Logic in Action Chapter 9: Proofs

http://www.logicinaction.org/

(http://www.logicinaction.org/)

1 / 24

ъ

イロト イヨト イヨト イヨト

Issues with the **tableau** method.

Issues with the **tableau** method.

• It is a *refutation* method.

Issues with the **tableau** method.

- It is a *refutation* method.
- It does not follow the way humans reason.

Issues with the **tableau** method.

- It is a *refutation* method.
- It does not follow the way humans reason.

Issues with the **presented derivation systems**.

Issues with the **tableau** method.

- It is a *refutation* method.
- It does not follow the way humans reason.

Issues with the **presented derivation systems**.

• Proofs are not very natural (e.g., try to prove $\varphi \rightarrow \neg \neg \varphi$).

Issues with the **tableau** method.

- It is a *refutation* method.
- It does not follow the way humans reason.

Issues with the **presented derivation systems**.

- Proofs are not very natural (e.g., try to prove $\varphi \rightarrow \neg \neg \varphi$).
- They do not facilitate *conditional* reasoning.

The *deduction* property

æ

The *deduction* property

$\Sigma, \varphi \models \psi$ if and only if $\Sigma \models \varphi \rightarrow \psi$

(http://www.logicinaction.org/)

3 / 24

Consider a proof for $\varphi \to \varphi$.

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ ● のへで

Consider a proof for $\varphi \to \varphi$.

• Using the derivation system presented in Chapter 2, the proof takes several steps.

Consider a proof for $\varphi \to \varphi$.

- Using the derivation system presented in Chapter 2, the proof takes several steps.
- But if we can make assumptions ...

Consider a proof for $\varphi \to \varphi$.

- Using the derivation system presented in Chapter 2, the proof takes several steps.
- But if we can make assumptions ...

1 *\varphi*

◆ロト ◆□ ▶ ◆ヨ ▶ ◆ヨ ▶ ● 回 ◆ ○ ◆ ○ ◆

Consider a proof for $\varphi \to \varphi$.

- Using the derivation system presented in Chapter 2, the proof takes several steps.
- But if we can make assumptions ...

Consider a proof for $\varphi \to \varphi$.

- Using the derivation system presented in Chapter 2, the proof takes several steps.
- But if we can make assumptions ...

$$\begin{array}{c|cccc} 1 & \varphi \\ 2 & \varphi \\ 3 & \varphi \rightarrow \varphi \end{array} \quad {}_{\text{repetition 1}} \end{array}$$

Consider a proof for $\varphi \to \varphi$.

- Using the derivation system presented in Chapter 2, the proof takes several steps.
- But if we can make assumptions ...

This is the main idea for **the deduction rule**.

◆ロト ◆□ ▶ ◆ヨ ▶ ◆ヨ ▶ ● 回 ◆ ○ ◆ ○ ◆

Suppose you want to prove $\varphi \to \psi$.

(http://www.logicinaction.org/)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 善臣 - のへで

Suppose you want to prove $\varphi \to \psi$.

• Assume φ .

(http://www.logicinaction.org/)

Suppose you want to prove $\varphi \to \psi$.

- Assume φ .
- If after further steps

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ ● のへで

Suppose you want to prove $\varphi \to \psi$.

- Assume φ .
- If after further steps
- you can prove ψ ,

Suppose you want to prove $\varphi \to \psi$.

- Assume φ .
- If after further steps
- you can prove ψ ,
- then you actually have $\varphi \to \psi$.

The three axioms for propositional logic

(日) (四) (코) (코) (코) (코)

The three axioms for propositional logic

◆□▶ ◆□▶ ◆目▶ ◆目▶ ●□ ● ●

The three axioms for propositional logic

\$\varphi\$ \rightarrow\$ \$\vee\$ \$\phi\$ \$\vee\$ \$\phi\$ \$\ph

◆□▶ ◆□▶ ◆目▶ ◆目▶ ●□ ● ●

The three axioms for propositional logic

Proving the axioms (1)

The axiom

$$arphi
ightarrow (\psi
ightarrow arphi)$$

can be proved from *deduction*:

(http://www.logicinaction.org/)

Proving the axioms (1)

The axiom

$$arphi
ightarrow (\psi
ightarrow arphi)$$

can be proved from *deduction*:

1 *\varphi*

(http://www.logicinaction.org/)

Proving the axioms (1)

The axiom

$$arphi
ightarrow (\psi
ightarrow arphi)$$

can be proved from *deduction*:

$$\begin{array}{c|c}
1 & \varphi \\
2 & \psi
\end{array}$$

(http://www.logicinaction.org/)

Proving the axioms (1)

The axiom

$$arphi
ightarrow (\psi
ightarrow arphi)$$

can be proved from *deduction*:

repetition 1

(http://www.logicinaction.org/)

▲ロト ▲母 ▶ ▲目 ▶ ▲目 ▶ ● 日 ●

Proving the axioms (1)

The axiom

$$arphi
ightarrow (\psi
ightarrow arphi)$$

can be proved from *deduction*:

(日) (四) (전) (전) (전) (전)

Proving the axioms (1)

The axiom

$$arphi
ightarrow (\psi
ightarrow arphi)$$

can be proved from *deduction*:

The axiom

$$(\varphi
ightarrow (\psi
ightarrow \chi))
ightarrow ((\varphi
ightarrow \psi)
ightarrow (\varphi
ightarrow \chi))$$

can be proved from *modus ponens* and *deduction*:

<ロ> (四) (四) (注) (注) (注) (三)

The axiom

$$(\varphi
ightarrow (\psi
ightarrow \chi))
ightarrow ((\varphi
ightarrow \psi)
ightarrow (\varphi
ightarrow \chi))$$

can be proved from *modus ponens* and *deduction*:

1
$$\varphi \to (\psi \to \chi)$$

<ロ> (四) (四) (注) (注) (注) (三)

The axiom

$$(arphi
ightarrow (\psi
ightarrow \chi))
ightarrow ((arphi
ightarrow \psi)
ightarrow (arphi
ightarrow \chi))$$

can be proved from *modus ponens* and *deduction*:

$$\begin{array}{ccc}
1 & \varphi \to (\psi \to \chi) \\
2 & \varphi \to \psi
\end{array}$$

(日) (四) (전) (전) (전) (전)

The axiom

$$(arphi
ightarrow (\psi
ightarrow \chi))
ightarrow ((arphi
ightarrow \psi)
ightarrow (arphi
ightarrow \chi))$$

can be proved from *modus ponens* and *deduction*:

$$\begin{array}{c|c}
1 & \varphi \to (\psi \to \chi) \\
2 & \varphi \to \psi \\
3 & \varphi
\end{array}$$

<ロ> (四) (四) (注) (注) (注) (三)

The axiom

$$(arphi
ightarrow (\psi
ightarrow \chi))
ightarrow ((arphi
ightarrow \psi)
ightarrow (arphi
ightarrow \chi))$$

can be proved from *modus ponens* and *deduction*:

modus ponens 3,2

The axiom

$$(arphi
ightarrow (\psi
ightarrow \chi))
ightarrow ((arphi
ightarrow \psi)
ightarrow (arphi
ightarrow \chi))$$

can be proved from *modus ponens* and *deduction*:

(日) (四) (전) (전) (전) (전)

The axiom

$$(arphi
ightarrow (\psi
ightarrow \chi))
ightarrow ((arphi
ightarrow \psi)
ightarrow (arphi
ightarrow \chi))$$

can be proved from *modus ponens* and *deduction*:

<ロ> (四) (四) (注) (注) (注) (三)

The axiom

$$(arphi
ightarrow (\psi
ightarrow \chi))
ightarrow ((arphi
ightarrow \psi)
ightarrow (arphi
ightarrow \chi))$$

can be proved from *modus ponens* and *deduction*:

<ロ> (四) (四) (注) (注) (注) (三)

The axiom

$$(arphi
ightarrow (\psi
ightarrow \chi))
ightarrow ((arphi
ightarrow \psi)
ightarrow (arphi
ightarrow \chi))$$

can be proved from *modus ponens* and *deduction*:

The axiom

$$(arphi
ightarrow (\psi
ightarrow \chi))
ightarrow ((arphi
ightarrow \psi)
ightarrow (arphi
ightarrow \chi))$$

can be proved from modus ponens and deduction:

8 / 24

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○ ○○

We need more

The axiom

 $(\neg \varphi \rightarrow \neg \psi) \rightarrow (\psi \rightarrow \varphi)$

cannot be proved from modus ponens and deduction.

We need more

The axiom

 $(\neg \varphi \rightarrow \neg \psi) \rightarrow (\psi \rightarrow \varphi)$

cannot be proved from $modus\ ponens$ and deduction.

We need a way to deal with negations.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三日 ● のへの

Suppose you want to prove φ .

(http://www.logicinaction.org/)

Suppose you want to prove φ .

• Assume $\neg \varphi$.

(http://www.logicinaction.org/)

Suppose you want to prove φ .

- Assume $\neg \varphi$.
- If after further steps

Suppose you want to prove φ .

- Assume $\neg \varphi$.
- If after further steps
- you can prove a contradiction \perp ,

<ロ> (四) (四) (注) (注) (注) (三)

Suppose you want to prove φ .

- Assume $\neg \varphi$.
- If after further steps
- you can prove a contradiction \perp ,
- then $\neg \varphi$ cannot be true

<ロ> (四) (四) (注) (注) (注) (三)

Suppose you want to prove φ .

- Assume $\neg \varphi$.
- If after further steps
- you can prove a contradiction \perp ,
- then $\neg \varphi$ cannot be true
- so you actually have φ .

3

・ロト ・回ト ・ヨト ・ヨト

Proving the axioms (3)

The axiom

 $(\neg \varphi \rightarrow \neg \psi) \rightarrow (\psi \rightarrow \varphi)$

can be proved from modus ponens, deduction and refutation:

The axiom

 $(\neg \varphi \rightarrow \neg \psi) \rightarrow (\psi \rightarrow \varphi)$

can be proved from modus ponens, deduction and refutation:

$$1 \qquad \neg \varphi \rightarrow \neg \psi$$

The axiom

$$(\neg arphi
ightarrow \neg \psi)
ightarrow (\psi
ightarrow arphi)$$

can be proved from *modus ponens*, *deduction* and *refutation*:

The axiom

$$(\neg arphi
ightarrow \neg \psi)
ightarrow (\psi
ightarrow arphi)$$

can be proved from modus ponens, deduction and refutation:

The axiom

 $(\neg \varphi \rightarrow \neg \psi) \rightarrow (\psi \rightarrow \varphi)$

can be proved from modus ponens, deduction and refutation:

The axiom

 $(\neg \varphi \rightarrow \neg \psi) \rightarrow (\psi \rightarrow \varphi)$

can be proved from modus ponens, deduction and refutation:

The axiom

 $(\neg \varphi \rightarrow \neg \psi) \rightarrow (\psi \rightarrow \varphi)$

can be proved from modus ponens, deduction and refutation:

The axiom

 $(\neg \varphi \rightarrow \neg \psi) \rightarrow (\psi \rightarrow \varphi)$

can be proved from modus ponens, deduction and refutation:

The axiom

 $(\neg \varphi \rightarrow \neg \psi) \rightarrow (\psi \rightarrow \varphi)$

can be proved from modus ponens, deduction and refutation:

The axiom

 $(\neg \varphi \rightarrow \neg \psi) \rightarrow (\psi \rightarrow \varphi)$

can be proved from modus ponens, deduction and refutation:

For step 5, note that $\neg \psi$ can be seen as an abbreviation of $\psi \rightarrow \bot$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○ ○○

So . . .

So . . .

The *modus ponens*, *deduction* and *refutation* rules are a complete system for propositional logic.

To facilitate things ...

To facilitate things ...

• Natural deduction introduces rules to manipulate all the connectives in an easy way.

ъ

・ロト ・回ト ・ヨト ・ヨト

(http://www.logicinaction.org/)

$$arphi\,,arphi
ightarrow\psi$$

 ψ

modus ponens

(http://www.logicinaction.org/)

 \mathbf{E}_{\rightarrow}

(http://www.logicinaction.org/)

(http://www.logicinaction.org/)

◆□▶ ◆□▶ ◆目▶ ◆目▶ ●□ ● ●

For negation \neg

(http://www.logicinaction.org/)

For negation \neg

 $\neg \varphi \,, \varphi$ \perp

(http://www.logicinaction.org/)

15 / 24

For negation \neg

 \mathbf{E}_{\neg}

(http://www.logicinaction.org/)

For negation \neg

For negation \neg

(http://www.logicinaction.org/)

(http://www.logicinaction.org/)

(http://www.logicinaction.org/)

(http://www.logicinaction.org/)

(http://www.logicinaction.org/)

(http://www.logicinaction.org/)

(http://www.logicinaction.org/)

(http://www.logicinaction.org/)

(http://www.logicinaction.org/)

For *predicate* logic

In order to present *introduction* and *elimination* rules for both \forall and \exists , we need to recall two notions.

For *predicate* logic

In order to present *introduction* and *elimination* rules for both \forall and \exists , we need to recall two notions.

• Bounded variable.

For *predicate* logic

In order to present *introduction* and *elimination* rules for both \forall and \exists , we need to recall two notions.

• Bounded variable.

• Substitution of a variable for a term in a formula.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○ ○○

(http://www.logicinaction.org/)

• Scope of a quantifier. In a formula of the form $\forall x \varphi \ (\exists x \varphi)$, the subformula φ is said to be the scope of the quantifier $\forall \ (\exists)$.

- Scope of a quantifier. In a formula of the form $\forall x \varphi \ (\exists x \varphi)$, the subformula φ is said to be **the scope** of the quantifier $\forall \ (\exists)$.
- Binding a variable. In a formula of the form $\forall x \varphi \ (\exists x \varphi)$, the quantifier $\forall \ (\exists)$ binds any occurrence of x in φ that is not bounded by another quantifier inside φ .

- Scope of a quantifier. In a formula of the form $\forall x \varphi (\exists x \varphi)$, the subformula φ is said to be **the scope** of the quantifier $\forall (\exists)$.
- Binding a variable. In a formula of the form $\forall x \varphi \ (\exists x \varphi)$, the quantifier $\forall \ (\exists)$ binds any occurrence of x in φ that is not bounded by another quantifier inside φ .
- **Bounded variable.** An occurrence of a variable x is **bounded** in a formula φ if there is a quantifier in φ that binds it.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○ ○○

(http://www.logicinaction.org/)

• Substitution inside a <u>term</u>. Replacing the occurrences of the variable y for the term t inside the term s produces the term denoted by

 $(s)_t^y$

• Substitution inside a <u>term</u>. Replacing the occurrences of the variable y for the term t inside the term s produces the term denoted by

 $(s)_t^y$

• Formally,

For a constant: $(c)_t^y := c$ For a variable: $\begin{cases} (x)_t^y := x & \text{for } x \text{ different from } y \\ (y)_t^y := t \end{cases}$

• Substitution inside a <u>term</u>. Replacing the occurrences of the variable y for the term t inside the term s produces the term denoted by

 $(s)_t^y$

• Formally,

For a constant :	$(c)_t^y := c$	
For a variable :	$\int (x)_t^y := x$	for \boldsymbol{x} different from \boldsymbol{y}
	$\left\{ (y)_t^y := t ight.$	

Examples:

(http://www.logicinaction.org/)

• Substitution inside a formula. Replacing the free occurrences of the variable y for the term t inside the formula φ produces the formula denoted by

 $(arphi)_t^y$

• Substitution inside a <u>formula</u>. Replacing the <u>free</u> occurrences of the variable y for the term t inside the formula φ produces the formula denoted by $(\varphi)_t^y$

• Formally,

$$\begin{array}{l} (Pt_1 \cdots t_n)_t^y \coloneqq P(t_1)_t^y \cdots (t_n)_t^y \\ (\neg \varphi)_t^y \coloneqq \neg (\varphi)_t^y \\ (\varphi \land \psi)_t^y \coloneqq (\varphi)_t^y \land (\psi)_t^y \\ (\varphi \land \psi)_t^y \coloneqq (\varphi)_t^y \land (\psi)_t^y \\ (\varphi \to \psi)_t^y \coloneqq (\varphi)_t^y \land (\psi)_t^y \\ (\varphi \leftrightarrow \psi)_t^y \coloneqq (\varphi)_t^y \leftrightarrow (\psi)_t^y \\ (\varphi \leftrightarrow \psi)_t^y \coloneqq (\varphi)_t^y \leftrightarrow (\psi)_t^y \\ (\exists y \varphi)_t^y \coloneqq \exists y \varphi \end{array}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○ ○○

For the universal quantifier \forall

(http://www.logicinaction.org/)

æ

・ロト ・四ト ・ヨト ・ヨト

For the universal quantifier \forall

 $rac{orall x \, arphi}{(arphi)_t^x}$

provided that no variable in t occurs bounded in φ

(http://www.logicinaction.org/)

For the universal quantifier \forall

 $rac{orall x \, arphi}{(arphi)_t^x}$

provided that no variable in t occurs bounded in φ

 \mathbf{E}_\forall

(http://www.logicinaction.org/)

For the universal quantifier \forall

provided that no variable in t occurs bounded in φ

 \mathbf{E}_{\forall}

for \boldsymbol{u} a special symbol not used anywhere else in the proof

・ロト ・四ト ・ヨト ・ヨト

(http://www.logicinaction.org/)

For the universal quantifier \forall

3

・ロト ・四ト ・ヨト ・ヨト

For the existential quantifier \exists

(http://www.logicinaction.org/)

æ

・ロト ・四ト ・ヨト ・ヨト

for \boldsymbol{u} a special symbol not used anywhere in the proof

(http://www.logicinaction.org/)

3

イロト 不同ト イヨト イヨト

for \boldsymbol{u} a special symbol not used anywhere in the proof

 \mathbf{E}_{\exists}

(http://www.logicinaction.org/)

ъ.

・ロト ・回ト ・ヨト ・ヨト

for \boldsymbol{u} a special symbol not used anywhere in the proof

 \mathbf{E}_{\exists}

provided that no variable in t occurs bounded in φ

・ロト ・回ト ・ヨト ・ヨト

э.

 \mathbf{E}_{\exists}

provided that no variable in toccurs bounded in φ

I٦

・ロト ・回ト ・ヨト ・ヨト

э.

For the identity symbol =

(http://www.logicinaction.org/)

æ

・ロト ・四ト ・ヨト ・ヨト

$t_1=t_2\ , arphi$	
$arphi_{[t_1/t_2]}$	
$t_1=t_2\;, arphi$	
$arphi_{[t_2/t_1]}$	

where $\varphi_{[t_1/t_2]}$ is the result of replacing, in φ , some ocurrences of t_2 by t_1 , provided that

$t_1=t_2\ , arphi$	
$arphi_{[t_1/t_2]}$	
$t_1=t_2\;, arphi$	
$arphi_{[t_2/t_1]}$	

where $\varphi_{[t_1/t_2]}$ is the result of replacing, in φ , some ocurrences of t_2 by t_1 , provided that

• t_2 contains only variables that occurr freely in φ , and

・ロト ・四ト ・ヨト ・ヨト

$t_1=t_2\ , arphi$	
$arphi_{[t_1/t_2]}$	
$t_1=t_2\ , arphi$	
$arphi_{[t_2/t_1]}$	

where $\varphi_{[t_1/t_2]}$ is the result of replacing, in φ , some ocurrences of t_2 by t_1 , provided that

- t₂ contains only variables that occurr freely in φ, and
- **t**₁ contains only variables that do not get bounded after replacement.

イロト 不同ト イヨト イヨト

$t_1=t_2\ , arphi$	
$arphi_{[t_1/t_2]}$	
$t_1=t_2\ , arphi$	
$arphi_{[t_2/t_1]}$	

where $\varphi_{[t_1/t_2]}$ is the result of replacing, in φ , some ocurrences of t_2 by t_1 , provided that

- t₂ contains only variables that occurr freely in φ, and
- **t**₁ contains only variables that do not get bounded after replacement.

$\mathbf{E}_{=}$

э.

イロト 不同ト 不良ト 不良ト

$t_1=t_2\ , arphi$	
$arphi_{[t_1/t_2]}$	
$t_1=t_2\ , arphi$	
$arphi_{[t_2/t_1]}$	

where $\varphi_{[t_1/t_2]}$ is the result of replacing, in φ , some ocurrences of t_2 by t_1 , provided that

- t₂ contains only variables that occurr freely in φ, and
- **t**₁ contains only variables that do not get bounded after replacement.

$\mathbf{E}_{=}$

t = t

・ロト ・回ト ・ヨト ・ヨト

for any term **t**.

$t_1=t_2\ , arphi$
$arphi_{[t_1/t_2]}$
$t_1=t_2\ , arphi$
$arphi_{[t_2/t_1]}$

where $\varphi_{[t_1/t_2]}$ is the result of replacing, in φ , some ocurrences of t_2 by t_1 , provided that

- t₂ contains only variables that occurr freely in φ, and
- **t**₁ contains only variables that do not get bounded after replacement.

 $\mathbf{E}_{=}$

t = t

for any term **t**.

イロト イヨト イヨト イヨト