be combined in several ways:

Operations over actions

Actions can be combined in several ways:

- Sequence. Execute one action after another:

Pour the mixture over the potatoes, and then cover pan with foil.

Operations over actions

Actions can be combined in several ways:

- Sequence. Execute one action after another:

Pour the mixture over the potatoes, and then cover pan with foil.

- Choice. Choose between actions:

Pick one of the boxes.

Operations over actions

Actions can be combined in several ways:

- Sequence. Execute one action after another:

Pour the mixture over the potatoes, and then cover pan with foil.

- Choice. Choose between actions:
Pick one of the boxes.
- Repetition. Perform the same action several times:

Press the door until you hear a 'click'.

Operations over actions

Actions can be combined in several ways:

- Sequence. Execute one action after another:

Pour the mixture over the potatoes, and then cover pan with foil.

- Choice. Choose between actions:
Pick one of the boxes.
- Repetition. Perform the same action several times:

> Press the door until you hear a 'click'.

- Test. Verify whether a given condition holds:

Check if the bulb is broken.

Operations over actions

Actions can be combined in several ways:

- Sequence. Execute one action after another:

Pour the mixture over the potatoes, and then cover pan with foil.

- Choice. Choose between actions:
Pick one of the boxes.
- Repetition. Perform the same action several times:

> Press the door until you hear a 'click'.

- Test. Verify whether a given condition holds:

Check if the bulb is broken.

- Converse. Undo an executed action:

Close the window you just opened.

Example: programming languages

Consider three famous control structures:

Example: programming languages

Consider three famous control structures:
(1) WHILE P do A

Example: programming languages

Consider three famous control structures:
(1) WHILE \mathbf{P} do A

This can be defined as the repetition of a test for ' P ' and the execution of ' A ', followed by a test for 'not A '.

Example: programming languages

Consider three famous control structures:
(1) WHILE P do A

This can be defined as the repetition of a test for ' P ' and the execution of ' A ', followed by a test for 'not A '.
(2) REPEAT A UNTIL P

Example: programming languages

Consider three famous control structures:
(1) WHILE \mathbf{P} do A

This can be defined as the repetition of a test for ' P ' and the execution of ' A ', followed by a test for 'not A '.
(2) REPEAT A UNTIL P

This can be defined as the sequence of ' A ' and then WHILE (not P) do \mathbf{A}.

Example: programming languages

Consider three famous control structures:
(1) WHILE \mathbf{P} do A

This can be defined as the repetition of a test for ' P ' and the execution of ' A ', followed by a test for 'not A '.
(2) REPEAT A UNTIL P

This can be defined as the sequence of ' A ' and then WHILE (not P) do \mathbf{A}.
(3) IF P THEN A ELSE B

Example: programming languages

Consider three famous control structures:
(1) WHILE P do A

This can be defined as the repetition of a test for ' P ' and the execution of ' A ', followed by a test for 'not A '.
(2) REPEAT A UNTIL P

This can be defined as the sequence of ' A ' and then WHILE (not P) do \mathbf{A}.
(3) IF P THEN A ELSE B

This can be defined as a choice between a test for ' P ' and then ' A ', or a test for ' not P ' and then ' B '.

Representing actions abstractly (1)

We can see actions as transitions between states:

Representing actions abstractly (1)

We can see actions as transitions between states:

Light is off
Light is on

Representing actions abstractly (1)

We can see actions as transitions between states:

Representing actions abstractly (1)

We can see actions as transitions between states:

Light is off
Press the switch Light is on

Letter arrives
I have
the letter

Representing actions abstractly (1)

We can see actions as transitions between states:

Representing actions abstractly (2)

More precisely, if we consider a set of states $S=\left\{s_{\mathbf{1}}, s_{\mathbf{2}}, \ldots\right\}$,

Representing actions abstractly (2)

More precisely, if we consider a set of states $S=\left\{s_{\mathbf{1}}, s_{\mathbf{2}}, \ldots\right\}$,

Representing actions abstractly (2)

More precisely, if we consider a set of states $S=\left\{s_{1}, s_{2}, \ldots\right\}$, then we can represent actions as binary relations on S.

Representing actions abstractly (2)

More precisely, if we consider a set of states $S=\left\{s_{1}, s_{\mathbf{2}}, \ldots\right\}$, then we can represent actions as binary relations on S.

Representing actions abstractly (2)

More precisely, if we consider a set of states $S=\left\{s_{1}, s_{2}, \ldots\right\}$, then we can represent actions as binary relations on \boldsymbol{S}.

$$
\begin{aligned}
\boldsymbol{R}_{a} & :=\left\{\left(s_{1}, s_{1}\right),\left(s_{1}, s_{2}\right),\left(s_{2}, s_{2}\right)\right\} \\
\boldsymbol{R}_{b} & :=\left\{\left(s_{1}, s_{4}\right),\left(s_{2}, s_{3}\right),\left(s_{4}, s_{3}\right)\right\}
\end{aligned}
$$

Operations on relations (1)

Let S be a domain $\left\{s_{1}, s_{2}, \ldots\right\}$.

Operations on relations (1)

Let S be a domain $\left\{s_{1}, s_{2}, \ldots\right\}$.

- Identity relation.

$$
I:=\{(s, s) \mid s \in S\}
$$

Operations on relations (1)

Let S be a domain $\left\{s_{1}, s_{2}, \ldots\right\}$.

- Identity relation.

$$
I:=\{(s, s) \mid s \in S\}
$$

Operations on relations (1)

Let \boldsymbol{S} be a domain $\left\{s_{1}, s_{2}, \ldots\right\}$.

- Identity relation.

$$
I:=\{(s, s) \mid s \in S\}
$$

Operations on relations (2)

Let \boldsymbol{S} be a domain $\left\{s_{1}, s_{2}, \ldots\right\}$, and $\boldsymbol{R}_{a}, \boldsymbol{R}_{b}$ be binary relations on \boldsymbol{S}.

$$
\begin{aligned}
\boldsymbol{R}_{a} & :=\left\{\left(s_{1}, s_{1}\right),\left(s_{1}, s_{2}\right),\left(s_{2}, s_{2}\right)\right\} \\
\boldsymbol{R}_{b} & :=\left\{\left(s_{1}, s_{4}\right),\left(s_{2}, s_{3}\right),\left(s_{4}, s_{3}\right)\right\}
\end{aligned}
$$

Operations on relations (2)

Let \boldsymbol{S} be a domain $\left\{s_{1}, s_{2}, \ldots\right\}$, and $\boldsymbol{R}_{a}, \boldsymbol{R}_{b}$ be binary relations on \boldsymbol{S}.

- Composition.

$$
\boldsymbol{R}_{a} \circ \boldsymbol{R}_{b}:=\left\{\left(s, s^{\prime}\right) \mid \text { there is } s^{\prime \prime} \in \boldsymbol{S} \text { such that } \boldsymbol{R}_{a} s s^{\prime \prime} \text { and } \boldsymbol{R}_{b} s^{\prime \prime} s^{\prime}\right\}
$$

$$
\begin{aligned}
\boldsymbol{R}_{a} & :=\left\{\left(s_{1}, s_{1}\right),\left(s_{1}, s_{2}\right),\left(s_{2}, s_{2}\right)\right\} \\
\boldsymbol{R}_{b} & :=\left\{\left(s_{1}, s_{4}\right),\left(s_{2}, s_{3}\right),\left(s_{4}, s_{3}\right)\right\}
\end{aligned}
$$

Operations on relations (2)

Let S be a domain $\left\{s_{1}, s_{2}, \ldots\right\}$, and $\boldsymbol{R}_{a}, \boldsymbol{R}_{b}$ be binary relations on \boldsymbol{S}.

- Composition.

$$
\boldsymbol{R}_{a} \circ \boldsymbol{R}_{b}:=\left\{\left(s, s^{\prime}\right) \mid \text { there is } s^{\prime \prime} \in \boldsymbol{S} \text { such that } \boldsymbol{R}_{a} s s^{\prime \prime} \text { and } \boldsymbol{R}_{b} s^{\prime \prime} s^{\prime}\right\}
$$

$$
\begin{aligned}
\boldsymbol{R}_{a} & :=\left\{\left(s_{1}, s_{1}\right),\left(s_{1}, s_{2}\right),\left(s_{2}, s_{2}\right)\right\} \\
R_{b} & :=\left\{\left(s_{1}, s_{4}\right),\left(s_{2}, s_{3}\right),\left(s_{4}, s_{3}\right)\right\} \\
R_{a} \circ R_{b} & =\left\{\left(s_{1}, s_{4}\right),\left(s_{1}, s_{3}\right),\left(s_{2}, s_{3}\right)\right\}
\end{aligned}
$$

Operations on relations (2)

Let \boldsymbol{S} be a domain $\left\{s_{1}, s_{2}, \ldots\right\}$, and $\boldsymbol{R}_{a}, \boldsymbol{R}_{b}$ be binary relations on \boldsymbol{S}.

- Composition.

$$
\boldsymbol{R}_{a} \circ \boldsymbol{R}_{b}:=\left\{\left(s, s^{\prime}\right) \mid \text { there is } s^{\prime \prime} \in \boldsymbol{S} \text { such that } \boldsymbol{R}_{a} s s^{\prime \prime} \text { and } \boldsymbol{R}_{b} s^{\prime \prime} s^{\prime}\right\}
$$

$$
\begin{aligned}
\boldsymbol{R}_{a} & :=\left\{\left(s_{1}, s_{1}\right),\left(s_{1}, s_{2}\right),\left(s_{2}, s_{2}\right)\right\} \\
\boldsymbol{R}_{b} & :=\left\{\left(s_{1}, s_{4}\right),\left(s_{2}, s_{3}\right),\left(s_{4}, s_{3}\right)\right\} \\
R_{a} \circ R_{b} & =\left\{\left(s_{1}, s_{4}\right),\left(s_{1}, s_{3}\right),\left(s_{2}, s_{3}\right)\right\}
\end{aligned}
$$

Operations on relations (2)

Let \boldsymbol{S} be a domain $\left\{s_{1}, s_{2}, \ldots\right\}$, and $\boldsymbol{R}_{a}, \boldsymbol{R}_{b}$ be binary relations on \boldsymbol{S}.

- Composition.

$$
\boldsymbol{R}_{a} \circ \boldsymbol{R}_{b}:=\left\{\left(s, s^{\prime}\right) \mid \text { there is } s^{\prime \prime} \in \boldsymbol{S} \text { such that } \boldsymbol{R}_{a} s s^{\prime \prime} \text { and } \boldsymbol{R}_{b} s^{\prime \prime} s^{\prime}\right\}
$$

$$
\begin{aligned}
\boldsymbol{R}_{a} & :=\left\{\left(s_{1}, s_{1}\right),\left(s_{1}, s_{2}\right),\left(s_{2}, s_{2}\right)\right\} \\
\boldsymbol{R}_{b} & :=\left\{\left(s_{1}, s_{4}\right),\left(s_{2}, s_{3}\right),\left(s_{4}, s_{3}\right)\right\} \\
R_{a} \circ R_{b} & =\left\{\left(s_{1}, s_{4}\right),\left(s_{1}, s_{3}\right),\left(s_{2}, s_{3}\right)\right\}
\end{aligned}
$$

In particular, for any relation $\boldsymbol{R}_{\boldsymbol{a}}$, we have

$$
\boldsymbol{R}_{a}^{0}:=\boldsymbol{I}, \quad \boldsymbol{R}_{a}^{1}:=\boldsymbol{R}_{a} \circ \boldsymbol{R}_{a}^{0}, \quad \boldsymbol{R}_{a}^{2}:=\boldsymbol{R}_{a} \circ \boldsymbol{R}_{a}^{1}, \quad \boldsymbol{R}_{a}^{3}:=\boldsymbol{R}_{a} \circ \boldsymbol{R}_{a}^{2},
$$

and so on.

Operations on relations (3)

Let S be a domain $\left\{s_{1}, s_{2}, \ldots\right\}$, and $\boldsymbol{R}_{a}, \boldsymbol{R}_{b}$ be binary relations on \boldsymbol{S}.

$$
\begin{aligned}
\boldsymbol{R}_{a} & :=\left\{\left(s_{1}, s_{1}\right),\left(s_{1}, s_{2}\right),\left(s_{2}, s_{2}\right)\right\} \\
\boldsymbol{R}_{b} & :=\left\{\left(s_{1}, s_{4}\right),\left(s_{2}, s_{3}\right),\left(s_{4}, s_{3}\right)\right\}
\end{aligned}
$$

Operations on relations (3)

Let \boldsymbol{S} be a domain $\left\{s_{1}, s_{2}, \ldots\right\}$, and $\boldsymbol{R}_{\boldsymbol{a}}, \boldsymbol{R}_{\boldsymbol{b}}$ be binary relations on \boldsymbol{S}.

- Union.

$$
\boldsymbol{R}_{a} \cup \boldsymbol{R}_{b}:=\left\{\left(s, s^{\prime}\right) \mid \boldsymbol{R}_{a} s s^{\prime} \text { or } \boldsymbol{R}_{b} s s^{\prime}\right\}
$$

$$
\begin{aligned}
\boldsymbol{R}_{a} & :=\left\{\left(s_{1}, s_{1}\right),\left(s_{1}, s_{2}\right),\left(s_{2}, s_{2}\right)\right\} \\
\boldsymbol{R}_{b} & :=\left\{\left(s_{1}, s_{4}\right),\left(s_{2}, s_{3}\right),\left(s_{4}, s_{3}\right)\right\}
\end{aligned}
$$

Operations on relations (3)

Let \boldsymbol{S} be a domain $\left\{s_{1}, s_{2}, \ldots\right\}$, and $\boldsymbol{R}_{a}, \boldsymbol{R}_{b}$ be binary relations on \boldsymbol{S}.

- Union.

$$
\boldsymbol{R}_{a} \cup \boldsymbol{R}_{b}:=\left\{\left(s, s^{\prime}\right) \mid \boldsymbol{R}_{a} s s^{\prime} \text { or } \boldsymbol{R}_{b} s s^{\prime}\right\}
$$

$$
\begin{aligned}
\boldsymbol{R}_{a}:= & \left\{\left(s_{1}, s_{1}\right),\left(s_{1}, s_{2}\right),\left(s_{2}, s_{2}\right)\right\} \\
\boldsymbol{R}_{b}:= & \left\{\left(s_{1}, s_{4}\right),\left(s_{2}, s_{3}\right),\left(s_{4}, s_{3}\right)\right\} \\
R_{a} \cup R_{b}= & \left\{\left(s_{1}, s_{1}\right),\left(s_{1}, s_{2}\right),\left(s_{2}, s_{2}\right)\right. \\
& \left.\left(s_{1}, s_{4}\right),\left(s_{2}, s_{3}\right),\left(s_{4}, s_{3}\right)\right\}
\end{aligned}
$$

Operations on relations (3)

Let \boldsymbol{S} be a domain $\left\{s_{1}, s_{2}, \ldots\right\}$, and $\boldsymbol{R}_{a}, \boldsymbol{R}_{b}$ be binary relations on \boldsymbol{S}.

- Union.

$$
\boldsymbol{R}_{a} \cup \boldsymbol{R}_{b}:=\left\{\left(s, s^{\prime}\right) \mid \boldsymbol{R}_{a} s s^{\prime} \text { or } \boldsymbol{R}_{b} s s^{\prime}\right\}
$$

$$
\begin{aligned}
\boldsymbol{R}_{a}:= & \left\{\left(s_{1}, s_{1}\right),\left(s_{1}, s_{2}\right),\left(s_{2}, s_{2}\right)\right\} \\
\boldsymbol{R}_{b}:= & \left\{\left(s_{1}, s_{4}\right),\left(s_{2}, s_{3}\right),\left(s_{4}, s_{3}\right)\right\} \\
R_{a} \cup R_{b}= & \left\{\left(s_{1}, s_{1}\right),\left(s_{1}, s_{2}\right),\left(s_{2}, s_{2}\right)\right. \\
& \left.\left(s_{1}, s_{4}\right),\left(s_{2}, s_{3}\right),\left(s_{4}, s_{3}\right)\right\}
\end{aligned}
$$

Operations on relations (4)

Let \boldsymbol{S} be a domain $\left\{s_{1}, s_{2}, \ldots\right\}$, and $\boldsymbol{R}_{a}, \boldsymbol{R}_{b}$ be binary relations on \boldsymbol{S}.

$$
\boldsymbol{R}_{b}:=\left\{\left(s_{1}, s_{4}\right),\left(s_{2}, s_{3}\right),\left(s_{4}, s_{3}\right)\right\}
$$

Operations on relations (4)

Let \boldsymbol{S} be a domain $\left\{s_{1}, s_{2}, \ldots\right\}$, and $\boldsymbol{R}_{a}, \boldsymbol{R}_{b}$ be binary relations on \boldsymbol{S}.

- Repetition zero or more times.

$$
\boldsymbol{R}_{a}^{*}:=\left\{\left(s, s^{\prime}\right) \mid \boldsymbol{R}_{a}^{n} s s^{\prime} \text { for some } n \in \mathbb{N}\right\}
$$

$$
\boldsymbol{R}_{b}:=\left\{\left(s_{1}, s_{4}\right),\left(s_{\mathbf{2}}, s_{3}\right),\left(s_{4}, s_{3}\right)\right\}
$$

Operations on relations (4)

Let \boldsymbol{S} be a domain $\left\{s_{1}, s_{2}, \ldots\right\}$, and $\boldsymbol{R}_{a}, \boldsymbol{R}_{b}$ be binary relations on \boldsymbol{S}.

- Repetition zero or more times.

$$
\boldsymbol{R}_{a}^{*}:=\left\{\left(s, s^{\prime}\right) \mid \boldsymbol{R}_{a}^{n} s s^{\prime} \text { for some } n \in \mathbb{N}\right\}
$$

Operations on relations (4)

Let \boldsymbol{S} be a domain $\left\{s_{1}, s_{2}, \ldots\right\}$, and $\boldsymbol{R}_{a}, \boldsymbol{R}_{b}$ be binary relations on \boldsymbol{S}.

- Repetition zero or more times.

$$
\boldsymbol{R}_{a}^{*}:=\left\{\left(s, s^{\prime}\right) \mid \boldsymbol{R}_{a}^{n} s s^{\prime} \text { for some } n \in \mathbb{N}\right\}
$$

Operations on relations (4)

Let \boldsymbol{S} be a domain $\left\{s_{1}, s_{2}, \ldots\right\}$, and $\boldsymbol{R}_{a}, \boldsymbol{R}_{b}$ be binary relations on \boldsymbol{S}.

- Repetition zero or more times.

$$
\boldsymbol{R}_{a}^{*}:=\left\{\left(s, s^{\prime}\right) \mid \boldsymbol{R}_{a}^{n} s s^{\prime} \text { for some } n \in \mathbb{N}\right\}
$$

$$
\begin{aligned}
& \boldsymbol{R}_{b}:=\left\{\left(s_{1}, s_{4}\right),\left(s_{2}, s_{3}\right),\left(s_{4}, s_{3}\right)\right\} \\
& R_{b}^{0}=\left\{\left(s_{1}, s_{1}\right),\left(s_{2}, s_{2}\right),\left(s_{3}, s_{3}\right),\left(s_{4}, s_{4}\right)\right\} \\
& R_{b}^{1}=\left\{\left(s_{1}, s_{4}\right),\left(s_{2}, s_{3}\right),\left(s_{4}, s_{3}\right)\right\}
\end{aligned}
$$

Operations on relations (4)

Let \boldsymbol{S} be a domain $\left\{s_{1}, s_{2}, \ldots\right\}$, and $\boldsymbol{R}_{a}, \boldsymbol{R}_{b}$ be binary relations on \boldsymbol{S}.

- Repetition zero or more times.

$$
\boldsymbol{R}_{a}^{*}:=\left\{\left(s, s^{\prime}\right) \mid \boldsymbol{R}_{a}^{n} s s^{\prime} \text { for some } n \in \mathbb{N}\right\}
$$

$$
\begin{aligned}
& \boldsymbol{R}_{b}:=\left\{\left(s_{1}, s_{4}\right),\left(s_{2}, s_{3}\right),\left(s_{4}, s_{3}\right)\right\} \\
& R_{b}^{0}=\left\{\left(s_{1}, s_{1}\right),\left(s_{2}, s_{2}\right),\left(s_{3}, s_{3}\right),\left(s_{4}, s_{4}\right)\right\} \\
& R_{b}^{1}=\left\{\left(s_{1}, s_{4}\right),\left(s_{2}, s_{3}\right),\left(s_{4}, s_{3}\right)\right\}
\end{aligned}
$$

Operations on relations (4)

Let S be a domain $\left\{s_{1}, s_{2}, \ldots\right\}$, and $\boldsymbol{R}_{a}, \boldsymbol{R}_{b}$ be binary relations on \boldsymbol{S}.

- Repetition zero or more times.

$$
\boldsymbol{R}_{a}^{*}:=\left\{\left(s, s^{\prime}\right) \mid \boldsymbol{R}_{a}^{n} s s^{\prime} \text { for some } n \in \mathbb{N}\right\}
$$

$$
\begin{aligned}
& \boldsymbol{R}_{b}:=\left\{\left(s_{1}, s_{4}\right),\left(s_{\mathbf{2}}, s_{3}\right),\left(s_{4}, s_{3}\right)\right\} \\
& R_{b}^{0}=\left\{\left(s_{1}, s_{1}\right),\left(s_{2}, s_{2}\right),\left(s_{3}, s_{3}\right),\left(s_{4}, s_{4}\right)\right\} \\
& R_{b}^{1}=\left\{\left(s_{1}, s_{4}\right),\left(s_{\mathbf{2}}, s_{3}\right),\left(s_{4}, s_{3}\right)\right\} \\
& R_{b}^{2}=\left\{\left(s_{1}, s_{4}\right),\left(s_{\mathbf{2}}, s_{3}\right),\left(s_{4}, s_{3}\right),\left(s_{1}, s_{3}\right)\right\}
\end{aligned}
$$

Operations on relations (4)

Let S be a domain $\left\{s_{1}, s_{2}, \ldots\right\}$, and $\boldsymbol{R}_{a}, \boldsymbol{R}_{b}$ be binary relations on \boldsymbol{S}.

- Repetition zero or more times.

$$
\boldsymbol{R}_{a}^{*}:=\left\{\left(s, s^{\prime}\right) \mid \boldsymbol{R}_{a}^{n} s s^{\prime} \text { for some } n \in \mathbb{N}\right\}
$$

$$
\begin{aligned}
& \boldsymbol{R}_{b}:=\left\{\left(s_{1}, s_{4}\right),\left(s_{\mathbf{2}}, s_{3}\right),\left(s_{4}, s_{3}\right)\right\} \\
& R_{b}^{0}=\left\{\left(s_{1}, s_{1}\right),\left(s_{2}, s_{2}\right),\left(s_{3}, s_{3}\right),\left(s_{4}, s_{4}\right)\right\} \\
& R_{b}^{1}=\left\{\left(s_{1}, s_{4}\right),\left(s_{\mathbf{2}}, s_{3}\right),\left(s_{4}, s_{3}\right)\right\} \\
& R_{b}^{2}=\left\{\left(s_{1}, s_{4}\right),\left(s_{\mathbf{2}}, s_{3}\right),\left(s_{4}, s_{3}\right),\left(s_{1}, s_{3}\right)\right\}
\end{aligned}
$$

Operations on relations (4)

Let S be a domain $\left\{s_{1}, s_{2}, \ldots\right\}$, and $\boldsymbol{R}_{a}, \boldsymbol{R}_{b}$ be binary relations on \boldsymbol{S}.

- Repetition zero or more times.

$$
\boldsymbol{R}_{a}^{*}:=\left\{\left(s, s^{\prime}\right) \mid \boldsymbol{R}_{a}^{n} s s^{\prime} \text { for some } n \in \mathbb{N}\right\}
$$

$$
\begin{aligned}
& R_{b}:=\left\{\left(s_{1}, s_{4}\right),\left(s_{\mathbf{2}}, s_{3}\right),\left(s_{4}, s_{3}\right)\right\} \\
& R_{b}^{0}=\left\{\left(s_{1}, s_{1}\right),\left(s_{\mathbf{2}}, s_{2}\right),\left(s_{3}, s_{3}\right),\left(s_{4}, s_{4}\right)\right\} \\
& R_{b}^{1}=\left\{\left(s_{1}, s_{4}\right),\left(s_{\mathbf{2}}, s_{3}\right),\left(s_{4}, s_{3}\right)\right\} \\
& R_{b}^{2}=\left\{\left(s_{1}, s_{4}\right),\left(s_{2}, s_{3}\right),\left(s_{4}, s_{3}\right),\left(s_{1}, s_{3}\right)\right\} \\
& R_{b}^{3}=\left\{\left(s_{1}, s_{4}\right),\left(s_{2}, s_{3}\right),\left(s_{4}, s_{3}\right),\left(s_{1}, s_{3}\right)\right\}
\end{aligned}
$$

Operations on relations (4)

Let S be a domain $\left\{s_{1}, s_{2}, \ldots\right\}$, and $\boldsymbol{R}_{a}, \boldsymbol{R}_{b}$ be binary relations on \boldsymbol{S}.

- Repetition zero or more times.

$$
\boldsymbol{R}_{a}^{*}:=\left\{\left(s, s^{\prime}\right) \mid \boldsymbol{R}_{a}^{n} s s^{\prime} \text { for some } n \in \mathbb{N}\right\}
$$

$$
\begin{aligned}
& \boldsymbol{R}_{b}:=\left\{\left(s_{1}, s_{4}\right),\left(s_{\mathbf{2}}, s_{3}\right),\left(s_{4}, s_{3}\right)\right\} \\
& R_{b}^{0}=\left\{\left(s_{1}, s_{1}\right),\left(s_{\mathbf{2}}, s_{2}\right),\left(s_{3}, s_{3}\right),\left(s_{4}, s_{4}\right)\right\} \\
& R_{b}^{1}=\left\{\left(s_{1}, s_{4}\right),\left(s_{\mathbf{2}}, s_{3}\right),\left(s_{4}, s_{3}\right)\right\} \\
& R_{b}^{2}=\left\{\left(s_{1}, s_{4}\right),\left(s_{2}, s_{3}\right),\left(s_{4}, s_{3}\right),\left(s_{1}, s_{3}\right)\right\} \\
& R_{b}^{3}=\left\{\left(s_{1}, s_{4}\right),\left(s_{2}, s_{3}\right),\left(s_{4}, s_{3}\right),\left(s_{1}, s_{3}\right)\right\}
\end{aligned}
$$

Operations on relations (4)

Let \boldsymbol{S} be a domain $\left\{s_{1}, s_{2}, \ldots\right\}$, and $\boldsymbol{R}_{a}, \boldsymbol{R}_{b}$ be binary relations on \boldsymbol{S}.

- Repetition zero or more times.

$$
\boldsymbol{R}_{a}^{*}:=\left\{\left(s, s^{\prime}\right) \mid \boldsymbol{R}_{a}^{n} s s^{\prime} \text { for some } n \in \mathbb{N}\right\}
$$

$$
\begin{aligned}
& R_{b}:=\left\{\left(s_{1}, s_{4}\right),\left(s_{2}, s_{3}\right),\left(s_{4}, s_{3}\right)\right\} \\
& R_{b}^{0}=\left\{\left(s_{1}, s_{1}\right),\left(s_{2}, s_{2}\right),\left(s_{3}, s_{3}\right),\left(s_{4}, s_{4}\right)\right\} \\
& R_{b}^{1}=\left\{\left(s_{1}, s_{4}\right),\left(s_{2}, s_{3}\right),\left(s_{4}, s_{3}\right)\right\} \\
& R_{b}^{2}=\left\{\left(s_{1}, s_{4}\right),\left(s_{2}, s_{3}\right),\left(s_{4}, s_{3}\right),\left(s_{1}, s_{3}\right)\right\} \\
& R_{b}^{3}=\left\{\left(s_{1}, s_{4}\right),\left(s_{2}, s_{3}\right),\left(s_{4}, s_{3}\right),\left(s_{1}, s_{3}\right)\right\} \\
&: \\
& R_{b}^{*}=\left\{\left(s_{1}, s_{1}\right),\left(s_{2}, s_{2}\right),\left(s_{3}, s_{3}\right),\left(s_{4}, s_{4}\right)\right. \\
&\left.\left(s_{1}, s_{4}\right),\left(s_{2}, s_{3}\right),\left(s_{4}, s_{3}\right),\left(s_{1}, s_{3}\right)\right\}
\end{aligned}
$$

Operations on relations (5)

Let \boldsymbol{S} be a domain $\left\{s_{1}, s_{2}, \ldots\right\}$, and $\boldsymbol{R}_{a}, \boldsymbol{R}_{\boldsymbol{b}}$ be binary relations on \boldsymbol{S}.

$$
\boldsymbol{R}_{b}:=\left\{\left(s_{1}, s_{4}\right),\left(s_{\mathbf{2}}, s_{3}\right),\left(s_{\mathbf{4}}, s_{3}\right)\right\}
$$

Operations on relations (5)

Let \boldsymbol{S} be a domain $\left\{s_{1}, s_{2}, \ldots\right\}$, and $\boldsymbol{R}_{a}, \boldsymbol{R}_{b}$ be binary relations on \boldsymbol{S}.

- Converse.

$$
\check{\boldsymbol{R}_{a}}:=\left\{\left(s^{\prime}, s\right) \mid \boldsymbol{R}_{a} s s^{\prime}\right\}
$$

$$
\boldsymbol{R}_{b}:=\left\{\left(s_{1}, s_{4}\right),\left(s_{2}, s_{3}\right),\left(s_{4}, s_{3}\right)\right\}
$$

Operations on relations (5)

Let S be a domain $\left\{s_{1}, s_{2}, \ldots\right\}$, and $\boldsymbol{R}_{a}, \boldsymbol{R}_{b}$ be binary relations on \boldsymbol{S}.

- Converse.

$$
\check{\boldsymbol{R}_{a}}:=\left\{\left(s^{\prime}, s\right) \mid \boldsymbol{R}_{a} s s^{\prime}\right\}
$$

$$
\begin{aligned}
\boldsymbol{R}_{b} & :=\left\{\left(s_{1}, s_{4}\right),\left(s_{2}, s_{3}\right),\left(s_{4}, s_{3}\right)\right\} \\
\widetilde{R_{b}} & =\left\{\left(s_{4}, s_{1}\right),\left(s_{3}, s_{2}\right),\left(s_{3}, s_{4}\right)\right\}
\end{aligned}
$$

Operations on relations (5)

Let \boldsymbol{S} be a domain $\left\{s_{1}, s_{2}, \ldots\right\}$, and $\boldsymbol{R}_{a}, \boldsymbol{R}_{b}$ be binary relations on \boldsymbol{S}.

- Converse.

$$
\check{\boldsymbol{R}_{a}}:=\left\{\left(s^{\prime}, s\right) \mid \boldsymbol{R}_{a} s s^{\prime}\right\}
$$

$$
\begin{aligned}
\boldsymbol{R}_{b} & :=\left\{\left(s_{1}, s_{4}\right),\left(s_{\mathbf{2}}, s_{3}\right),\left(s_{\mathbf{4}}, s_{3}\right)\right\} \\
\tilde{R_{b}} & =\left\{\left(s_{4}, s_{1}\right),\left(s_{3}, s_{\mathbf{2}}\right),\left(s_{\mathbf{3}}, s_{4}\right)\right\}
\end{aligned}
$$

Syntax (1)

The language of propositional dynamic logic ($P D L$) has two components, formulas φ and actions α.

- Formulas are built via the following rules.

Syntax (1)

The language of propositional dynamic logic ($P D L$) has two components, formulas φ and actions α.

- Formulas are built via the following rules.
- Every basic proposition is a formula

$$
p, \quad q, \quad r, \quad \cdots
$$

Syntax (1)

The language of propositional dynamic logic ($P D L$) has two components, formulas φ and actions α.

- Formulas are built via the following rules.
- Every basic proposition is a formula

$$
\boldsymbol{p}, \quad \boldsymbol{q}, \quad r, \quad \ldots
$$

- If φ and ψ are formulas, then the following are formulas:

$$
\neg \varphi, \quad \varphi \wedge \psi, \quad \varphi \vee \psi, \quad \varphi \rightarrow \psi, \quad \varphi \leftrightarrow \psi
$$

Syntax (1)

The language of propositional dynamic logic ($P D L$) has two components, formulas φ and actions α.

- Formulas are built via the following rules.
- Every basic proposition is a formula

$$
\boldsymbol{p}, \quad \boldsymbol{q}, \quad r, \quad \ldots
$$

- If φ and ψ are formulas, then the following are formulas:

$$
\neg \varphi, \quad \varphi \wedge \psi, \quad \varphi \vee \psi, \quad \varphi \rightarrow \psi, \quad \varphi \leftrightarrow \psi
$$

- If φ is a formula and α an action, then the following is a formula:

$$
\langle\alpha\rangle \varphi
$$

Syntax (2)

The language of propositional dynamic logic ($P D L$) has two components, formulas φ and actions α.

- Actions are built via the following rules.

Syntax (2)

The language of propositional dynamic logic ($P D L$) has two components, formulas φ and actions α.

- Actions are built via the following rules.
- Every basic action is a action

$$
a, \quad b, \quad c, \quad \ldots
$$

Syntax (2)

The language of propositional dynamic logic ($P D L$) has two components, formulas φ and actions α.

- Actions are built via the following rules.
- Every basic action is a action

$$
a, \quad b, \quad c, \quad \ldots
$$

- If $\boldsymbol{\alpha}$ and $\boldsymbol{\beta}$ are actions, then the following are actions:

$$
\alpha ; \beta, \quad \alpha \cup \beta, \quad \alpha^{*}
$$

Syntax (2)

The language of propositional dynamic logic ($P D L$) has two components, formulas φ and actions α.

- Actions are built via the following rules.
- Every basic action is a action

$$
a, \quad b, \quad c, \quad \ldots
$$

- If $\boldsymbol{\alpha}$ and $\boldsymbol{\beta}$ are actions, then the following are actions:

$$
\alpha ; \beta, \quad \alpha \cup \beta, \quad \alpha^{*}
$$

- If φ is a formula, then the following is an action:

Intuitions and abbreviations

$\alpha ; \beta$
$\alpha \cup \beta$
α^{*}
$? \varphi$
$\langle\alpha\rangle \varphi$

Intuitions and abbreviations

$\alpha ; \boldsymbol{\beta} \quad$ sequential composition: execute $\boldsymbol{\alpha}$ and then $\boldsymbol{\beta}$.
$\alpha \cup \beta$
α^{*}
? φ
$\langle\alpha\rangle \varphi$

Intuitions and abbreviations

$\alpha ; \boldsymbol{\beta} \quad$ sequential composition: execute $\boldsymbol{\alpha}$ and then $\boldsymbol{\beta}$.
$\alpha \cup \boldsymbol{\beta}$ non-deterministic choice: execute $\boldsymbol{\alpha}$ or $\boldsymbol{\beta}$.
α^{*}
$? \varphi$
$\langle\alpha\rangle \varphi$

Intuitions and abbreviations

$\alpha ; \boldsymbol{\beta} \quad$ sequential composition: execute α and then $\boldsymbol{\beta}$.
$\alpha \cup \boldsymbol{\beta}$ non-deterministic choice: execute $\boldsymbol{\alpha}$ or $\boldsymbol{\beta}$.
$\alpha^{*} \quad$ repetition: execute α zero, one, or any finite number of times.
$? \varphi$
$\langle\alpha\rangle \varphi$

Intuitions and abbreviations

$\alpha ; \boldsymbol{\beta} \quad$ sequential composition: execute α and then $\boldsymbol{\beta}$.
$\alpha \cup \boldsymbol{\beta}$ non-deterministic choice: execute $\boldsymbol{\alpha}$ or $\boldsymbol{\beta}$.
$\alpha^{*} \quad$ repetition: execute $\boldsymbol{\alpha}$ zero, one, or any finite number of times.
? $\varphi \quad$ test: check whether φ is true or not.
$\langle\alpha\rangle \varphi$

Intuitions and abbreviations

$\alpha ; \boldsymbol{\beta} \quad$ sequential composition: execute α and then $\boldsymbol{\beta}$.
$\alpha \cup \boldsymbol{\beta}$ non-deterministic choice: execute $\boldsymbol{\alpha}$ or $\boldsymbol{\beta}$.
$\alpha^{*} \quad$ repetition: execute $\boldsymbol{\alpha}$ zero, one, or any finite number of times.
? $\varphi \quad$ test: check whether φ is true or not.
$\langle\alpha\rangle \varphi \quad \alpha$ can be executed in such a way that, after doing it, φ is the case.

Intuitions and abbreviations

$\alpha ; \boldsymbol{\beta} \quad$ sequential composition: execute α and then $\boldsymbol{\beta}$.
$\alpha \cup \boldsymbol{\beta}$ non-deterministic choice: execute $\boldsymbol{\alpha}$ or $\boldsymbol{\beta}$.
$\alpha^{*} \quad$ repetition: execute $\boldsymbol{\alpha}$ zero, one, or any finite number of times.
? $\varphi \quad$ test: check whether φ is true or not.
$\langle\alpha\rangle \varphi \quad \alpha$ can be executed in such a way that, after doing it, φ is the case.

We abbreviate $\boldsymbol{p} \vee \neg \boldsymbol{p}$ as \top.

Intuitions and abbreviations

$\alpha ; \boldsymbol{\beta} \quad$ sequential composition: execute $\boldsymbol{\alpha}$ and then $\boldsymbol{\beta}$.
$\alpha \cup \boldsymbol{\beta}$ non-deterministic choice: execute $\boldsymbol{\alpha}$ or $\boldsymbol{\beta}$.
$\alpha^{*} \quad$ repetition: execute $\boldsymbol{\alpha}$ zero, one, or any finite number of times.
? $\varphi \quad$ test: check whether φ is true or not.
$\langle\alpha\rangle \varphi \quad \alpha$ can be executed in such a way that, after doing it, φ is the case.

We abbreviate $\boldsymbol{p} \vee \neg \boldsymbol{p}$ as \top.
We abbreviate $\neg \top$ as \perp.

Intuitions and abbreviations

$\alpha ; \boldsymbol{\beta} \quad$ sequential composition: execute α and then $\boldsymbol{\beta}$.
$\alpha \cup \boldsymbol{\beta}$ non-deterministic choice: execute $\boldsymbol{\alpha}$ or $\boldsymbol{\beta}$.
$\alpha^{*} \quad$ repetition: execute $\boldsymbol{\alpha}$ zero, one, or any finite number of times.
? $\varphi \quad$ test: check whether φ is true or not.
$\langle\alpha\rangle \varphi \quad \alpha$ can be executed in such a way that, after doing it, φ is the case.

We abbreviate $\boldsymbol{p} \vee \neg \boldsymbol{p}$ as \top.
We abbreviate $\neg \top$ as \perp.
We abbreviate $\neg\langle\alpha\rangle \neg \varphi$ as $[\alpha] \varphi$.

Intuitions and abbreviations

$\alpha ; \boldsymbol{\beta} \quad$ sequential composition: execute $\boldsymbol{\alpha}$ and then $\boldsymbol{\beta}$.
$\alpha \cup \boldsymbol{\beta}$ non-deterministic choice: execute $\boldsymbol{\alpha}$ or $\boldsymbol{\beta}$.
$\alpha^{*} \quad$ repetition: execute $\boldsymbol{\alpha}$ zero, one, or any finite number of times.
? φ test: check whether φ is true or not.
$\langle\alpha\rangle \varphi \quad \alpha$ can be executed in such a way that, after doing it, φ is the case.

We abbreviate $\boldsymbol{p} \vee \neg \boldsymbol{p}$ as \top.
We abbreviate $\neg \top$ as \perp.
We abbreviate $\neg\langle\boldsymbol{\alpha}\rangle \neg \varphi$ as $[\alpha] \varphi$.
$[\alpha] \varphi \quad$ After any execution of α, φ is the case.

Some examples of formulas

$$
\begin{gathered}
\langle\alpha\rangle \top \\
{[\alpha] \perp} \\
\langle\alpha\rangle \varphi \wedge \neg[\alpha] \varphi
\end{gathered}
$$

Some examples of formulas

$\langle\alpha\rangle \top \quad \alpha$ can be executed.
$[\alpha] \perp$
$\langle\alpha\rangle \varphi \wedge \neg[\alpha] \varphi$

Some examples of formulas

$\langle\alpha\rangle \top \quad \alpha$ can be executed.
$[\alpha] \perp \quad \alpha$ cannot be executed.
$\langle\alpha\rangle \varphi \wedge \neg[\alpha] \varphi$

Some examples of formulas

$\langle\alpha\rangle \top \quad \alpha$ can be executed.
$[\alpha] \perp \quad \alpha$ cannot be executed.
$\langle\alpha\rangle \varphi \wedge \neg[\alpha] \varphi \quad \alpha$ can be executed it at least two different ways.

The models (1)

The structures in which we evaluate PDL formulas, labelled transition systems (LTS), have three components:

$$
\boldsymbol{M}=\langle, \quad, \quad\rangle
$$

The models (1)

The structures in which we evaluate PDL formulas, labelled transition systems (LTS), have three components:

- a non-empty set S of states,

$$
\boldsymbol{M}=\langle\boldsymbol{S}, \quad, \quad\rangle
$$

The models (1)

The structures in which we evaluate PDL formulas, labelled transition systems (LTS), have three components:

- a non-empty set S of states,
- a valuation function, \boldsymbol{V}, indicating which atomic propositions are true in each state $\boldsymbol{s} \in \boldsymbol{S}$, and

$$
\boldsymbol{M}=\langle\boldsymbol{S}, \quad, \boldsymbol{V}\rangle
$$

The models (1)

The structures in which we evaluate PDL formulas, labelled transition systems (LTS), have three components:

- a non-empty set S of states,
- a valuation function, \boldsymbol{V}, indicating which atomic propositions are true in each state $\boldsymbol{s} \in \boldsymbol{S}$, and
- an binary relation $\boldsymbol{R}_{\boldsymbol{a}}$ for each basic action \boldsymbol{a}.

$$
\boldsymbol{M}=\left\langle\boldsymbol{S}, \boldsymbol{R}_{\boldsymbol{a}}, \boldsymbol{V}\right\rangle
$$

The models (2)

A labelled transition system with a designate state (the root state) is called a pointed labelled transition system or a process graph.

The models (2)

A labelled transition system with a designate state (the root state) is called a pointed labelled transition system or a process graph.

Deciding truth-value of formulas

Take a pointed labelled transition system $(\boldsymbol{M}, \boldsymbol{s})$ with $\boldsymbol{M}=\left\langle\boldsymbol{S}, \boldsymbol{R}_{a}, \boldsymbol{V}\right\rangle$:

Deciding truth-value of formulas

Take a pointed labelled transition system $(\boldsymbol{M}, \boldsymbol{s})$ with $\boldsymbol{M}=\left\langle\boldsymbol{S}, \boldsymbol{R}_{\boldsymbol{a}}, \boldsymbol{V}\right\rangle$:

$$
(M, s) \models p \quad \text { iff } \quad p \in V(s)
$$

Deciding truth-value of formulas

Take a pointed labelled transition system $(\boldsymbol{M}, \boldsymbol{s})$ with $\boldsymbol{M}=\left\langle\boldsymbol{S}, \boldsymbol{R}_{\boldsymbol{a}}, \boldsymbol{V}\right\rangle$:

$$
\begin{array}{ll}
(M, s) \models p & \text { iff } \quad p \in V(s) \\
(M, s) \models \neg \varphi & \\
\text { iff } \quad \text { it is not the case that }(M, s) \models \varphi
\end{array}
$$

Deciding truth-value of formulas

Take a pointed labelled transition system $(\boldsymbol{M}, \boldsymbol{s})$ with $\boldsymbol{M}=\left\langle\boldsymbol{S}, \boldsymbol{R}_{a}, \boldsymbol{V}\right\rangle$:

$$
\begin{array}{ll}
(M, s) \models p & \text { iff } \quad p \in V(s) \\
(M, s) \models \neg \varphi & \text { iff } \quad \text { it is not the case that }(M, s) \models \varphi \\
(M, s) \models \varphi \vee \psi & \text { iff } \quad(M, s) \models \varphi \text { or }(M, s) \models \psi
\end{array}
$$

Deciding truth-value of formulas

Take a pointed labelled transition system $(\boldsymbol{M}, \boldsymbol{s})$ with $\boldsymbol{M}=\left\langle\boldsymbol{S}, \boldsymbol{R}_{\boldsymbol{a}}, \boldsymbol{V}\right\rangle$:

$$
\begin{array}{ll}
(M, s) \vDash p & \text { iff } \quad p \in V(s) \\
(M, s) \models \neg \varphi & \text { iff } \quad \text { it is not the case that }(\boldsymbol{M}, s) \models \varphi \\
(M, s) \models \varphi \vee \psi & \text { iff } \quad(M, s) \models \varphi \text { or }(M, s) \models \psi \\
\ldots & \text { iff } \quad \ldots
\end{array}
$$

Deciding truth-value of formulas

Take a pointed labelled transition system $(\boldsymbol{M}, \boldsymbol{s})$ with $\boldsymbol{M}=\left\langle\boldsymbol{S}, \boldsymbol{R}_{a}, \boldsymbol{V}\right\rangle$:

$$
\begin{array}{ll}
(M, s) \models p & \text { iff } \quad p \in V(s) \\
(M, s) \models \neg \varphi & \text { iff } \quad \text { it is not the case that }(M, s) \models \varphi \\
(M, s) \models \varphi \vee \psi & \text { iff } \quad(M, s) \models \varphi \text { or }(M, s) \models \psi \\
\ldots & \text { iff } \quad \ldots
\end{array}
$$

$(M, s) \vDash\langle\alpha\rangle \varphi \quad$ iff \quad there is a $t \in S$ such that \boldsymbol{R}_{α} st and $(\boldsymbol{M}, \boldsymbol{t}) \vDash \varphi$

Deciding truth-value of formulas

Take a pointed labelled transition system $(\boldsymbol{M}, \boldsymbol{s})$ with $\boldsymbol{M}=\left\langle\boldsymbol{S}, \boldsymbol{R}_{a}, \boldsymbol{V}\right\rangle$:

$$
\begin{array}{ll}
(M, s) \models p & \text { iff } \quad p \in V(s) \\
(M, s) \models \neg \varphi & \text { iff } \quad \text { it is not the case that }(M, s) \models \varphi \\
(M, s) \models \varphi \vee \psi & \text { iff } \quad(M, s) \models \varphi \text { or }(M, s) \models \psi \\
\ldots & \text { iff } \quad \ldots \\
(M, s) \models\langle\alpha\rangle \varphi & \text { iff } \quad \text { there is a } t \in S \text { such that } R_{\alpha} s t \text { and }(M, t) \models \varphi
\end{array}
$$

where the relation $\boldsymbol{R}_{\boldsymbol{\alpha}}$ is given, in case $\boldsymbol{\alpha}$ is not a basic action, by

Deciding truth-value of formulas

Take a pointed labelled transition system $(\boldsymbol{M}, \boldsymbol{s})$ with $\boldsymbol{M}=\left\langle\boldsymbol{S}, \boldsymbol{R}_{a}, \boldsymbol{V}\right\rangle$:

$$
\begin{array}{ll}
(M, s) \models p & \text { iff } \quad p \in V(s) \\
(M, s) \models \neg \varphi & \text { iff } \quad \text { it is not the case that }(M, s) \models \varphi \\
(M, s) \models \varphi \vee \psi & \text { iff } \quad(M, s) \models \varphi \text { or }(M, s) \models \psi \\
\ldots & \text { iff } \quad \ldots
\end{array}
$$

$$
(M, s) \models\langle\alpha\rangle \varphi \quad \text { iff } \quad \text { there is a } t \in S \text { such that } R_{\alpha} s t \text { and }(M, t) \models \varphi
$$

where the relation $\boldsymbol{R}_{\boldsymbol{\alpha}}$ is given, in case $\boldsymbol{\alpha}$ is not a basic action, by

$$
\boldsymbol{R}_{\alpha ; \beta}:=\boldsymbol{R}_{\alpha} \circ \boldsymbol{R}_{\beta}
$$

Deciding truth-value of formulas

Take a pointed labelled transition system $(\boldsymbol{M}, \boldsymbol{s})$ with $\boldsymbol{M}=\left\langle\boldsymbol{S}, \boldsymbol{R}_{a}, \boldsymbol{V}\right\rangle$:

$$
\begin{array}{ll}
(M, s) \models p & \text { iff } \quad p \in V(s) \\
(M, s) \models \neg \varphi & \text { iff } \quad \text { it is not the case that }(M, s) \models \varphi \\
(M, s) \models \varphi \vee \psi & \text { iff } \quad(M, s) \models \varphi \text { or }(M, s) \models \psi \\
\ldots & \text { iff } \quad \ldots
\end{array}
$$

$$
(M, s) \vDash\langle\alpha\rangle \varphi \quad \text { iff } \quad \text { there is a } t \in S \text { such that } \boldsymbol{R}_{\alpha} s t \text { and }(\boldsymbol{M}, \boldsymbol{t}) \vDash \varphi
$$

where the relation $\boldsymbol{R}_{\boldsymbol{\alpha}}$ is given, in case $\boldsymbol{\alpha}$ is not a basic action, by

$$
\begin{aligned}
\boldsymbol{R}_{\alpha ; \beta} & :=\boldsymbol{R}_{\alpha} \circ \boldsymbol{R}_{\beta} \\
\boldsymbol{R}_{\alpha \cup \beta} & :=\boldsymbol{R}_{\alpha} \cup \boldsymbol{R}_{\beta}
\end{aligned}
$$

Deciding truth-value of formulas

Take a pointed labelled transition system $(\boldsymbol{M}, \boldsymbol{s})$ with $\boldsymbol{M}=\left\langle\boldsymbol{S}, \boldsymbol{R}_{a}, \boldsymbol{V}\right\rangle$:

$$
\begin{array}{ll}
(M, s) \models p & \text { iff } \quad p \in V(s) \\
(M, s) \models \neg \varphi & \text { iff } \quad \text { it is not the case that }(M, s) \models \varphi \\
(M, s) \models \varphi \vee \psi & \text { iff } \quad(M, s) \models \varphi \text { or }(M, s) \models \psi \\
\ldots & \text { iff } \quad \ldots
\end{array}
$$

$$
(M, s) \vDash\langle\alpha\rangle \varphi \quad \text { iff } \quad \text { there is a } t \in S \text { such that } \boldsymbol{R}_{\alpha} s t \text { and }(\boldsymbol{M}, \boldsymbol{t}) \vDash \varphi
$$

where the relation $\boldsymbol{R}_{\boldsymbol{\alpha}}$ is given, in case $\boldsymbol{\alpha}$ is not a basic action, by

$$
\begin{aligned}
\boldsymbol{R}_{\alpha ; \beta} & :=\boldsymbol{R}_{\boldsymbol{\alpha}} \circ \boldsymbol{R}_{\boldsymbol{\beta}} \\
\boldsymbol{R}_{\alpha \cup \beta} & :=\boldsymbol{R}_{\alpha} \cup \boldsymbol{R}_{\boldsymbol{\beta}} \\
\boldsymbol{R}_{\alpha^{*}} & :=\left(\boldsymbol{R}_{\boldsymbol{\alpha}}\right)^{*}
\end{aligned}
$$

Deciding truth-value of formulas

Take a pointed labelled transition system $(\boldsymbol{M}, \boldsymbol{s})$ with $\boldsymbol{M}=\left\langle\boldsymbol{S}, \boldsymbol{R}_{a}, \boldsymbol{V}\right\rangle$:

$$
\begin{array}{ll}
(M, s) \models p & \text { iff } \quad p \in V(s) \\
(M, s) \models \neg \varphi & \text { iff } \quad \text { it is not the case that }(M, s) \models \varphi \\
(M, s) \models \varphi \vee \psi & \text { iff } \quad(M, s) \models \varphi \text { or }(M, s) \models \psi \\
\ldots & \text { iff } \quad \ldots
\end{array}
$$

$$
(M, s) \vDash\langle\alpha\rangle \varphi \quad \text { iff } \quad \text { there is a } t \in S \text { such that } \boldsymbol{R}_{\alpha} s t \text { and }(\boldsymbol{M}, \boldsymbol{t}) \vDash \varphi
$$

where the relation $\boldsymbol{R}_{\boldsymbol{\alpha}}$ is given, in case $\boldsymbol{\alpha}$ is not a basic action, by

$$
\begin{aligned}
\boldsymbol{R}_{\alpha ; \beta} & :=\boldsymbol{R}_{\boldsymbol{\alpha}} \circ \boldsymbol{R}_{\boldsymbol{\beta}} \\
\boldsymbol{R}_{\alpha \cup \boldsymbol{\beta}} & :=\boldsymbol{R}_{\alpha} \cup \boldsymbol{R}_{\boldsymbol{\beta}} \\
\boldsymbol{R}_{\alpha^{*}} & :=\left(\boldsymbol{R}_{\alpha}\right)^{*} \\
\boldsymbol{R}_{? \varphi} & :=\{(s, s) \in \boldsymbol{S} \times \boldsymbol{S}|(M, s)|=\varphi\}
\end{aligned}
$$

Example: building complex relations

$$
\begin{aligned}
\boldsymbol{R}_{a} & :=\left\{\left(s_{1}, s_{1}\right),\left(s_{2}, s_{1}\right)\right\} \\
\boldsymbol{R}_{b} & :=\left\{\left(s_{1}, s_{2}\right),\left(s_{3}, s_{3}\right)\right\} \\
\boldsymbol{R}_{c} & :=\left\{\left(s_{1}, s_{3}\right),\left(s_{3}, s_{2}\right)\right\}
\end{aligned}
$$

Example: building complex relations

$$
\begin{aligned}
\boldsymbol{R}_{a} & :=\left\{\left(s_{1}, s_{1}\right),\left(s_{2}, s_{1}\right)\right\} \\
\boldsymbol{R}_{b} & :=\left\{\left(s_{1}, s_{2}\right),\left(s_{3}, s_{3}\right)\right\} \\
\boldsymbol{R}_{c} & :=\left\{\left(s_{1}, s_{3}\right),\left(s_{3}, s_{2}\right)\right\}
\end{aligned}
$$

$$
R_{a \cup b}=
$$

Example: building complex relations

$$
\begin{aligned}
\boldsymbol{R}_{a} & :=\left\{\left(s_{1}, s_{1}\right),\left(s_{2}, s_{1}\right)\right\} \\
\boldsymbol{R}_{b} & :=\left\{\left(s_{1}, s_{2}\right),\left(s_{3}, s_{3}\right)\right\} \\
\boldsymbol{R}_{c} & :=\left\{\left(s_{1}, s_{3}\right),\left(s_{3}, s_{2}\right)\right\}
\end{aligned}
$$

$$
R_{a \cup b}=\left\{\left(s_{1}, s_{1}\right),\left(s_{2}, s_{1}\right),\left(s_{1}, s_{2}\right),\left(s_{3}, s_{3}\right)\right\}
$$

Example: building complex relations

$$
\begin{aligned}
\boldsymbol{R}_{a} & :=\left\{\left(s_{1}, s_{1}\right),\left(s_{2}, s_{1}\right)\right\} \\
\boldsymbol{R}_{b} & :=\left\{\left(s_{1}, s_{2}\right),\left(s_{3}, s_{3}\right)\right\} \\
\boldsymbol{R}_{c} & :=\left\{\left(s_{1}, s_{3}\right),\left(s_{3}, s_{2}\right)\right\}
\end{aligned}
$$

$$
\begin{aligned}
& \boldsymbol{R}_{a \cup b}=\left\{\left(s_{1}, s_{1}\right),\left(s_{\mathbf{2}}, s_{1}\right),\left(s_{1}, s_{\mathbf{2}}\right),\left(s_{3}, s_{3}\right)\right\} \\
& \boldsymbol{R}_{a \cup c}=
\end{aligned}
$$

Example: building complex relations

$$
\begin{aligned}
\boldsymbol{R}_{a} & :=\left\{\left(s_{1}, s_{1}\right),\left(s_{2}, s_{1}\right)\right\} \\
\boldsymbol{R}_{b} & :=\left\{\left(s_{1}, s_{2}\right),\left(s_{3}, s_{3}\right)\right\} \\
\boldsymbol{R}_{c} & :=\left\{\left(s_{1}, s_{3}\right),\left(s_{3}, s_{2}\right)\right\}
\end{aligned}
$$

$$
\begin{aligned}
& \boldsymbol{R}_{a \cup b}=\left\{\left(s_{1}, s_{1}\right),\left(s_{2}, s_{1}\right),\left(s_{1}, s_{2}\right),\left(s_{3}, s_{3}\right)\right\} \\
& \boldsymbol{R}_{a \cup c}=\left\{\left(s_{1}, s_{1}\right),\left(s_{2}, s_{1}\right),\left(s_{1}, s_{3}\right),\left(s_{3}, s_{2}\right)\right\}
\end{aligned}
$$

Example: building complex relations

$$
\begin{aligned}
\boldsymbol{R}_{a} & :=\left\{\left(s_{1}, s_{1}\right),\left(s_{2}, s_{1}\right)\right\} \\
\boldsymbol{R}_{b} & :=\left\{\left(s_{1}, s_{2}\right),\left(s_{3}, s_{3}\right)\right\} \\
\boldsymbol{R}_{c} & :=\left\{\left(s_{1}, s_{3}\right),\left(s_{3}, s_{2}\right)\right\}
\end{aligned}
$$

$$
\begin{aligned}
\boldsymbol{R}_{a \cup b} & =\left\{\left(s_{1}, s_{1}\right),\left(s_{2}, s_{1}\right),\left(s_{1}, s_{2}\right),\left(s_{3}, s_{3}\right)\right\} \\
\boldsymbol{R}_{a \cup c} & =\left\{\left(s_{1}, s_{1}\right),\left(s_{2}, s_{1}\right),\left(s_{1}, s_{3}\right),\left(s_{3}, s_{2}\right)\right\} \\
\boldsymbol{R}_{c ; c} & =
\end{aligned}
$$

Example: building complex relations

$$
\begin{aligned}
\boldsymbol{R}_{a} & :=\left\{\left(s_{1}, s_{1}\right),\left(s_{2}, s_{1}\right)\right\} \\
\boldsymbol{R}_{b} & :=\left\{\left(s_{1}, s_{2}\right),\left(s_{3}, s_{3}\right)\right\} \\
\boldsymbol{R}_{c} & :=\left\{\left(s_{1}, s_{3}\right),\left(s_{3}, s_{2}\right)\right\}
\end{aligned}
$$

$$
\begin{aligned}
\boldsymbol{R}_{a \cup b} & =\left\{\left(s_{1}, s_{1}\right),\left(s_{2}, s_{1}\right),\left(s_{1}, s_{2}\right),\left(s_{3}, s_{3}\right)\right\} \\
\boldsymbol{R}_{a \cup c} & =\left\{\left(s_{1}, s_{1}\right),\left(s_{2}, s_{1}\right),\left(s_{1}, s_{3}\right),\left(s_{3}, s_{2}\right)\right\} \\
\boldsymbol{R}_{c ; c} & =\left\{\left(s_{1}, s_{2}\right)\right\}
\end{aligned}
$$

Example: building complex relations

$$
\begin{aligned}
\boldsymbol{R}_{a} & :=\left\{\left(s_{1}, s_{1}\right),\left(s_{2}, s_{1}\right)\right\} \\
\boldsymbol{R}_{b} & :=\left\{\left(s_{1}, s_{2}\right),\left(s_{3}, s_{3}\right)\right\} \\
\boldsymbol{R}_{c} & :=\left\{\left(s_{1}, s_{3}\right),\left(s_{3}, s_{2}\right)\right\}
\end{aligned}
$$

$$
\begin{aligned}
\boldsymbol{R}_{a \cup b} & =\left\{\left(s_{1}, s_{1}\right),\left(s_{2}, s_{1}\right),\left(s_{1}, s_{2}\right),\left(s_{3}, s_{3}\right)\right\} \\
\boldsymbol{R}_{a \cup c} & =\left\{\left(s_{1}, s_{1}\right),\left(s_{2}, s_{1}\right),\left(s_{1}, s_{3}\right),\left(s_{3}, s_{2}\right)\right\} \\
\boldsymbol{R}_{c ; c} & =\left\{\left(s_{1}, s_{2}\right)\right\} \\
\boldsymbol{R}_{b ; b} & =
\end{aligned}
$$

Example: building complex relations

$$
\begin{aligned}
\boldsymbol{R}_{a} & :=\left\{\left(s_{1}, s_{1}\right),\left(s_{2}, s_{1}\right)\right\} \\
\boldsymbol{R}_{b} & :=\left\{\left(s_{1}, s_{2}\right),\left(s_{3}, s_{3}\right)\right\} \\
\boldsymbol{R}_{c} & :=\left\{\left(s_{1}, s_{3}\right),\left(s_{3}, s_{2}\right)\right\}
\end{aligned}
$$

$$
\begin{aligned}
\boldsymbol{R}_{a \cup b} & =\left\{\left(s_{1}, s_{1}\right),\left(s_{2}, s_{1}\right),\left(s_{1}, s_{2}\right),\left(s_{3}, s_{3}\right)\right\} \\
\boldsymbol{R}_{a \cup c} & =\left\{\left(s_{1}, s_{1}\right),\left(s_{2}, s_{1}\right),\left(s_{1}, s_{3}\right),\left(s_{3}, s_{2}\right)\right\} \\
\boldsymbol{R}_{c ; c} & =\left\{\left(s_{1}, s_{2}\right)\right\} \\
\boldsymbol{R}_{b ; b} & =\{ \}
\end{aligned}
$$

Example: building complex relations

$$
\begin{aligned}
\boldsymbol{R}_{a} & :=\left\{\left(s_{1}, s_{1}\right),\left(s_{2}, s_{1}\right)\right\} \\
\boldsymbol{R}_{b} & :=\left\{\left(s_{1}, s_{2}\right),\left(s_{3}, s_{3}\right)\right\} \\
\boldsymbol{R}_{c} & :=\left\{\left(s_{1}, s_{3}\right),\left(s_{3}, s_{2}\right)\right\}
\end{aligned}
$$

$$
\begin{aligned}
\boldsymbol{R}_{a \cup b} & =\left\{\left(s_{1}, s_{1}\right),\left(s_{2}, s_{1}\right),\left(s_{1}, s_{2}\right),\left(s_{3}, s_{3}\right)\right\} \\
\boldsymbol{R}_{a \cup c} & =\left\{\left(s_{1}, s_{1}\right),\left(s_{2}, s_{1}\right),\left(s_{1}, s_{3}\right),\left(s_{3}, s_{2}\right)\right\} \\
\boldsymbol{R}_{c ; c} & =\left\{\left(s_{1}, s_{2}\right)\right\} \\
\boldsymbol{R}_{b ; b} & =\{ \} \\
\boldsymbol{R}_{? \neg(p \vee q)} & =
\end{aligned}
$$

Example: building complex relations

$$
\begin{aligned}
\boldsymbol{R}_{a} & :=\left\{\left(s_{1}, s_{1}\right),\left(s_{2}, s_{1}\right)\right\} \\
\boldsymbol{R}_{b} & :=\left\{\left(s_{1}, s_{2}\right),\left(s_{3}, s_{3}\right)\right\} \\
\boldsymbol{R}_{c} & :=\left\{\left(s_{1}, s_{3}\right),\left(s_{3}, s_{2}\right)\right\}
\end{aligned}
$$

$$
\begin{aligned}
\boldsymbol{R}_{a \cup b} & =\left\{\left(s_{1}, s_{1}\right),\left(s_{2}, s_{1}\right),\left(s_{1}, s_{2}\right),\left(s_{3}, s_{3}\right)\right\} \\
\boldsymbol{R}_{a \cup c} & =\left\{\left(s_{1}, s_{1}\right),\left(s_{2}, s_{1}\right),\left(s_{1}, s_{3}\right),\left(s_{3}, s_{2}\right)\right\} \\
\boldsymbol{R}_{c ; c} & =\left\{\left(s_{1}, s_{2}\right)\right\} \\
\boldsymbol{R}_{b ; b} & =\{ \} \\
\boldsymbol{R}_{? \neg(p \vee q)} & =\left\{\left(s_{2}, s_{2}\right)\right\}
\end{aligned}
$$

Example: building complex relations

$$
\begin{aligned}
\boldsymbol{R}_{a} & :=\left\{\left(s_{1}, s_{1}\right),\left(s_{2}, s_{1}\right)\right\} \\
\boldsymbol{R}_{b} & :=\left\{\left(s_{1}, s_{2}\right),\left(s_{3}, s_{3}\right)\right\} \\
\boldsymbol{R}_{c} & :=\left\{\left(s_{1}, s_{3}\right),\left(s_{3}, s_{2}\right)\right\}
\end{aligned}
$$

$$
\begin{aligned}
\boldsymbol{R}_{a \cup b} & =\left\{\left(s_{1}, s_{1}\right),\left(s_{2}, s_{1}\right),\left(s_{1}, s_{2}\right),\left(s_{3}, s_{3}\right)\right\} \\
\boldsymbol{R}_{a \cup c} & =\left\{\left(s_{1}, s_{1}\right),\left(s_{2}, s_{1}\right),\left(s_{1}, s_{3}\right),\left(s_{3}, s_{2}\right)\right\} \\
\boldsymbol{R}_{c ; c} & =\left\{\left(s_{1}, s_{2}\right)\right\} \\
\boldsymbol{R}_{b ; b} & =\{ \} \\
\boldsymbol{R}_{? \neg(p \vee q)} & =\left\{\left(s_{2}, s_{2}\right)\right\} \\
\boldsymbol{R}_{?(p \vee q)} & =
\end{aligned}
$$

Example: building complex relations

$$
\begin{aligned}
\boldsymbol{R}_{a} & :=\left\{\left(s_{1}, s_{1}\right),\left(s_{2}, s_{1}\right)\right\} \\
\boldsymbol{R}_{b} & :=\left\{\left(s_{1}, s_{2}\right),\left(s_{3}, s_{3}\right)\right\} \\
\boldsymbol{R}_{c} & :=\left\{\left(s_{1}, s_{3}\right),\left(s_{3}, s_{2}\right)\right\}
\end{aligned}
$$

$$
\begin{aligned}
\boldsymbol{R}_{a \cup b} & =\left\{\left(s_{1}, s_{1}\right),\left(s_{2}, s_{1}\right),\left(s_{1}, s_{2}\right),\left(s_{3}, s_{3}\right)\right\} \\
\boldsymbol{R}_{a \cup c} & =\left\{\left(s_{1}, s_{1}\right),\left(s_{2}, s_{1}\right),\left(s_{1}, s_{3}\right),\left(s_{3}, s_{2}\right)\right\} \\
\boldsymbol{R}_{c ; c} & =\left\{\left(s_{1}, s_{2}\right)\right\} \\
\boldsymbol{R}_{b ; b} & =\{ \} \\
\boldsymbol{R}_{? \neg(p \vee q)} & =\left\{\left(s_{2}, s_{2}\right)\right\} \\
\boldsymbol{R}_{?(p \vee q)} & =\left\{\left(s_{1}, s_{1}\right),\left(s_{3}, s_{3}\right)\right\}
\end{aligned}
$$

Example: building complex relations

$$
\begin{aligned}
\boldsymbol{R}_{a} & :=\left\{\left(s_{1}, s_{1}\right),\left(s_{2}, s_{1}\right)\right\} \\
\boldsymbol{R}_{b} & :=\left\{\left(s_{1}, s_{2}\right),\left(s_{3}, s_{3}\right)\right\} \\
\boldsymbol{R}_{c} & :=\left\{\left(s_{1}, s_{3}\right),\left(s_{3}, s_{2}\right)\right\}
\end{aligned}
$$

$$
\begin{aligned}
\boldsymbol{R}_{a \cup b} & =\left\{\left(s_{1}, s_{1}\right),\left(s_{2}, s_{1}\right),\left(s_{1}, s_{2}\right),\left(s_{3}, s_{3}\right)\right\} \\
\boldsymbol{R}_{a \cup c} & =\left\{\left(s_{1}, s_{1}\right),\left(s_{2}, s_{1}\right),\left(s_{1}, s_{3}\right),\left(s_{3}, s_{2}\right)\right\} \\
\boldsymbol{R}_{c ; c} & =\left\{\left(s_{1}, s_{2}\right)\right\} \\
\boldsymbol{R}_{b ; b} & =\{ \} \\
\boldsymbol{R}_{? \neg(p \vee q)} & =\left\{\left(s_{2}, s_{2}\right)\right\} \\
\boldsymbol{R}_{?(p \vee q)} & =\left\{\left(s_{1}, s_{1}\right),\left(s_{3}, s_{3}\right)\right\} \\
\boldsymbol{R}_{? \neg(p \vee q) ; a ; ?(p \vee q)} & =
\end{aligned}
$$

Example: building complex relations

$$
\begin{aligned}
\boldsymbol{R}_{a} & :=\left\{\left(s_{1}, s_{1}\right),\left(s_{2}, s_{1}\right)\right\} \\
\boldsymbol{R}_{b} & :=\left\{\left(s_{1}, s_{2}\right),\left(s_{3}, s_{3}\right)\right\} \\
\boldsymbol{R}_{c} & :=\left\{\left(s_{1}, s_{3}\right),\left(s_{3}, s_{2}\right)\right\}
\end{aligned}
$$

$$
\begin{aligned}
\boldsymbol{R}_{a \cup b} & =\left\{\left(s_{1}, s_{1}\right),\left(s_{2}, s_{1}\right),\left(s_{1}, s_{2}\right),\left(s_{3}, s_{3}\right)\right\} \\
\boldsymbol{R}_{a \cup c} & =\left\{\left(s_{1}, s_{1}\right),\left(s_{2}, s_{1}\right),\left(s_{1}, s_{3}\right),\left(s_{3}, s_{2}\right)\right\} \\
\boldsymbol{R}_{c ; c} & =\left\{\left(s_{1}, s_{2}\right)\right\} \\
\boldsymbol{R}_{b ; b} & =\{ \} \\
\boldsymbol{R}_{? \neg(p \vee q)} & =\left\{\left(s_{2}, s_{2}\right)\right\} \\
\boldsymbol{R}_{?(p \vee q)} & =\left\{\left(s_{1}, s_{1}\right),\left(s_{3}, s_{3}\right)\right\} \\
\boldsymbol{R}_{? \neg(p \vee q) ; a ; ?(p \vee q)} & =\left\{\left(s_{2}, s_{1}\right)\right\}
\end{aligned}
$$

Example: building complex relations

$$
\begin{aligned}
\boldsymbol{R}_{a} & :=\left\{\left(s_{1}, s_{1}\right),\left(s_{2}, s_{1}\right)\right\} \\
\boldsymbol{R}_{b} & :=\left\{\left(s_{1}, s_{2}\right),\left(s_{3}, s_{3}\right)\right\} \\
\boldsymbol{R}_{c} & :=\left\{\left(s_{1}, s_{3}\right),\left(s_{3}, s_{2}\right)\right\}
\end{aligned}
$$

$$
\begin{aligned}
\boldsymbol{R}_{a \cup b} & =\left\{\left(s_{1}, s_{1}\right),\left(s_{2}, s_{1}\right),\left(s_{1}, s_{2}\right),\left(s_{3}, s_{3}\right)\right\} \\
\boldsymbol{R}_{a \cup c} & =\left\{\left(s_{1}, s_{1}\right),\left(s_{2}, s_{1}\right),\left(s_{1}, s_{3}\right),\left(s_{3}, s_{2}\right)\right\} \\
\boldsymbol{R}_{c ; c} & =\left\{\left(s_{1}, s_{2}\right)\right\} \\
\boldsymbol{R}_{b ; b} & =\{ \} \\
\boldsymbol{R}_{? \neg(p \vee q)} & =\left\{\left(s_{2}, s_{2}\right)\right\} \\
\boldsymbol{R}_{?(p \vee q)} & =\left\{\left(s_{1}, s_{1}\right),\left(s_{3}, s_{3}\right)\right\} \\
\boldsymbol{R}_{? \neg(p \vee q) ; a ; ?(p \vee q)} & =\left\{\left(s_{2}, s_{1}\right)\right\} \\
\boldsymbol{R}_{c ; a} & =
\end{aligned}
$$

Example: building complex relations

$$
\begin{aligned}
\boldsymbol{R}_{a} & :=\left\{\left(s_{1}, s_{1}\right),\left(s_{2}, s_{1}\right)\right\} \\
\boldsymbol{R}_{b} & :=\left\{\left(s_{1}, s_{2}\right),\left(s_{3}, s_{3}\right)\right\} \\
\boldsymbol{R}_{c} & :=\left\{\left(s_{1}, s_{3}\right),\left(s_{3}, s_{2}\right)\right\}
\end{aligned}
$$

$$
\begin{aligned}
\boldsymbol{R}_{a \cup b} & =\left\{\left(s_{1}, s_{1}\right),\left(s_{2}, s_{1}\right),\left(s_{1}, s_{2}\right),\left(s_{3}, s_{3}\right)\right\} \\
\boldsymbol{R}_{a \cup c} & =\left\{\left(s_{1}, s_{1}\right),\left(s_{2}, s_{1}\right),\left(s_{1}, s_{3}\right),\left(s_{3}, s_{2}\right)\right\} \\
\boldsymbol{R}_{c ; c} & =\left\{\left(s_{1}, s_{2}\right)\right\} \\
\boldsymbol{R}_{b ; b} & =\{ \} \\
\boldsymbol{R}_{? \neg(p \vee q)} & =\left\{\left(s_{2}, s_{2}\right)\right\} \\
\boldsymbol{R}_{?(p \vee q)} & =\left\{\left(s_{1}, s_{1}\right),\left(s_{3}, s_{3}\right)\right\} \\
\boldsymbol{R}_{? \neg(p \vee q) ; a ; ?(p \vee q)} & =\left\{\left(s_{2}, s_{1}\right)\right\} \\
\boldsymbol{R}_{c ; a} & =\left\{\left(s_{3}, s_{1}\right)\right\}
\end{aligned}
$$

Example: building complex relations

$$
\begin{aligned}
\boldsymbol{R}_{a} & :=\left\{\left(s_{1}, s_{1}\right),\left(s_{2}, s_{1}\right)\right\} \\
\boldsymbol{R}_{b} & :=\left\{\left(s_{1}, s_{2}\right),\left(s_{3}, s_{3}\right)\right\} \\
\boldsymbol{R}_{c} & :=\left\{\left(s_{1}, s_{3}\right),\left(s_{3}, s_{2}\right)\right\}
\end{aligned}
$$

$$
\begin{aligned}
\boldsymbol{R}_{a \cup b} & =\left\{\left(s_{1}, s_{1}\right),\left(s_{2}, s_{1}\right),\left(s_{1}, s_{2}\right),\left(s_{3}, s_{3}\right)\right\} \\
\boldsymbol{R}_{a \cup c} & =\left\{\left(s_{1}, s_{1}\right),\left(s_{2}, s_{1}\right),\left(s_{1}, s_{3}\right),\left(s_{3}, s_{2}\right)\right\} \\
\boldsymbol{R}_{c ; c} & =\left\{\left(s_{1}, s_{2}\right)\right\} \\
\boldsymbol{R}_{b ; b} & =\{ \} \\
\boldsymbol{R}_{? \neg(p \vee q)} & =\left\{\left(s_{2}, s_{2}\right)\right\} \\
\boldsymbol{R}_{?(p \vee q)} & =\left\{\left(s_{1}, s_{1}\right),\left(s_{3}, s_{3}\right)\right\} \\
\boldsymbol{R}_{? \neg(p \vee q) ; a ; ?(p \vee q)} & =\left\{\left(s_{2}, s_{1}\right)\right\} \\
\boldsymbol{R}_{c ; a} & =\left\{\left(s_{3}, s_{1}\right)\right\} \\
\boldsymbol{R}_{(c ; a)^{*}} & =
\end{aligned}
$$

Example: building complex relations

$$
\begin{aligned}
& \boldsymbol{R}_{a}:=\left\{\left(s_{1}, s_{1}\right),\left(s_{2}, s_{1}\right)\right\} \\
& \boldsymbol{R}_{b}:=\left\{\left(s_{1}, s_{2}\right),\left(s_{3}, s_{3}\right)\right\} \\
& \boldsymbol{R}_{c}:=\left\{\left(s_{1}, s_{3}\right),\left(s_{3}, s_{2}\right)\right\}
\end{aligned}
$$

$$
\begin{aligned}
\boldsymbol{R}_{a \cup b} & =\left\{\left(s_{1}, s_{1}\right),\left(s_{2}, s_{1}\right),\left(s_{1}, s_{2}\right),\left(s_{3}, s_{3}\right)\right\} \\
\boldsymbol{R}_{a \cup c} & =\left\{\left(s_{1}, s_{1}\right),\left(s_{2}, s_{1}\right),\left(s_{1}, s_{3}\right),\left(s_{3}, s_{2}\right)\right\} \\
\boldsymbol{R}_{c ; c} & =\left\{\left(s_{1}, s_{2}\right)\right\} \\
\boldsymbol{R}_{b ; b} & =\{ \} \\
\boldsymbol{R}_{? \neg(p \vee q)} & =\left\{\left(s_{2}, s_{2}\right)\right\} \\
\boldsymbol{R}_{?(p \vee q)} & =\left\{\left(s_{1}, s_{1}\right),\left(s_{3}, s_{3}\right)\right\} \\
\boldsymbol{R}_{? \neg(p \vee q) ; a ; ?(p \vee q)} & =\left\{\left(s_{2}, s_{1}\right)\right\} \\
\boldsymbol{R}_{c ; a} & =\left\{\left(s_{3}, s_{1}\right)\right\} \\
R_{(c ; a)^{*}} & =\left\{\left(s_{3}, s_{1}\right),\left(s_{1}, s_{1}\right),\left(s_{2}, s_{2}\right),\left(s_{3}, s_{3}\right)\right\}
\end{aligned}
$$

Example: building complex relations

$$
\begin{aligned}
\boldsymbol{R}_{a} & :=\left\{\left(s_{1}, s_{1}\right),\left(s_{2}, s_{1}\right)\right\} \\
\boldsymbol{R}_{b} & :=\left\{\left(s_{1}, s_{2}\right),\left(s_{3}, s_{3}\right)\right\} \\
\boldsymbol{R}_{c} & :=\left\{\left(s_{1}, s_{3}\right),\left(s_{3}, s_{2}\right)\right\}
\end{aligned}
$$

$$
\begin{aligned}
\boldsymbol{R}_{a \cup b} & =\left\{\left(s_{1}, s_{1}\right),\left(s_{2}, s_{1}\right),\left(s_{1}, s_{2}\right),\left(s_{3}, s_{3}\right)\right\} \\
\boldsymbol{R}_{a \cup c} & =\left\{\left(s_{1}, s_{1}\right),\left(s_{2}, s_{1}\right),\left(s_{1}, s_{3}\right),\left(s_{3}, s_{2}\right)\right\} \\
\boldsymbol{R}_{c ; c} & =\left\{\left(s_{1}, s_{2}\right)\right\} \\
\boldsymbol{R}_{b ; b} & =\{ \} \\
\boldsymbol{R}_{? \neg(p \vee q)} & =\left\{\left(s_{2}, s_{2}\right)\right\} \\
\boldsymbol{R}_{?(p \vee q)} & =\left\{\left(s_{1}, s_{1}\right),\left(s_{3}, s_{3}\right)\right\} \\
\boldsymbol{R}_{? \neg(p \vee q) ; a ; ?(p \vee q)} & =\left\{\left(s_{2}, s_{1}\right)\right\} \\
\boldsymbol{R}_{c ; a} & =\left\{\left(s_{3}, s_{1}\right)\right\} \\
\boldsymbol{R}_{(c ; a)^{*}} & =\left\{\left(s_{3}, s_{1}\right),\left(s_{1}, s_{1}\right),\left(s_{2}, s_{2}\right),\left(s_{3}, s_{3}\right)\right\}
\end{aligned}
$$

Example: evaluating formulas

Example: evaluating formulas

$$
\begin{aligned}
\left(M, s_{1}\right) & \models\langle a \cup b\rangle p \wedge \neg[a \cup b] p & & \left(M, s_{3}\right) \models\left[(c ; a)^{*}\right] p ? \\
\left(M, s_{1}\right) & \models[b] \perp & ? & \left(M, s_{3}\right) \models[? p] p ? \\
\left(M, s_{2}\right) & \models\langle a\rangle \top \rightarrow\langle b\rangle \top & ? & \\
\left(M, s_{2}\right) & \models\left\langle c^{*}\right\rangle \top & ? &
\end{aligned}
$$

Example: evaluating formulas

$$
\begin{array}{llll}
\left(M, s_{1}\right) & =\langle a \cup b\rangle p \wedge \neg[a \cup b] p & & \left(M, s_{3}\right) \models\left[(c ; a)^{*}\right] p \\
\left(M, s_{1}\right) & \models[b] \perp & ? & \left(M, s_{3}\right) \models[? p] p \\
\left(M, s_{2}\right) & =\langle a\rangle \top \rightarrow\langle b\rangle \top & ? & \\
\left(M, s_{2}\right) & =\left\langle c^{*}\right\rangle \top & ? &
\end{array}
$$

Example: evaluating formulas

$$
\begin{aligned}
\left(M, s_{1}\right) & =\langle a \cup b\rangle p \wedge \neg[a \cup b] p & \checkmark & \left(M, s_{3}\right) \models\left[(c ; a)^{*}\right] p ? \\
\left(M, s_{1}\right) & =[b] \perp & x & \left(M, s_{3}\right) \models[? p] p \\
\left(M, s_{2}\right) & =\langle a\rangle \top \rightarrow\langle b\rangle \top & ? & \\
\left(M, s_{2}\right) & =\left\langle c^{*}\right\rangle \top & ? &
\end{aligned}
$$

Example: evaluating formulas

$$
\begin{aligned}
\left(M, s_{1}\right) & =\langle a \cup b\rangle p \wedge \neg[a \cup b] p & \checkmark & \left(M, s_{3}\right) \models\left[(c ; a)^{*}\right] p \\
\left(M, s_{1}\right) & \models[b] \perp & \times & \left(M, s_{3}\right) \models[? p] p \\
\left(M, s_{2}\right) & \models\langle a\rangle \top \rightarrow\langle b\rangle \top & \times & \\
\left(M, s_{2}\right) & =\left\langle c^{*}\right\rangle \top & ? &
\end{aligned}
$$

Example: evaluating formulas

$$
\begin{aligned}
\left(M, s_{1}\right) & \models\langle a \cup b\rangle p \wedge \neg[a \cup b] p & \checkmark & \left(M, s_{3}\right) \models\left[(c ; a)^{*}\right] p ? \\
\left(M, s_{1}\right) & \models[b] \perp & \times & \left(M, s_{3}\right) \models[? p] p \\
\left(M, s_{2}\right) & \models\langle a\rangle \top \rightarrow\langle b\rangle \top & \times & \\
\left(M, s_{2}\right) & \models\left\langle c^{*}\right\rangle \top & \checkmark &
\end{aligned}
$$

Example: evaluating formulas

$$
M
$$

$$
\begin{aligned}
& \left(M, s_{1}\right) \vDash\langle a \cup b\rangle p \wedge \neg[a \cup b] p \checkmark \quad\left(M, s_{3}\right) \vDash\left[(c ; a)^{*}\right] p \checkmark \\
& \left(M, s_{1}\right) \vDash[b] \perp \\
& \left(M, s_{2}\right) \vDash\langle a\rangle \top \rightarrow\langle b\rangle \top \\
& \left(M, s_{3}\right) \models[? p] p \\
& \left(M, s_{2}\right) \vDash\left\langle c^{*}\right\rangle \top \\
& x
\end{aligned}
$$

Example: evaluating formulas

$$
\begin{array}{rlrl}
\left(M, s_{1}\right) & =\langle a \cup b\rangle p \wedge \neg[a \cup b] p & \checkmark & \\
\left(M, s_{1}\right) & \models[b] \perp & \times & \left(M, s_{3}\right) \models\left[(c ; a)^{*}\right] p \\
\left(M, s_{2}\right) & \models\langle a\rangle \top \rightarrow\langle b\rangle \top & \times & \\
\left(M, s_{2}\right) & =\left\langle s_{3}\right) \models[? p] p \\
& =\left\langle c^{*}\right\rangle \top & \checkmark &
\end{array}
$$

Axiom system (1)

The valid formulas of $P D L$ can be derived from the following principles:

Axiom system (1)

The valid formulas of $P D L$ can be derived from the following principles:
(1) All propositional tautologies.

Axiom system (1)

The valid formulas of $P D L$ can be derived from the following principles:
(1) All propositional tautologies.
(2) $[\alpha](\varphi \rightarrow \psi) \rightarrow([\alpha] \varphi \rightarrow[\alpha] \psi)$ for any action α.

Axiom system (1)

The valid formulas of $P D L$ can be derived from the following principles:
(1) All propositional tautologies.
(2) $[\alpha](\varphi \rightarrow \psi) \rightarrow([\alpha] \varphi \rightarrow[\alpha] \psi)$ for any action α.
(3) Modus ponens (MP): from φ and $\varphi \rightarrow \psi$, infer ψ.

Axiom system (1)

The valid formulas of $\boldsymbol{P D L}$ can be derived from the following principles:
(1) All propositional tautologies.
(2) $[\alpha](\varphi \rightarrow \psi) \rightarrow([\alpha] \varphi \rightarrow[\alpha] \psi)$ for any action α.
(8) Modus ponens (MP): from φ and $\varphi \rightarrow \psi$, infer ψ.
(4) Necessitation (Nec): from $\varphi \operatorname{infer}[\alpha] \varphi$ for any action α.

Axiom system (2)
(6) Principles for action operations:

Axiom system (2)
(5) Principles for action operations:

- Test:

$$
[? \psi] \varphi \leftrightarrow(\psi \rightarrow \varphi)
$$

Axiom system (2)

(5) Principles for action operations:

- Test:

$$
[? \psi] \varphi \leftrightarrow(\psi \rightarrow \varphi)
$$

- Sequence:

$$
[\alpha ; \beta] \varphi \leftrightarrow[\alpha][\beta] \varphi
$$

Axiom system (2)

(5) Principles for action operations:

- Test:

$$
[? \psi] \varphi \leftrightarrow(\psi \rightarrow \varphi)
$$

- Sequence:

$$
[\alpha ; \beta] \varphi \leftrightarrow[\alpha][\beta] \varphi
$$

- Choice:

$$
[\alpha \cup \beta] \varphi \leftrightarrow([\alpha] \varphi \wedge[\beta] \varphi)
$$

Axiom system (2)

(5) Principles for action operations:

- Test:

$$
[? \psi] \varphi \leftrightarrow(\psi \rightarrow \varphi)
$$

- Sequence:

$$
[\alpha ; \beta] \varphi \leftrightarrow[\alpha][\beta] \varphi
$$

- Choice:

$$
[\alpha \cup \beta] \varphi \leftrightarrow([\alpha] \varphi \wedge[\beta] \varphi)
$$

- Repetition:

Axiom system (2)

(5) Principles for action operations:

- Test:

$$
[? \psi] \varphi \leftrightarrow(\psi \rightarrow \varphi)
$$

- Sequence:

$$
[\alpha ; \beta] \varphi \leftrightarrow[\alpha][\beta] \varphi
$$

- Choice:

$$
[\alpha \cup \beta] \varphi \leftrightarrow([\alpha] \varphi \wedge[\beta] \varphi)
$$

- Repetition:
- Mix:

$$
\left[\alpha^{*}\right] \varphi \leftrightarrow\left(\varphi \wedge[\alpha]\left[\alpha^{*}\right] \varphi\right)
$$

Axiom system (2)

(5) Principles for action operations:

- Test:

$$
[? \psi] \varphi \leftrightarrow(\psi \rightarrow \varphi)
$$

- Sequence:

$$
[\alpha ; \beta] \varphi \leftrightarrow[\alpha][\beta] \varphi
$$

- Choice:

$$
[\alpha \cup \beta] \varphi \leftrightarrow([\alpha] \varphi \wedge[\beta] \varphi)
$$

- Repetition:
- Mix:

$$
\left[\alpha^{*}\right] \varphi \leftrightarrow\left(\varphi \wedge[\alpha]\left[\alpha^{*}\right] \varphi\right)
$$

- Induction:

$$
\left(\varphi \wedge\left[\alpha^{*}\right](\varphi \rightarrow[\alpha] \varphi)\right) \rightarrow\left[\alpha^{*}\right] \varphi
$$

Axiom system (2)

(5) Principles for action operations:

- Test:

$$
[? \psi] \varphi \leftrightarrow(\psi \rightarrow \varphi)
$$

- Sequence:

$$
[\alpha ; \beta] \varphi \leftrightarrow[\alpha][\beta] \varphi
$$

- Choice:

$$
[\alpha \cup \beta] \varphi \leftrightarrow([\alpha] \varphi \wedge[\beta] \varphi)
$$

- Repetition:
- Mix:

$$
\left[\alpha^{*}\right] \varphi \leftrightarrow\left(\varphi \wedge[\alpha]\left[\alpha^{*}\right] \varphi\right)
$$

- Induction:

$$
\left(\varphi \wedge\left[\alpha^{*}\right](\varphi \rightarrow[\alpha] \varphi)\right) \rightarrow\left[\alpha^{*}\right] \varphi
$$

A formula that can be derived by following these principles in a finite number of steps is called a theorem.

Example

Prove that $[(\alpha \cup \beta) ; \gamma] \varphi \leftrightarrow([\alpha ; \gamma] \varphi \wedge[\beta ; \gamma] \varphi)$ is valid.

Example

Prove that $[(\alpha \cup \beta) ; \gamma] \varphi \leftrightarrow([\alpha ; \gamma] \varphi \wedge[\beta ; \gamma] \varphi)$ is valid.
From left to right:

Example

Prove that $[(\alpha \cup \beta) ; \gamma] \varphi \leftrightarrow([\alpha ; \gamma] \varphi \wedge[\beta ; \gamma] \varphi)$ is valid.
From left to right:

$$
\text { 1. } \quad[(\alpha \cup \beta) ; \gamma] \varphi \quad \text { Assumption }
$$

Example

Prove that $[(\alpha \cup \beta) ; \gamma] \varphi \leftrightarrow([\alpha ; \gamma] \varphi \wedge[\beta ; \gamma] \varphi)$ is valid.
From left to right:

1.	$[(\alpha \cup \beta) ; \gamma] \varphi$	Assumption
2.	$[\alpha \cup \beta][\gamma] \varphi$	Sequence from step 1

Example

Prove that $[(\alpha \cup \beta) ; \gamma] \varphi \leftrightarrow([\alpha ; \gamma] \varphi \wedge[\beta ; \gamma] \varphi)$ is valid.
From left to right:

1.	$[(\alpha \cup \beta) ; \gamma] \varphi$	Assumption
2.	$[\alpha \cup \beta][\gamma] \varphi$	Sequence from step 1
3.	$[\alpha][\gamma] \varphi \wedge[\beta][\gamma] \varphi$	Choice from step 2

Example

Prove that $[(\alpha \cup \beta) ; \gamma] \varphi \leftrightarrow([\alpha ; \gamma] \varphi \wedge[\beta ; \gamma] \varphi)$ is valid.
From left to right:

1.	$[(\alpha \cup \beta) ; \gamma] \varphi$	Assumption
2.	$[\alpha \cup \beta][\gamma] \varphi$	Sequence from step 1
3.	$[\alpha][\gamma] \varphi \wedge[\beta][\gamma] \varphi$	Choice from step 2
4.	$[\alpha ; \gamma] \varphi \wedge[\beta ; \gamma] \varphi$	Sequence from step 3

Example

Prove that $[(\alpha \cup \beta) ; \gamma] \varphi \leftrightarrow([\alpha ; \gamma] \varphi \wedge[\beta ; \gamma] \varphi)$ is valid.
From left to right:

1.	$[(\alpha \cup \beta) ; \gamma] \varphi$	
2.	$[\alpha \cup \beta][\gamma] \varphi$	Sequance from step 1
3.	$[\alpha][\gamma] \varphi \wedge[\beta][\gamma] \varphi$	Choice from step 2
4.	$[\alpha ; \gamma] \varphi \wedge[\beta ; \gamma] \varphi$	
Sequence from step 3		

The right to left direction is similar.

$P D L$ as a programming language

With $\boldsymbol{P D L}$ we can define actions representing program control structures.

$P D L$ as a programming language

With $\boldsymbol{P D L}$ we can define actions representing program control structures.
(1) WHILE φ do α :

$P D L$ as a programming language

With $\boldsymbol{P D L}$ we can define actions representing program control structures.
(1) WHILE φ do α :

$$
(? \varphi ; \alpha)^{*} ; ? \neg \varphi
$$

$P D L$ as a programming language

With $P D L$ we can define actions representing program control structures.
(1) WHILE φ do α :

$$
(? \varphi ; \alpha)^{*} ; ? \neg \varphi
$$

(2) REPEAT α UNTIL φ :

$P D L$ as a programming language

With $P D L$ we can define actions representing program control structures.
(1) WHILE φ do α :

$$
(? \varphi ; \alpha)^{*} ; ? \neg \varphi
$$

(2) REPEAT α UNTIL φ :

$$
\alpha ;(? \neg \varphi ; \alpha)^{*} ; ? \varphi
$$

$P D L$ as a programming language

With $P D L$ we can define actions representing program control structures.
(1) WHILE φ do α :

$$
(? \varphi ; \alpha)^{*} ; ? \neg \varphi
$$

(2) REPEAT α UNTIL φ :

$$
\alpha ;(? \neg \varphi ; \alpha)^{*} ; ? \varphi
$$

(3) IF φ THEN α ELSE β :

$P D L$ as a programming language

With $P D L$ we can define actions representing program control structures.
(1) WHILE φ do α :

$$
(? \varphi ; \alpha)^{*} ; ? \neg \varphi
$$

(2) REPEAT α UNTIL φ :

$$
\alpha ;(? \neg \varphi ; \alpha)^{*} ; ? \varphi
$$

(3) IF φ THEN α ELSE β :

$$
(? \varphi ; \alpha) \cup(? \neg \varphi ; \beta)
$$

