
Chapter 6

Logic and Action

Overview An action is something that takes place in the world, and that makes a dif-
ference to what the world looks like. Thus, actions are maps from states of the world to
new states of the world. Actions can be of various kinds. The action of spilling coffee
changes the state of your trousers. The action of telling a lie to your friend changes your
friend’s state of mind (and maybe the state of your soul). The action of multiplying two
numbers changes the state of certain registers in your computer. Despite the differences
between these various kinds of actions, we will see that they can all be covered under the
same logical umbrella.

6.1 Actions in General

Sitting quietly, doing nothing,
Spring comes, and the grass grows by itself.

From: Zenrin kushu, compiled by Eicho (1429-1504)

Action is change in the world. Change can take place by itself (see the poem above), or it
can involve an agent who causes the change. You are an agent. Suppose you have a bad
habit and you want to give it up. Then typically, you will go through various stages. At
some point there is the action stage: you do what you have to do to effect a change.

Following instructions for how to combine certain elementary culinary actions (chopping
an onion, firing up a stove, stirring the contents of a saucer) may make you a success-
ful cook. Following instructions for how to combine communication steps may make
you a successful salesperson, or a successful barrister. Learning to combine elementary
computational actions in clever ways may make you a successful computer programmer.

Actions can often be characterized in terms of their results: “stir in heated butter and sauté
until soft”, “rinse until water is clear”. In this chapter you will learn how to use logic for

6-1

6-2 CHAPTER 6. LOGIC AND ACTION

analyzing the interplay of action and static descriptions of the world before and after the
action.

It turns out that structured actions can be viewed as compositions of basic actions, with
only a few basic composition recipes: conditional execution, choice, sequence, and repe-
tition. In some cases it is also possible to undo or reverse an action. This gives a further
recipe: if you are editing a file, you can undo the last ‘delete word’ action, but you cannot
undo the printing of your file.

Conditional or guarded execution (“remove from fire when cheese starts to melt”), se-
quence (“pour eggs in and swirl; cook for about three minutes; gently slide out of the
pan”), and repetition (“keep stirring until soft”) are ways in which a cook combines his
basic actions in preparing a meal. But these are also the strategies for a lawyer when plan-
ning her defence (“only discuss the character of the defendant if the prosecution forces
us”, “first convince the jury of the soundness of the alibi, next cast doubt on the reliability
of the witness for the prosecution”), or the basic layout strategies for a programmer in
designing his code. In this chapter we will look at the logic of these ways of combining
actions.

Action structure does not depend on the nature of the basic actions: it applies to actions
in the world, such as preparing breakfast, cleaning dishes, or spilling coffee over your
trousers. It also applies to communicative actions, such as reading an English sentence
and updating one’s state of knowledge accordingly, engaging in a conversation, sending an
email with cc’s, telling your partner a secret. These actions typically change the cognitive
states of the agents involved. Finally, it applies to computations, i.e., actions performed
by computers. Examples are computing the factorial function, computing square roots,
etc. Such actions typically involve changing the memory state of a machine. Of course
there are connections between these categories. A communicative action will usually
involve some computation involving memory, and the utterance of an imperative (‘Shut
the door!’) is a communicative action that is directed towards action in the world.

There is a very general way to model action and change, a way that we have in fact seen
already. The key is to view a changing world as a set of situations linked by labeled arcs.
In the context of epistemic logic we have looked at a special case of this, the case where
the arcs are epistemic accessibility relations: agent relations that are reflexive, symmetric,
and transitive. Here we drop this restriction.

Consider an action that can be performed in only one possible way. Toggling a switch for
switching off your alarm clock is an example. This can be pictured as a transition from
an initial situation to a new situation:

alarm on alarm off
toggle

Toggling the switch once more will put the alarm back on:

6.1. ACTIONS IN GENERAL 6-3

alarm on alarm off alarm on
toggle toggle

Some actions do not have determinate effects. Asking your boss for a promotion may get
you promoted, but it may also get you fired, so this action can be pictured like this:

employed

promoted

fired

ask for promotion

Another example: opening a window. This brings about a change in the world, as follows.

open window

The action of window-opening changes a state in which the window is closed into one in
which it is open. This is more subtle than toggling an alarm clock, for once the window is
open a different action is needed to close it again. Also, the action of opening a window
can only be applied to closed windows, not to open ones. We say: performing the action
has a precondition or presupposition.

In fact, the public announcements from the previous chapter can also be viewed as (com-
municative) actions covered by our general framework. A public announcement is an
action that effects a change in an information model.

0 : p 1 : pbc
abc abc

⇒!p⇒ 0 : p

abc

6-4 CHAPTER 6. LOGIC AND ACTION

On the left is an epistemic situation where p is in fact the case (indicated by the grey
shading), but b and c cannot distinguish between the two states of affairs, for they do not
know whether p. If in such a situation there is a public announcement that p is the case,
then the epistemic situation changes to what is pictured on the right. In the new situation,
everyone knows that p is the case, and everyone knows that everyone knows, and so on.
In other words: p has become common knowledge.

Here is computational example. The situation on the left in the picture below gives a
highly abstract view of part of the memory of a computer, with the contents of three
registers x, y and z. The effect of the assignment action x := y on this situation is that
the old contents of register x gets replaced by the contents of register y. The result of the
action is the picture on the right.

x 3
y 2
z 4

x 2
y 2
z 4

x := y

The command to put the value of register y in register x makes the contents of registers x
and y equal.

The next example models a traffic light that can turn from green to yellow to red and again
to green. The transitions indicate which light is turned on (the light that is currently on is
switched off). The state # is the state with the green light on, the state ? the state with the
yellow light on, and the state • the state with the red light on.

?

•

yellow

redgreen

These examples illustrate that it is possible to approach a wide variety of kinds of actions
from a unified perspective. In this chapter we will show that this is not only possible, but
also fruitful.

In fact, much of the reasoning we do in everyday life is reasoning about change. If you
reflect on an everyday life problem, one of the things you can do is run through various
scenarios in your mind, and see how you would (re)act if things turn out as you imagine.
Amusing samples are in the Dutch ‘Handboek voor de Moderne Vrouw’ (The Modern
Woman’s Handbook). See http://www.handboekvoordemodernevrouw.nl/.

Here is a sample question from ‘Handboek voor de Moderne Vrouw’: ‘I am longing for a
cosy Xmas party. What can I do to make our Xmas event happy and joyful?’ Here is the
recommendation for how to reflect on this:

6.1. ACTIONS IN GENERAL 6-5

START

your type?

become hostess?

pose as ideal guest

read tips appreciated?

invite kids ask participation make pizza

guest

not really

yes

hostess

only by husband

only passively

by no-one

Figure 6.1: Flow Diagram of ‘Happy Xmas Procedure’

6-6 CHAPTER 6. LOGIC AND ACTION

Are you the type of a ‘guest’ or the type of a ‘hostess’?
If the answer is ‘guest’: Would you like to become a hostess?

If the answer is ‘not really’ then
your best option is to profile as an ideal guest
and hope for a Xmas party invitation elsewhere.

If the answer is ‘yes’ then here are some tips on how to become a great hostess: . . .
If the answer is ‘hostess’, then ask yourself:

Are your efforts truly appreciated?
If the answer is ‘Yes, but only by my own husband’ then

probably your kids are bored to death.
Invite friends with kids of the same age as yours.

If the answer is ‘Yes, but nobody lifts a finger to help out’ then
Ask everyone to prepare one of the courses.

If the answer is ‘No, I only gets moans and sighs’ then
put a pizza in the microwave for your spouse and kids
and get yourself invited by friends.

Figure 6.1 gives a so-called flow diagram for the recommendations from this example.
Note that the questions are put in 3 boxes, that the answers are labels of outgoing arrows
of the 3 boxes, and that the actions are put in 2 boxes.

6.2 Sequence, Choice, Repetition, Test

In the logic of propositions, the natural operations are not, and and or. These operations
are used to map truth values into other truth values. When we want to talk about action,
the repertoire of operations gets extended. What are natural things to do with actions?

When we want to talk about action at a very general level, then we first have to look at
how actions can be structured. Let’s assume that we have a set of basic actions. Call these
basic actions a, b, c, and so on. Right now we are not interested in the internal structure
of basic actions. The actions a, b, c could be anything: actions in the world, basic acts of
communication, or basic changes in the memory state of a computer. Given such a set of
basic actions, we can look at natural ways to combine them.

Sequence In the first place we can perform one action after another: first eat breakfast,
then do the dishes. First execute action a, next execute action b. First toggle a switch.
Then toggle it again. Consider again the alarm clock toggle action.

alarm on alarm off alarm on
toggle toggle

Writing the sequence of two actions a and b as a; b, we get:

6.2. SEQUENCE, CHOICE, REPETITION, TEST 6-7

alarm on alarm on
toggle; toggle

Starting out from the situation where the alarm is off, we would get:

alarm off alarm off
toggle; toggle

Choice A complex action can also consist of a choice between simpler actions: either
drink tea or drink coffee. Either marry a beggar or marry a millionnaire.

unmarried, poor married, poor
×-beggar

unmarried, poor married, rich
×-millionnaire

unmarried, poor

married, poor

married, rich

×-beggar ∪ ×-millionnaire

Repetition Actions can be repeated. The phrase ‘lather, rinse, repeat’ is used as a joke
at people who take instructions too literally: the stop condition ‘until hair is clean’ is
omitted. There is also a joke about an advertising executive who increases the sales of
his client’s shampoo by adding the word ‘repeat’ to its instructions. If taken literally, the
compound action ‘lather, rinse, repeat’ would look like this:

lather ; rinse

Repeated actions usually have a stop condition: repeat the lather rinse sequence until your
hair is clean. This gives a more sensible interpretation of the repetition instruction:

6-8 CHAPTER 6. LOGIC AND ACTION

hair clean?
lather ; rinse

STOP
yes

no

Looking at the picture, we see that this procedure is ambiguous, for where do we start?
Here is one possibility:

START

hair clean?
lather ; rinse

STOP
yes

no

And here is another:

START hair clean?
lather ; rinse

STOP
yes

no

The difference between these two procedures is that the first one starts with a ‘hair clean?’
check: if the answer is ‘yes’, nothing happens. The second procedure starts with a ‘lather;
rinse’ sequence, no matter the initial state of your hair.

6.2. SEQUENCE, CHOICE, REPETITION, TEST 6-9

In many programming languages, this same distinction is made by means of a choice
between two different constructs for expressing ‘condition controlled loops’:

while not hair clean do { lather; rinse }
repeat { lather ; rinse } until hair clean

The first loop does not guarantee that the ‘lather ; rinse’ sequence gets performed at least
once; the second loop does.

Test The ‘condition’ in a condition-controlled loop (the condition ‘hair clean’, for ex-
ample) can itself be viewed as an action: a test whether a certain fact holds. A test to
see whether some condition holds can also be viewed as a basic action. Notation for the
action that tests condition ϕ is ?ϕ. The question mark turns a formula (something that can
be true or false) into an action (something that can succeed or fail).

If we express tests as ?ϕ, then we should specify the language from which ϕ is taken.
Depending on the context, this could be the language of propositional logic, the language
of predicate logic, the language of epistemic logic, and so on.

Since we are taking an abstract view, the basic actions can be anything. Still, there are a
few cases of basic action that are special. The action that always succeeds is called SKIP.
The action that always fails is called ABORT. If we have tests, then clearly SKIP can be
expressed as ?> (the test that always succeeds) and ABORT as ?⊥ (the test that always
fails).

Using test, sequence and choice we can express the familiar ‘if then else’ from many
programming languages.

if hair clean then skip else { lather ; rinse }
This becomes a choice between a test for clean hair (if this test succeeds then nothing
happens) and a sequence consisting of a test for not-clean-hair followed by a lather and a
rinse (if the hair is not clean then it is first lathered and then rinsed).

?hair clean ∪ { ?¬hair clean ; lather ; rinse }
The general recipe for expressing if ϕ then α1 else α2 is given by:

?ϕ;α1 ∪ ?¬ϕ;α2.

Since exactly one of the two tests ?ϕ and ?¬ϕ will succeed, exactly one of α1 or α2 will
get executed.

Using the operation for turning a formula into a test, we can first test for p and next test
for q by means of ?p; ?q. Clearly, the order of testing does not matter, so this is equivalent
to ?q; ?p. And since the tests do not change the current state, this can also be expressed as
a single test ?(p ∧ q).

Similarly, the choice between two tests ?p and ?q can be written as ?p∪?q. Again, this is
equivalent to ?q∪?p, and it can be turned into a single test ?(p ∨ q).

6-10 CHAPTER 6. LOGIC AND ACTION

Converse Some actions can be undone by reversing them: the reverse of opening a
window is closing it. Other actions are much harder to undo: if you smash a piece of
china then it is sometimes hard to mend it again. So here we have a choice: do we assume
that basic actions can be undone? If we do, we need an operation for this, for taking the
converse of an action. If, in some context, we assume that undoing an action is generally
impossible we should omit the converse operation in that context.

Exercise 6.1 Suppose ˇ is used for reversing basic actions. So ǎ is the converse of action a, and
b̌ is the converse of action b. Let a; b be the sequential composition of a and b, i.e., the action that
consists of first doing a and then doing b. What is the converse of a; b?

6.3 Viewing Actions as Relations

As an exercise in abstraction, we will now view actions as binary relations on a set S of
states. The intuition behind this is as follows. Suppose we are in some state s in S. Then
performing some action a will result in a new state that is a member of some set of new
states {s1, . . . , sn}.
If this set is empty, this means that the action a has aborted in state s. If the set has a
single element s′, this means that the action a is deterministic on state s, and if the set
has two or more elements, this means that action a is non-deterministic on state s. The
general picture is:

s

s1

s2

s3

sn

Clearly, when we extend this picture to the whole set S, what emerges is a binary relation
on S, with an arrow from s to s′ (or equivalently, a pair (s, s′) in the relation) just in case
performing action a in state s may have s′ as result. Thus, we can view binary relations
on S as the interpretations of basic action symbols a.

The set of all pairs taken from S is called S × S, or S2. A binary relation on S is simply
a set of pairs taken from S, i.e., a subset of S2.

Given this abstract interpretation of basic relations, it makes sense to ask what corresponds
to the operations on actions that we encountered in Section 6.2. Let’s consider them in
turn.

6.3. VIEWING ACTIONS AS RELATIONS 6-11

Sequence Given that action symbol a is interpreted as binary relation Ra on S, and that
action symbol b is interpreted as binary relationRb on S, what should be the interpretation
of the action sequence a; b? Intuitively, one can move from state s to state s′ just in case
there is some intermediate state s0 with the property that a gets you from s to s0 and b gets
you from s0 to s′. This is a well-known operation on binary relations, called relational
composition. If Ra and Rb are binary relations on the same set S, then Ra ◦ Rb is the
binary relation on S given by:

Ra ◦Rb = {(s, s′) | there is some s0 ∈ S : (s, s0) ∈ Raand (s0, s
′) ∈ Rb}.

If basic action symbol a is interpreted as relation Ra, and basic action symbol b is inter-
preted as relation Rb, then the sequence action a; b is interpreted as Ra ◦ Rb. Here is a
picture:

s

s1

s2

s3

sn

s11

s12

s13

s1m

If the solid arrows interpret action symbol a and the dashed arrows interpret action sym-
bol b, then the arrows consisting of a solid part followed by a dashed part interpret the
sequence a; b.

Choice Now suppose again that we are in state s, and that performing action a will get
us in one of the states in {s1, . . . , sn}. And supposse that in that same state s, performing
action b will get us in one of the states in {s′1, . . . , s′m}.

6-12 CHAPTER 6. LOGIC AND ACTION

s

s1

s2

s3

sn

s′1
s′2
s′3

s′m

Then performing action a ∪ b (the choice between a and b) in s will get you in one of the
states in {s1, . . . , sn} ∪ {s′1, . . . , s′m}. More generally, if action symbol a is interpreted as
the relation Ra, and action symbol b is interpreted as the relation Rb, then a ∪ b will be
interpreted as the relation Ra ∪Rb (the union of the two relations).

Test A notation that is often used for the equality relation (or: identity relation is I . The
binary relation I on S is by definition the set of pairs given by:

I = {(s, s) | s ∈ S}.

A test ?ϕ is interpreted as a subset of the identity relation, namely as the following set of
pairs:

R?ϕ = {(s, s) | s ∈ S, s |= ϕ}

From this we can see that a test does not change the state, but checks whether the state
satisfies a condition.

To see the result of combining a test with another action:

6.4. OPERATIONS ON RELATIONS 6-13

s

s1

s2

s3

sn

t

t1

t2

t3

tm

The solid arrow interprets a test ?ϕ that succeeds in state s but fails in state t. If the
dashed arrows interpret a basic action symbol a, then, for instance, (s, s1) will be in the
interpretation of ?ϕ; a, but (t, t1) will not.

Since > is true in any situation, we have that ?> will get interpreted as I (the identity
relation on S). Therefore, ?>; a will always receive the same interpretation as a.

Since ⊥ is false in any situation, we have that ?⊥ will get interpreted as ∅ (the empty
relation on S). Therefore, ?⊥; a will always receive the same interpretation as ?⊥.

Before we handle repetition, it is useful to switch to a more gereral perspective.

6.4 Operations on Relations

Relations were introduced in Chapter 4 on predicate logic. In this chapter we view actions
as binary relations on a set S of situations. Such a binary relation is a subset of S × S,
the set of all pairs (s, t) with s and t taken from S. It makes sense to develop the general
topic of operations on binary relations. Which operations suggest themselves, and what
are the corresponding operations on actions?

In the first place, there are the usual set-theoretic operations. Binary relations are sets of
pairs, so taking unions, intersections and complements makes sense (also see Appendix
A). We have already seen that taking unions corresponds to choice between actions.

Example 6.2 The union of the relations ‘mother’ and ‘father’ is the relation ‘parent’.

Example 6.3 The intersection of the relations ⊆ and ⊇ is the equality relation =.

6-14 CHAPTER 6. LOGIC AND ACTION

In Section 6.3 we encountered the notation I for the equality (or: identity) relation on a
set S. We have seen that tests get interpreted as subsets of I .

We also looked at composition of relations. R1 ◦ R2 is the relation that performing an
R1 step followed by an R2 step. To see that order of composition matters, consider the
following example.

Example 6.4 The relational composition of the relations ‘mother’ and ‘parent’ is the re-
lation ‘grandmother’, for ‘x is grandmother of y’ means that there is a z such that x is
mother of z, and z is parent of y.

The relational composition of the relations ‘parent’ and ‘mother’ is the relation ‘maternal
grandparent’, for ‘x is maternal grandparent of y’ means that there is a z such that x is
parent of z and z is mother of y.

Exercise 6.5 What is the relational composition of the relations ‘father’ and ‘mother’?

Another important operation is relational converse. The relational converse of a binary
relation R, notation R ,̌ is the relation given by:

Rˇ = {(y, x) ∈ S2 | (x, y) ∈ R}.

Example 6.6 The relational converse of the ‘parent’ relation is the ‘child’ relation.

Exercise 6.7 What is the relational converse of the ⊆ relation?

The following law describes the interplay between composition and converse:

Converse of composition (R1 ◦R2)̌ = R2̌ ◦R1̌ .

Exercise 6.8 Check from the definitions that (R1 ◦R2)̌ = R2̌ ◦R1̌ is valid.

There exists a long list of logical principles that hold for binary relations. To start with,
there are the usual Boolean principles that hold for all sets:

Commutativity R1 ∪R2 = R2 ∪R1, R1 ∩R2 = R2 ∩R1,

Idempotence R ∪R = R, R ∩R = R.

Laws of De Morgan R1 ∪R2 = R1 ∩R2, R1 ∩R2 = R1 ∪R2.

Specifically for relational composition we have:

Associativity R1 ◦ (R2 ◦R3) = (R1 ◦R2) ◦R3.

6.4. OPERATIONS ON RELATIONS 6-15

Distributivity

R1 ◦ (R2 ∪R3) = (R1 ◦R2) ∪ (R1 ◦R3)

(R1 ∪R2) ◦R3) = (R1 ◦R3) ∪ (R2 ◦R3).

There are also many principles that seem plausible but that are invalid. To see that a
putative principle is invalid one should look for a counterexample.

Example 6.9 R ◦ R = R is invalid, for if R is the ‘parent’ relation, then the principle
would state that ‘grandparent’ equals ‘parent’, which is false.

Exercise 6.10 Show by means of a counterexample thatR1∪ (R2 ◦R3) = (R1∪R2)◦ (R1∪R3)
is invalid.

Exercise 6.11 Check from the definitions that R1 ◦ (R2 ∪R3) = (R1 ◦R2)∪ (R1 ◦R3) is valid.

Exercise 6.12 Check from the definition that Řˇ = R is valid.

Exercise 6.13 Check from the definitions that (R1 ∪R2)̌ = R1̌ ∪R2̌ is valid.

Transitive Closure A relation R is transitive if it holds that if you can get from x to y
in two R-steps, then it is also possible to get from x to y in a single R-step (see page 4-20
above). This can be readily expressed in terms of relational composition.

R is transitive iff R ◦R ⊆ R.

The transitive closure of a relation R is defined as the smallest transitive relation S that
contains R. This means: S is the transitive closure of R if

(1) R ⊆ S,

(2) S ◦ S ⊆ S,

(3) if R ⊆ T and T ◦ T ⊆ T then S ⊆ T .

Requirement (1) expresses that R is contained in S, requirement (2) expresses that S
is transitive, and requirement (3) expresses that S is the smallest transitive relation that
contains R: any T that satisfies the same requirements must be at least as large as S.

The customary notation for the transitive closure of R is R+. Here is an example.

Example 6.14 The transitive closure of the ‘parent’ relation is the ‘ancestor’ relation. If
x is parent of y then x is ancestor of y, so the parent relation is contained in the ancestor
relation. If x is an ancestor of y and y is an ancestor of z then surely x is an ancestor of z,
so the ancestor relation is transitive. Finally, the ancestor relation is the smallest transitive
relation that contains the parent relation.

6-16 CHAPTER 6. LOGIC AND ACTION

You can think of a binary relation R as a recipe for taking R-steps. The recipe for taking
double R-steps is now given by R ◦ R. The recipe for taking triple R-steps is given by
R ◦R ◦R, and so on.

There is a formal reason why the order of composition does not matter: R1 ◦ (R2 ◦ R3)
denotes the same relation as (R1 ◦R2) ◦R3. because of the above-mentioned principle of
associativity.

The n-fold composition of a binary relation R on S with itself can be defined from R and
I (the identity relation on S), by recursion (see Appendix, Section A.6), as follows:

R0 = I

Rn = R ◦Rn−1 for n > 0.

Abbreviation for the n-fold composition of R is Rn. This allows us to talk about taking a
specific number of R-steps.

Notice that R ◦ I = R. Thus, we get that R1 = R ◦R0 = R ◦ I = R.

The transitive closure of a relation R can be computed by means of:

R+ = R ∪R2 ∪R3 ∪ · · ·

This can be expressed without the · · · , as follows:

R+ =
⋃

n∈N,n>0

Rn.

Thus,R+ denotes the relation of doing an arbitrary finite number ofR-steps (at least one).

Closely related to the transitive closure ofR is the reflexive transitive closure ofR. This is,
by definition, the smallest relation that contains R and that is both reflexive and transitive.
The reflexive transitive closure of R can be computed by:

R∗ = I ∪R ∪R2 ∪R3 ∪ · · ·

This can be expressed without the · · · , as follows:

R∗ =
⋃
n∈N

Rn.

Thus, R∗ denotes the relation of doing an arbitrary finite number of R-steps, including
zero steps.

Notice that the following holds:
R+ = R ◦R∗.

Exercise 6.15 The following identity between relations is not valid:

(R ∪ S)∗ = R∗ ◦ S∗.

Explain why not by giving a counter-example.

6.5. COMBINING PROPOSITIONAL LOGIC AND ACTIONS: PDL 6-17

Exercise 6.16 The following identity between relations is not valid:

(R ◦ S)∗ = R∗ ◦ S∗.

Explain why not by giving a counter-example.

For Loops In programming, repetition consisting of a specified number of steps is
called a for loop. Here is an example of a loop for printing ten lines, in the program-
ming language Ruby:

#!/usr/bin/ruby

for i in 0..10
puts "Value of local variable is #{i}"

end

If you have a system with Ruby installed, you can save this as a file and execute it.

While Loops, Repeat Loops If R is the interpretation of a (‘doing a once’), then R∗ is
the interpretation of ‘doing a an arbitrary finite number of times’, and R+ is the interpre-
tation of ‘doing a an arbitrary finite number of times but at least once’. These relations
can be used to define the interpretation of while loops and repeat loops (the so-called
condition controlled loops), as follows.

If a is interpreted as Ra, then the condition-controlled loop ‘while ϕ do a’ is interpreted
as:

(R?ϕ ◦Ra)
∗ ◦R?¬ϕ.

First do a number of steps consisting of a ?ϕ test followed by an a action, next check that
¬ϕ holds.

Exercise 6.17 Supposing that a gets interpreted as the relation Ra, ?ϕ as R?ϕ and ?¬ϕ as R?¬ϕ,
give a relational interpretation for the condition controlled loop ‘repeat a until ϕ’.

6.5 Combining Propositional Logic and Actions: PDL

The language of propositional logic over some set of basic propositions P is given by:

ϕ ::= > | p | ¬ϕ | ϕ ∨ ϕ | ϕ ∧ ϕ where p ranges over P .

If we assume that a set of basic action symbols A is given, then the language of actions
that we discussed in Sections 6.2 and 6.3 above can be formally defined as:

α ::= a |?ϕ | α;α | α ∪ α | α∗ where a ranges over A.

6-18 CHAPTER 6. LOGIC AND ACTION

Note that the test ?ϕ in this definition refers to the definition of ϕ in the language of
propositional logic. Thus, the language of propositional logic is embedded in the language
of actions.

Now here is a new idea, for also doing the converse: extend the language of propositional
logic with a construction that describes the results of executing an action α.

If α is interpreted as a binary relation then in a given state s there may be several states s′

for which (s, s′) is in the interpretation of α.

Interpret 〈α〉ϕ as follows:

〈α〉ϕ is true in a state s if for some s′ with (s, s′) in the interpretation of α it
holds that ϕ is true in s′.

For instance, if a is the action of asking for promotion, and p is the proposition expressing
that one is promoted, then 〈a〉p expresses that asking for promotion may result in actually
getting promoted.

Another useful expression is [α]ϕ, with the following interpretation:

[α]ϕ is true in a state s if for every s′ with (s, s′) in the interpretation of α it
holds that ϕ is true in s′.

For instance, if a again expresses asking for promotion, and p expresses that one is pro-
moted, then [a]p expresses that, in the current state, the action of asking for a promotion
always results in getting promoted.

Note that 〈a〉p and [a]p are not equivalent: think of a situation where asking for a pro-
motion may also result in getting fired. In that case 〈a〉p may still hold, but [a]p does not
hold.

If one combines propositional logic with actions in this way one gets a basic logic of
change called Propositional Dynamic Logic or PDL. Here is the formal definition of the
language of PDL:

Definition 6.18 (Language of PDL — propositional dynamic logic) Let p range over
the set of basic propositions P , and let a range over a set of basic actions A. Then the
formulas ϕ and action statements α of propositional dynamic logic are given by:

ϕ ::= > | p | ¬ϕ | ϕ1 ∨ ϕ2 | ϕ1 ∧ ϕ2 | 〈α〉ϕ | [α]ϕ

α ::= a | ?ϕ | α1;α2 | α1 ∪ α2 | α∗

The definition does not have→ or↔. But this does not matter, for we can introduce these
operators by means of abbreviations or shorthands.

> is the formula that is always true. From this, we can define ⊥, as shorthand for ¬>.

6.5. COMBINING PROPOSITIONAL LOGIC AND ACTIONS: PDL 6-19

Similarly, ϕ1 → ϕ2 is shorthand for ¬ϕ1 ∨ ϕ2, ϕ1 ↔ ϕ2 is shorthand for (ϕ1 → ϕ2) ∧
(ϕ2 → ϕ1).

Propositional dynamic logic abstracts over the set of basic actions, in the sense that basic
actions can be anything. In the language of PDL they are atoms. This means that the
range of applicability of PDL is vast. The only thing that matters about a basic action a is
that it is interpreted by some binary relation on a state set.

Propositional dynamic logic has two basic syntactic categories: formulas and action state-
ments. Formulas are used for talking about states, action statements are used for classi-
fying transitions between states. The same distinction between formulas and action state-
ments can be found in all imperative programming languages. The statements of C or Java
or Ruby are the action statements. Basic actions in C are assigning a value to a variable.
These are instructions to change the memory state of the machine. The so-called Boolean
expressions in C behave like formulas of propositional logic. They appear as conditions
or tests in conditional expressions. Consider the following C statement:

if (y < z)
x = y;

else
x = z;

This is a description of an action. But the ingredient (y<z) is not a statement (description
of an action) but a Boolean expression (description of a state) that expresses a test.

Propositional dynamic logic is an extension of propositional logic with action statements,
just like epistemic logic is an extension of propositional logic with epistemic modalities.
Let a set of basic propositions P be given. Then appropriate states will contain valuations
for these propositions. Let a set of basic actions A be given. Then every basic action
corresponds to a binary relation on the state set. Together this gives a labeled transition
system with valuations on states as subsets from P and labels on arcs between states taken
from A.

Exercise 6.19 Suppose we also want to introduce a shorthand αn, for a sequence of n copies of
action statement α. Show how this can be defined by induction. (Hint: use α0 := ?> as the base
case.)

Let’s get a feel for the kind of things we can express with PDL. For any action statement
α,

〈α〉>

expresses that the action α has at least one successful execution. Similarly,

[α]⊥

expresses that the action fails (cannot be executed in the current state).

6-20 CHAPTER 6. LOGIC AND ACTION

The basic actions can be anything, so let us focus on a basic action a that is interpreted as
the relation Ra. Suppose we want to say that some execution of a leads to a p state and
another execution of a leads to a non-p state. Then here is a PDL formula for that:

〈a〉p ∧ 〈a〉¬p.

If this formula is true in a state s, then this means that Ra forks in that state: there are
at least two Ra arrows starting from s, one of them to a state s1 satisfying p and one of
them to a state s1 that does not satisfy p. For the interpretation of P we need properties
of states, for p is like a one-place predicate in predicate logic.

If the basic actions are changes in the world, such as spilling milk S or cleaning C, then
[C;S]d expresses that cleaning up followed by spilling milk always results in a dirty state,
while [S;C]¬d expresses that the occurrence of these events in the reverse order always
results in a clean state.

6.6 Transition Systems

In Section 6.7 we will define the semantics of PDL relative to labelled transition systems,
or process graphs.

Definition 6.20 (Labelled transition system) Let P be a set of basic propositions and A
a set of labels for basic actions. Then a labelled transition system (or LTS) over atoms P
and agents A is a triple M = 〈S,R, V 〉 where S is a set of states, V : S → P(P) is a
valuation function, and R = { a→⊆ S × S | a ∈ A} is a set of labelled transitions, i.e., a
set of binary relations on S, one for each label a.

Another way to look at a labelled transition system is as a first order model predicate for
a language with unary and binary predicates.

LTSs with a designated node (called the root node) are called pointed LTSs or process
graphs.

The process of repeatedly doing a, followed by a choice between b and c can be viewed
as a process graph, as follows:

0

1

⇓

ab c

6.6. TRANSITION SYSTEMS 6-21

The root note 0 is indicated by ⇓. There are two states 0 and 1. The process start in state
0 with the execution of action a. This gets us to state 1, where there are two possible
actions b and c, both of which get us back to state 0, and there the process repeats. This is
an infinite process, just like an operating system of a computer. Unless there is a system
crash, the process goes on forever.

Jumping out of a process can be done by creating an action that moves to an end state.

0

1

2

⇓

ab c

d

√

We can think about
√

as a proposition letter, and then use PDL to talk about these process
graphs. In state 1 of the first model 〈d〉

√
is false, in state 1 of the second model 〈d〉

√
is

true. This formula expresses that a d transition to a
√

state is possible.

In both models it is the case in state 0 that after any number of sequences consisting of an
a step followed by either a b or a c step, a further a step is possible. This is expressed by
the following PDL formula: [(a; (b ∪ c))∗]〈a〉>.

Exercise 6.21 Which of the following formulas are true in state 0 of the two models given above:

(1) 〈a; d〉
√

.

(2) [a; d]
√

.

(3) [a](〈b〉> ∧ 〈c〉>).

(4) [a]〈d〉
√

.

The following two pictures illustrate an important distinction:

6-22 CHAPTER 6. LOGIC AND ACTION

⇓
0

1

2 3

a

b c

⇓
0

1 2

3 4

a a

b c

In the picture on the left, it is possible to take an a action from the root, and next to make
a choice between doing b or doing c. In the picture on the right, there are two ‘ways’ of
doing a, one of them ends in a state where b is the only possible move and the other one
ending in a state where c is the only possible move. This difference can be expressed in
a PDL formula, as follows. In the root state of the picture on the left, [a](〈b〉> ∧ 〈c〉>) is
true, in the root state of the picture on the right this formula is false.

Exercise 6.22 Find a PDL formula that can distinguish between the root states of the following
two process graphs:

0

1

⇓
a

b

√

0

1

2

⇓
a

a

a

b

√

The formula should be true in one graph, false in the other.

6.7. SEMANTICS OF PDL 6-23

Exercise 6.23 Now consider the following two pictures of process graphs:

0

1

⇓
a

b

√

0

1 3

2

⇓
a

a

a

b

√

b

√

Is it still possible to find a PDL formula that is true in the root of one of the graphs and false in the
root of the other? If your answer is ‘yes’, then give such a formula. If your answer is ‘no’, then
try to explain as clearly as you can why you think this is impossible.

6.7 Semantics of PDL

The formulas of PDL are interpreted in states of a labeled transition system (or: LTS,
or: process graph), and the actions a of PDL as binary relations on the domain S of the
LTS. We can think of an LTS as given by its set of states S, its valuation V , and its set of
labelled transitions R. We will give the interpretation of basic actions a as a→.

If an LTS M is given, we use SM to refer to its set of states, we use RM to indicate its set
of labelled transitions, and we use VM for its valuation.

Definition 6.24 (Semantics of PDL) Given is a labelled transition systemM = 〈S, V,R〉
for P and A.

M, s |= > always
M, s |= p ⇐⇒ p ∈ V (s)
M, s |= ¬ϕ ⇐⇒ M, s 6|= ϕ
M, s |= ϕ ∨ ψ ⇐⇒ M, s |= ϕ or M, s |= ψ
M, s |= ϕ ∧ ψ ⇐⇒ M, s |= ϕ and M, s |= ψ
M, s |= 〈α〉ϕ ⇐⇒ for some t, (s, t) ∈ [[α]]M and M, t |= ϕ
M, s |= [α]ϕ ⇐⇒ for all t with (s, t) ∈ [[α]]M it holds that M, t |= ϕ.

6-24 CHAPTER 6. LOGIC AND ACTION

where the binary relation [[α]]M interpreting the action α in the model M is defined as

[[a]]M =
a→M

[[?ϕ]]M = {(s, s) ∈ SM × SM |M, s |= ϕ}
[[α1;α2]]

M = [[α1]]
M ◦ [[α2]]

M

[[α1 ∪ α2]]
M = [[α1]]

M ∪ [[α2]]
M

[[α∗]]M = ([[α]]M)∗

Note that the clause for [[α∗]]M uses the definition of reflexive transitive closure that was
given on page 6-16.

These clauses specify how formulas of PDL can be used to make assertions about PDL
models.

Example 6.25 The formula 〈a〉>, when interpreted at some state in a PDL model, ex-
presses that that state has a successor in the a→ relation in that model.

A PDL formula ϕ is true in a model if it holds at every state in that model, i.e., if [[ϕ]]M =
SM .

Example 6.26 Truth of the formula 〈a〉> in a model expresses that a→ is serial in that
model. (A binary relation R is serial on a domain S if it holds for all s ∈ S that there is
some t ∈ S with sRt.)

A PDL formula ϕ is valid if it holds for all PDL models M that ϕ is true in that model,
i.e., that [[ϕ]]M = SM .

Exercise 6.27 Show that 〈a; b〉> ↔ 〈a〉〈b〉> is an example of a valid formula.

As was note before, ? is an operation for mapping formulas to action statements. Action
statements of the form ?ϕ are called tests; they are interpreted as the identity relation,
restricted to the states satisfying the formula.

Exercise 6.28 Let the following PDL model be given:

1 : pq 2 : pq

3 : pq 4 : pq

b

b

a a

6.7. SEMANTICS OF PDL 6-25

Give the interpretations of ?p, of ?(p ∨ q), of a; b and of b; a.

Exercise 6.29 Let the following PDL model be given:

1 : pq 2 : pq

3 : pq4 : pq

a

a

a

a

b

b

(1) List the states where the following formulas are true:

a. ¬p
b. 〈b〉q
c. [a](p→ 〈b〉q)

(2) Give a formula that is true only at state 4.

(3) Give all the elements of the relations defined by the following action expressions:

a. b; b

b. a ∪ b
c. a∗

(4) Give a PDL action expression that defines the relation {(1, 3)} in the graph. (Hint: use one
or more test actions.)

Converse Letˇ (converse) be an operator on PDL programs with the following interpre-
tation:

[[α̌]]M = {(s, t) | (t, s) ∈ [[α]]M}.

Exercise 6.30 Show that the following equalities hold:

(α;β)̌ = β ;̌ α̌

(α ∪ β)̌ = α̌ ∪ βˇ
(α∗)̌ = (α̌)∗

Exercise 6.31 Show how the equalities from the previous exercise, plus atomic converse ǎ , can
be used to define α̌ , for arbitrary α, by way of abbreviation.

6-26 CHAPTER 6. LOGIC AND ACTION

It follows from Exercises 6.30 and 6.31 that it is enough to add converse to the PDL
language for atomic actions only. To see that adding converse in this way increases ex-
pressive power, observe that in root state 0 in the following picture 〈ǎ 〉> is true, while in
root state 2 in the picture 〈ǎ 〉> is false. On the assumption that 0 and 2 have the same
valuation, no PDL formula without converse can distinguish the two states.

⇓
0

⇓
2

1

a

6.8 Axiomatisation

The logic of PDL is axiomatised as follows. Axioms are all propositional tautologies, plus
an axiom stating that α behaves as a standard modal operator, plus axioms describing the
effects of the program operators (we give box ([α])versions here, but every axiom has
an equivalent diamond (〈α〉) version), plus a propositional inference rule and a modal
inference rule.

The propositional inference rule is the familiar rule of Modus Ponens.

(modus ponens) From ` ϕ1 and ` ϕ1 → ϕ2, infer ` ϕ2.

The modal inference rule is the rule of modal generalization (or: necessitation):

(modal generalisation) From ` ϕ, infer ` [α]ϕ.

Modal generalization expresses that theorems of the system have to hold in every state.

Example 6.32 Take the formula (ϕ ∧ ψ)→ ϕ. Because this is a propositional tautology,
it is a theorem of the system, so we have ` (ϕ ∧ ψ)→ ϕ. And because it is a theorem, it
has to hold everywhere, so we have, for any α:

` [α]((ϕ ∧ ψ)→ ϕ).

Now let us turn to the axioms. The first axiom is the K axiom (familiar from Chapter 5)
that expresses that program modalities distribute over implications:

(K) ` [α](ϕ→ ψ)→ ([α]ϕ→ [α]ψ)

6.8. AXIOMATISATION 6-27

Example 6.33 As an example of how to play with this, we derive the equivalent 〈α〉
version. By the K axiom, the following is a theorem (just replace ψ by ¬ψ everywhere in
the axiom):

` [α](ϕ→ ¬ψ)→ ([α]ϕ→ [α]¬ψ).

From this, by the propositional reasoning principle of contraposition:

` ¬([α]ϕ→ [α]¬ψ)→ ¬[α](ϕ→ ¬ψ).

From this, by propositional reasoning:

` [α]ϕ ∧ ¬[α]¬ψ)→ ¬[α](ϕ→ ¬ψ).

Now replace all boxes by diamonds, using the abbreviation ¬〈α〉¬ϕ for [α]ϕ:

` ¬〈α〉¬ϕ ∧ ¬¬〈α〉¬¬ψ)→ ¬¬〈α〉¬(ϕ→ ¬ψ).

This can be simplified by propositional logic, and we get:

` (¬〈α〉¬ϕ ∧ 〈α〉ψ)→ 〈α〉(ϕ ∧ ψ).

Example 6.34 This example is similar to Example 5.45 from Chapter 5.

Above, we have seen that [α]((ϕ ∧ ψ) → ϕ) is a theorem. With the K axiom, we can
derive from this:

` [α](ϕ ∧ ψ)→ [α]ϕ.

In a similar way, we can derive:

` [α](ϕ ∧ ψ)→ [α]ψ.

From these by propositional reasoning:

` [α](ϕ ∧ ψ)→ ([α]ϕ ∧ [α]ψ). (*)

The implication in the other direction is also derivable, as follows:

` ϕ→ (ψ → (ϕ ∧ ψ)),

because ϕ → (ψ → (ϕ ∧ ψ)) is a propositional tautology. By modal generalization
(necessitation) from this:

` [α](ϕ→ (ψ → (ϕ ∧ ψ))).

By two applications of the K axiom and propositional reasoning from this:

` [α]ϕ→ ([α]ψ → [α](ϕ ∧ ψ)).

Since ϕ → (ψ → χ) is propositionally equivalent to (ϕ ∧ ψ) → χ, we get from this by
propositional reasoning:

` ([α]ϕ ∧ [α]ψ)→ [α](ϕ ∧ ψ). (**)

Putting the two principles (∗) and (∗∗) together we get:

` [α](ϕ ∧ ψ)↔ ([α]ϕ ∧ [α]ψ). (***)

6-28 CHAPTER 6. LOGIC AND ACTION

Let us turn to the next axiom, the axiom for test. This axiom says that [?ϕ1]ϕ2 expresses
an implication:

(test) ` [?ϕ1]ϕ2 ↔ (ϕ1 → ϕ2)

The axioms for sequence and for choice:

(sequence) ` [α1;α2]ϕ↔ [α1][α2]ϕ

(choice) ` [α1 ∪ α2]ϕ↔ [α1]ϕ ∧ [α2]ϕ

Example 6.35 As an example application, we derive

` [α; (β ∪ γ)]ϕ↔ [α][β]ϕ ∧ [α][γ]ϕ.

Here is the derivation:

[α; (β ∪ γ)]ϕ ↔ (sequence) [α][β ∪ γ]ϕ

↔ (choice) [α]([β]ϕ ∧ [γ]ϕ)

↔ (***) [α][β]ϕ ∧ [α][γ]ϕ.

These axioms together reduce PDL formulas without ∗ to formulas of multi-modal logic
(propositional logic extended with simple modalities [a] and 〈a〉).

Example 6.36 We show how this reduction works for the formula [(a; b) ∪ (?ϕ; c)]ψ:

[(a; b) ∪ (?ϕ; c)]ψ ↔ (choice) [a; b]ψ ∧ [?ϕ; c]ψ

↔ (sequence) [a][b]ψ ∧ [?ϕ][c]ψ

↔ (test) [a][b]ψ ∧ (ϕ→ [c]ψ).

For the ∗ operation there are two axioms:

(mix) ` [α∗]ϕ↔ ϕ ∧ [α][α∗]ϕ

(induction) ` (ϕ ∧ [α∗](ϕ→ [α]ϕ))→ [α∗]ϕ

The mix axiom expresses the fact that α∗ is a reflexive and transitive relation containing
α, and the axiom of induction captures the fact that α∗ is the least reflexive and transitive
relation containing α.

As was mentioned before, all axioms have dual forms in terms of 〈α〉, derivable by propo-
sitional reasoning. For example, the dual form of the test axiom reads

` 〈?ϕ1〉ϕ2 ↔ (ϕ1 ∧ ϕ2).

The dual form of the induction axiom reads

` 〈α∗〉ϕ→ ϕ ∨ 〈α∗〉(¬ϕ ∨ 〈α〉ϕ).

6.8. AXIOMATISATION 6-29

Exercise 6.37 Give the dual form of the mix axiom.

We will now show that in the presence of the other axioms, the induction axiom is equiv-
alent to the so-called loop invariance rule:

ϕ→ [α]ϕ

ϕ→ [α∗]ϕ

Here is the theorem:

Theorem 6.38 In PDL without the induction axiom, the induction axiom and the loop
invariance rule are interderivable.

Proof. For deriving the loop invariance rule from the induction axiom, assume the
induction axiom. Suppose

` ϕ→ [α]ϕ.

Then by modal generalisation:

` [α∗](ϕ→ [α]ϕ).

By propositional reasoning we get from this:

` ϕ→ (ϕ ∧ [α∗](ϕ→ [α]ϕ)).

From this by the induction axiom and propositional reasoning:

` ϕ→ [α∗]ϕ.

Now assume the loop invariance rule. We have to establish the induction axiom. By the
mix axiom and propositional reasoning:

` (ϕ ∧ [α∗](ϕ→ [α]ϕ))→ [α]ϕ.

Again from the mix axiom and propositional reasoning:

` (ϕ ∧ [α∗](ϕ→ [α]ϕ))→ [α][α∗](ϕ→ [α]ϕ).

From the two above, with propositional reasoning using (***):

` (ϕ ∧ [α∗](ϕ→ [α]ϕ))→ [α](ϕ ∧ [α∗](ϕ→ [α]ϕ)).

Applying the loop invariance rule to this yields:

` (ϕ ∧ [α∗](ϕ→ [α]ϕ))→ [α∗](ϕ ∧ [α∗](ϕ→ [α]ϕ)).

From this we get the induction axiom by propositional reasoning:

` (ϕ ∧ [α∗](ϕ→ [α]ϕ))→ [α∗]ϕ.

This ends the proof. 2

6-30 CHAPTER 6. LOGIC AND ACTION

Axioms for Converse Suitable axioms to enforce that ǎ behaves as the converse of a
are the following:

` ϕ → [a]〈ǎ 〉ϕ
` ϕ → [ǎ]〈a〉ϕ

Exercise 6.39 Show that the axioms for converse are sound, by showing that they hold in any
state in any LTS.

6.9 Expressive power: defining programming constructs

The language of PDL is powerful enough to express conditional statements, fixed loop
statements, and condition-controlled loop statements as PDL programs. More precisely,
the conditional statement

if ϕ then α1 else α2

can be viewed as an abbreviation of the following PDL program:

(?ϕ;α1) ∪ (?¬ϕ;α2).

The fixed loop statement
do n times α

can be viewed as an abbreviation of

α; · · · ;α︸ ︷︷ ︸
n times

The condition-controlled loop statement

while ϕ do α

can be viewed as an abbreviation of

(?ϕ;α)∗; ?¬ϕ.

This loop construction expressed in terms of reflexive transitive closure works for finite
repetitions only, for note that the interpretation of “ while > do α” in any model is the
empty relation. Successful execution of every program we are considering here involves
termination of the program.

The condition controlled loop statement

repeat α until ϕ

can be viewed as an abbreviation of

α; (?¬ϕ;α)∗; ?ϕ.

6.10. OUTLOOK — PROGRAMS AND COMPUTATION 6-31

Note how these definitions make the difference clear between the while and repeat state-
ments. A repeat statement always executes an action at least once, and next keeps on
performing the action until the stop condition holds. A while statement checks a continue
condition and keeps on performing an action until that condition does not hold anymore.
If while ϕ do α gets executed, it may be that the α action does not even get executed once.
This will happen if ϕ is false in the start state.

In imperative programming, we also have the skip program (the program that does noth-
ing) and the abort program (the program that always fails): skip can be defined as ?>
(this is a test that always succeeds) and abort as ⊥ (this is a test that always fails).

Taking stock, we see that with the PDL action operations we can define the whole reper-
toire of imperative programming constructs: inside of PDL there is a full fledged impera-
tive programming language.

Moreover, given a PDL program α, the program modalities 〈α〉ϕ and [α]ϕ can be used to
describe so-called postconditions of execution for program α. The first of these expresses
that α has a successful exection that ends in an ϕ state; the second one expresses that
every successful execution of α ends in a ϕ state. We will say more about the use of this
in Section 6.10 below.

6.10 Outlook — Programs and Computation

If one wishes to interpret PDL as a logic of computation, then a natural choice for inter-
preting the basic actions statements is as register assignment statements. If we do this,
then we effectively turn the action statement part of PDL into a very expressive program-
ming language.

Let v range over a set of registers or memory locations V . A V -memory is a set of storage
locations for integer numbers, each labelled by a member of V . Let V = {v1, . . . , vn}.
Then a V -memory can be pictured like this:

· ·
v1 v2 v3 v4 v5 v6 v7

A V -state s is a function V → Z. We can think of a V -state as a V -memory together with
its contents. In a picture:

2 −3 334 0 2 1 102 · · ·
v1 v2 v3 v4 v5 v6 v7

If s is a V -state, s(v) gives the contents of register v in that state. So if s is the state above,
then s(v2) = −3.

6-32 CHAPTER 6. LOGIC AND ACTION

Let i range over integer names, such as 0, −234 or 53635 and let v range over V . Then
the following defines arithmetical expressions:

a ::= i | v | a1 + a2 | a1 ∗ a2 | a1 − a2.

It is clear that we can find out the value [[a]]s of each arithmetical expression in a given
V -state s.

Exercise 6.40 Provide the formal details, by giving a recursive definition of [[a]]s.

Next, assume that basic propositions have the form a1 ≤ a2, and that basic action state-
ments have the form v := a. This gives us a programming language for computing with
integers as action statement language and a formula language that allows us to express
properties of programs.

Determinism To say that program α is deterministic is to say that if α executes suc-
cessfully, then the end state is uniquely determined by the initial state. In terms of PDL
formulas, the following has to hold for every ϕ:

〈α〉ϕ→ [α]ϕ.

Clearly, the basic programming actions v := a are deterministic.

Termination To say that program α terminates (or: halts) in a given initial state is to
say that there is a successful execution of α from the current state. To say that α always
terminates is to say that α has a successful execution from any initial state. Here is a PDL
version:

〈α〉>.

Clearly, the basic programming actions v := a always terminate.

Non-termination of programs comes in with loop constructs. Here is an example of a
program that never terminates:

while > do v := v + 1.

One step through the loop increments the value of register v by 1. Since the loop condition
will remain true, this will go on forever.

In fact, many more properties beside determinism and termination can be expressed, and
in a very systematic way. We will give some examples of the style of reasoning involved.

Hoare Correctness Reasoning Consider the following problem concerning the out-
come of a pebble drawing action.

6.10. OUTLOOK — PROGRAMS AND COMPUTATION 6-33

A vase contains 35 white pebbles and 35 black pebbles. Proceed as follows
to draw pebbles from the vase, as long as this is possible. Every round, draw
two pebbles from the vase. If they have the same colour, then put a black
pebble into the vase (you may assume that there are enough additional black
pebbles outside of the vase). If they have different colours, then put the white
pebble back. In every round one pebble is removed from the vase, so after 69
rounds there is a single pebble left. What is the colour of this pebble?

It may seem that the problem does not provide enough information for a definite answer,
but in fact it does. The key to the solution is to discover an appropriate loop invariant: a
property that is initially true, and that does not change during the procedure.

Exercise 6.41 Consider the property: ‘the number of white pebbles is odd’. Obviously, this is
initially true. Show that the property is a loop invariant of the pebble drawing procedure. What
follows about the colour of the last pebble?

It is possible to formalize this kind of reasoning about programs. This formalization is
called Hoare logic. One of the seminal papers in computer science is Hoare’s [Hoa69].
where the following notation is introduced for specifying what a computer program writ-
ten in an imperative language (like C or Java) does:

{P} C {Q}.

Here C is a program from a formally defined programming language for imperative pro-
gramming, and P and Q are conditions on the programming variables used in C.

Statement {P} C {Q} is true if whenever C is executed in a state satisfying P and if the
execution of C terminates, then the state in which execution of C terminates satisfies Q.
The ‘Hoare-triple’ {P} C {Q} is called a partial correctness specification; P is called
its precondition and Q its postcondition. Hoare logic, as the logic of reasoning with such
correctness specifications is called, is the precursor of all the dynamic logics known today.

Hoare correctness assertions are expressible in PDL, as follows. If ϕ, ψ are PDL formulas
and α is a PDL program, then

{ϕ} α {ψ}

translates into
ϕ→ [α]ψ.

Clearly, {ϕ} α {ψ} holds in a state in a model iff ϕ → [α]ψ is true in that state in that
model.

The Hoare inference rules can now be derived in PDL. As an example we derive the rule
for guarded iteration:

{ϕ ∧ ψ} α {ψ}
{ψ} while ϕ do α {¬ϕ ∧ ψ}

6-34 CHAPTER 6. LOGIC AND ACTION

First an explanation of the rule. The correctness of while statements is established by
finding a loop invariant. Consider the following C function:

int square (int n)
{

int x = 0;
int k = 0;
while (k < n) {

x = x + 2*k + 1;
k = k + 1;

}
return x;

}

How can we see that this program correctly computes squares? By establishing a loop
invariant:

{x = k2} x = x + 2*k + 1; k = k + 1; {x = k2}.

What this says is: if the state before execution of the program is such that x = k2 holds,
then in the new state, after execution of the program, with the new values of the registers
x and k, the relation x = k2 still holds. From this we get, with the Hoare rule for while:

{x = k2}
while (k < n) { x = x + 2*k + 1; k = k + 1; }
{x = k2 ∧ k = n}

Combining this with the initialisation:

{>}
int x = 0 ; int k = 0;
{x = k2}
while (k < n) { x = x + 2*k + 1; k = k + 1; }
{x = k2 ∧ k = n}

This establishes that the while loop correctly computes the square of n in x.

So how do we derive the Hoare rule for while in PDL? Let the premise {ϕ∧ψ} α {ψ} be
given, i.e., assume (6.1).

` (ϕ ∧ ψ)→ [α]ψ. (6.1)

We wish to derive the conclusion

` {ψ} while ϕ do α {¬ϕ ∧ ψ},

i.e., we wish to derive (6.2).

` ψ → [(?ϕ;α)∗; ?¬ϕ](¬ϕ ∧ ψ). (6.2)

6.11. OUTLOOK — EQUIVALENCE OF PROGRAMS AND BISIMULATION 6-35

From (6.1) by means of propositional reasoning:

` ψ → (ϕ→ [α]ψ).

From this, by means of the test and sequence axioms:

` ψ → [?ϕ;α]ψ.

Applying the loop invariance rule gives:

` ψ → [(?ϕ;α)∗]ψ.

Since ψ is propositionally equivalent with ¬ϕ→ (¬ϕ ∧ ψ), we get from this by proposi-
tional reasoning:

` ψ → [(?ϕ;α)∗](¬ϕ→ (¬ϕ ∧ ψ)).

The test axiom and the sequencing axiom yield the desired result (6.2).

6.11 Outlook — Equivalence of Programs and Bisimula-
tion

PDL is interpreted in labelled transition systems, and labelled transition systems represent
processes. But the correspondence between labelled transition systems and processes is
not one-to-one.

Example 6.42 The process that produces an infinite number of a transitions and nothing
else can be represented as a labelled transition system in lots of different ways. The
following representations are all equivalent, and all represent that process. We further
assume that some atomic proposition p is true in all states in all structures.

0 : p

⇓

a 1 : p

2 : p

⇓

a

a

3 : p

4 : p

5 : p

⇓

a

a

a

6-36 CHAPTER 6. LOGIC AND ACTION

Each of these three process graphs pictures what is intuitively the following process: that
of repeatedly doing a steps, while remaining in a state satisfying p, with no possibility
of escape. Think of the actions as ticks of clock, and the state as the state of being
imprisoned. The clock ticks on, and you remain in jail forever.

It does not make a difference for what we can observe directly (in the present case: that we
are in a p state) and for what we can do (in the present case: an a action, and nothing else)
whether we are in state 0, 1, 2, 3, 4 or 5. From a local observation and action perspective,
all of these states are equivalent. Below we will make this notion of equivalence precise.
For now, we indicate it with connecting lines, as follows:

0 : p

⇓

a 1 : p

2 : p

⇓

a

a

3 : p

4 : p

5 : p

⇓

a

a

a

To connect the example to PDL: in all states in each process graph the formulas 〈a∗〉p,
〈a; a∗〉p, 〈a; a; a∗〉p, and so on, are all true. Moreover, it will not be possible to find a PDL
formula that sees a difference between the root states of the three process graphs.

We will give a formal definition of this important relation of ‘being equivalent from a
local action perspective’. We call this relation bisimulation, and we say that states that
are in the relation are bisimilar. Common notation for this is the symbol↔. Thus, s↔ t
expresses that there is some relation C which is a bisimulation, such that sCt.

For the picture above we have: 0 ↔ 1, 0 ↔ 2, and also, between the middle and the
right graph: 1 ↔ 3, 1 ↔ 4, 1 ↔ 5, 2 ↔ 3, 2 ↔ 4, 2 ↔ 5. The composition of
two bisimulations is again a bisimulation, and we get from the above that we also have:
0↔ 3, 0↔ 4 and 0↔ 5.

We can also have bisimilarity within a single graph: 1 ↔ 2, and 3 ↔ 4, 3 ↔ 5, 4 ↔ 5.
Note that every node is bisimilar with itself.

Example 6.43 For another example, consider the following picture. Atom p is false in
states 0, 2, and 4, and true in states 1, 3 and 5.

6.11. OUTLOOK — EQUIVALENCE OF PROGRAMS AND BISIMULATION 6-37

0 : p

1 : p

⇓

a

b

2 : p

3 : p 4 : p

5 : p

⇓

b a

a

b

In the labelled transition structures of the picture, we have that 0 ↔ 2, and that 0 ↔ 4;
and 1↔ 3 and 1↔ 5. In a picture:

0 : p

1 : p

⇓

a

b

2 : p

3 : p 4 : p

5 : p

⇓

b a

a

b

The notion of bisimulation is intended to capture such process equivalences.

Definition 6.44 (Bisimulation) A bisimulation C between LTSs M and N is a relation
on SM × SN such that if sCt then the following hold:

Invariance VM(s) = VN(t) (the two states have the same valuation),

Zig if for some s′ ∈ SM s
a→ s′ ∈ RM then there is a t′ ∈ SN with t a→ t′ ∈ RN and

s′Ct′.

Zag same requirement in the other direction: if for some t′ ∈ SN t
a→ t′ ∈ RN then there

is an s′ ∈ SM with s a→ s′ ∈ RM and s′Ct′.

6-38 CHAPTER 6. LOGIC AND ACTION

The notation M, s ↔ N, t indicates that there is a bisimulation C that connects s and t.
In such a case one says that s and t are bisimilar.

LetM , N be a pair of models and let C ⊆ SM×SN . Here is an easy check to see whether
C is a bisimulation. For convenience we assume that each model has just a single binary
relation (indicated as RM and RN). Checking the invariance condition is obvious. To
check the zig condition, check whether

Cˇ◦RM ⊆ RN ◦ C .̌

To check the zag condition, check whether

C ◦RN ⊆ RM ◦ C.

Example 6.45 (Continued from Example 6.43) To see how this works, consider the two
models of Example 6.43. Let C be given by

{(0, 2), (0, 4), (1, 3), (1, 5)}.

Then the invariance condition holds, for any two states that are C-connected agree in the
valuation for p.

Furthermore, Cˇ◦ RM,a = {(0, 0)} and RN,a ◦ Cˇ = {(0, 0)}, so the zig condition holds
for the a labels. Cˇ◦RM,b = {(0, 1)}, and RN,b ◦Cˇ = {(0, 1)}, so the zig condition also
holds for the b labels.

Finally, C ◦ RN,a = {(2, 4), (4, 4)} and RM,a ◦ C = {(2, 4), (4, 4)}, so the zag condition
holds for the a labels. C ◦RN,b = {(0, 3), (0, 5)}, and RM,b ◦ C = {(0, 3), (0, 5)}, so the
zag condition also holds for the b labels.

This shows that C is a bisimulation.

Exercise 6.46 Have another look at Exercise 6.23. Explain why it is impossible to find a PDL
formula that is true at the root of one of the graphs and false at the root of the other graph.

Bisimulation is intimately connected to modal logic and to PDL. Modal logic is a sublogic
of PDL. It is given by restricting the set of programs to atomic programs.

ϕ ::= > | p | ¬ϕ | ϕ1 ∨ ϕ2 | 〈a〉ϕ

Modal formulas can be used to define global properties of LTSs, as follows. Any modal
formula ϕ can be viewed as a function that maps an LTS M to a subset of SM , namely the
set of those states where ϕ is true. Call this set ϕM . A global property ϕ is invariant for
bisimulation if whenever C is a bisimulation between M and N with sCt, then s ∈ ϕM

iff t ∈ ϕN .

The notion of invariance for bisimulation generalises the invariance condition of bisimu-
lations.

6.11. OUTLOOK — EQUIVALENCE OF PROGRAMS AND BISIMULATION -39

Exercise 6.47 Show that all modal formulas are invariant for bisimulation: Ifϕ is a modal formula
that is true of a state s, and s is bisimilar to t, then ϕ is true of t as well. (Hint: use induction on
the structure of ϕ.)

Bisimulations are also intimately connected to PDL. Any PDL program α can be viewed
as a global relation on LTSs, for α can be viewed as a function that maps an LTS M to a
subset of SM × SM , namely, the interpretation of α in M . Call this interpretation αM . A
global relation α is safe for bisimulation if whenever C is a bisimulation between M and
N with sCt, then:

Zig: if sαMs
′ for some s′ ∈ SM then there is a t′ ∈ SN with tαN t

′ and s′Ct′,

Zag: vice versa: if tαN t
′ for some t′ ∈ SN then there is an s′ ∈ SM with sαMs

′ and
s′Ct′.

The notion of safety for bisimulation generalises the zig and zag conditions of bisimula-
tions.

Exercise 6.48 A modal action is a PDL program (action statement) that does not contain ∗. Use
induction on the structure of α to show that all modal actions α are safe for bisimulation.

Summary of Things You Have Learnt in This Chapter You have learnt how to look
at action in a general way, and how to apply a general formal perspective to the analysis
of action. You know what labelled transition systems (or: process graphs) are, and you
are able to evaluate PDL formulas in states of LTSs. You understand how key program-
ming concepts such as test, composition, choice, repetition, converse are handled in PDL,
and how the familiar constructs ‘skip’,‘if-then-else’, ‘while-do’, and ‘repeat-until’ can be
expressed in terms of the PDL operations. You are able to check if a given program can
be executed on a simple labelled transition system. Finally, you have an intuitive grasp
of the notion of bisimulation, and you are able to check whether two states in a single
process graph or in different process graphs are bisimilar.

Further Reading An influential philosophy of action is sketched in [Dav67]. A clas-
sical logic of actions is PDL or propositional dynamic logic [Pra78, Pra80, KP81]. A
textbook treatment of dynamic logic is presented in [HKT00].

Precise descriptions of how to perform given tasks are called algorithms. The logic of
actions is closely connected to the theory of algorithm design. See [DH04]. Connections
between logic and (functional) programming are treated in [DvE04].

Social actions are the topic of [EV09].

