
Logic in Action

–New Edition, November 23, 2016–

Johan van Benthem, Hans van Ditmarsch, Jan van Eijck, Jan Jaspars

0-2

Contents

1 General Introduction 1-1

1.1 Inference, Observation, Communication 1-1

1.2 The Origins of Logic . 1-3

1.3 Uses of Inference . 1-5

1.4 Logic and Other Disciplines . 1-9

1.5 Overview of the Course . 1-11

Classical Systems 2-1

2 Propositional Logic 2-1

2.1 Reasoning in Daily Life . 2-1

2.2 Inference Patterns, Validity, and Invalidity 2-3

2.3 Classification, Consequence, and Update 2-5

2.4 The Language of Propositional Logic 2-8

2.5 Semantic Situations, Truth Tables, Binary Arithmetic 2-13

2.6 Valid Consequence and Consistency . 2-18

2.7 Proof . 2-22

2.8 Information Update . 2-24

2.9 Expressiveness . 2-26

2.10 Outlook — Logic, Mathematics, Computation 2-28

2.11 Outlook — Logic and Practice . 2-32

2.12 Outlook — Logic and Cognition . 2-34

0-3

0-4 CONTENTS

3 Syllogistic Reasoning 3-1

3.1 Reasoning About Predicates and Classes 3-1

3.2 The Language of Syllogistics . 3-4

3.3 Sets and Operations on Sets . 3-5

3.4 Syllogistic Situations . 3-10

3.5 Validity Checking for Syllogistic Forms 3-12

3.6 Outlook — Satisfiability and Complexity 3-18

3.7 Outlook — The Syllogistic and Actual Reasoning 3-21

4 The World According to Predicate Logic 4-1

4.1 Learning the Language by Doing . 4-2

4.2 Practising Translations . 4-8

4.3 Reasoning Patterns with Quantifiers . 4-13

4.4 Formulas, Situations and Pictures . 4-17

4.5 Syntax of Predicate Logic . 4-25

4.6 Semantics of Predicate Logic . 4-30

4.7 Valid Laws and Valid Consequence . 4-35

4.8 Proof . 4-38

4.9 Identity, Function Symbols, Algebraic Reasoning 4-41

4.10 Outlook — Mathematical Background 4-46

4.11 Outlook — Computational Connection 4-49

4.12 Outlook — Predicate Logic and Philosophy 4-51

Knowledge, Action, Interaction 4-57

5 Logic, Information and Knowledge 5-1

5.1 Logic and Information Flow . 5-1

5.2 Information versus Uncertainty . 5-3

5.3 Modeling Information Change . 5-10

5.4 The Language of Epistemic Logic . 5-12

5.5 Models and Semantics for Epistemic Logic 5-15

CONTENTS 0-5

5.6 Valid Consequence . 5-21

5.7 Proof . 5-25

5.8 Information Update . 5-30

5.9 The Logic of Public Announcement . 5-37

5.10 Outlook — Information, Knowledge, and Belief 5-42

5.11 Outlook – Social Knowledge . 5-44

5.12 Outlook – Secrecy and Security . 5-47

6 Logic and Action 6-1

6.1 Actions in General . 6-1

6.2 Sequence, Choice, Repetition, Test . 6-6

6.3 Viewing Actions as Relations . 6-10

6.4 Operations on Relations . 6-13

6.5 Combining Propositional Logic and Actions: PDL 6-17

6.6 Transition Systems . 6-20

6.7 Semantics of PDL . 6-23

6.8 Axiomatisation . 6-26

6.9 Expressive power: defining programming constructs 6-30

6.10 Outlook — Programs and Computation 6-31

6.11 Outlook — Equivalence of Programs and Bisimulation 6-35

7 Logic, Games and Interaction 7-1

7.1 Logic meets Games . 7-1

7.2 Evaluation of Assertions as a Logical Game 7-4

7.3 Zermelo’s Theorem and Winning Strategies 7-8

7.4 Sabotage Games: From Simple Actions to Games 7-11

7.5 Model Comparison as a Logic Game . 7-13

7.6 Different Formulas in Model Comparison Games 7-16

7.7 Bisimulation Games . 7-19

7.8 Preference, Equilibrium, and Backward Induction 7-21

7.9 Game logics . 7-31

0-6 CONTENTS

7.10 Games with imperfect information . 7-33

7.11 Logic and Game Theory . 7-36

7.12 Outlook — Iterated Game Playing . 7-44

7.13 Outlook — Knowledge Games . 7-46

7.14 Outlook — Games and Foundations . 7-47

7.15 Outlook — Games, Logic and Cognition 7-48

Methods 8-1

8 Validity Testing 8-1

8.1 Tableaus for propositional logic . 8-2

8.1.1 Reduction rules . 8-5

8.2 Tableaus for predicate logic . 8-9

8.2.1 Rules for quantifiers . 8-13

8.2.2 Alternative rules for finding finite counter-models 8-17

8.2.3 Invalid inferences without finite counter-examples 8-19

8.2.4 Tableaus versus natural reasoning 8-20

8.3 Tableaus for epistemic logic . 8-22

9 Proofs 9-1

9.1 Natural deduction for propositional logic 9-2

9.1.1 Proof by refutation . 9-5

9.1.2 Introduction and elimination rules 9-7

9.1.3 Rules for conjunction and disjunction 9-9

9.2 Natural deduction for predicate logic . 9-13

9.2.1 Rules for identity . 9-18

9.3 Natural deduction for natural numbers 9-18

9.3.1 The rule of induction . 9-20

9.4 Outlook . 9-23

9.4.1 Completeness and incompleteness 9-23

9.4.2 Natural deduction, tableaus and sequents 9-23

CONTENTS 0-7

9.4.3 Intuitionistic logic . 9-23

9.4.4 Automated deduction . 9-23

10 Computation 10-1

10.1 A Bit of History . 10-1

10.2 Processing Propositional Formulas . 10-3

10.3 Resolution . 10-7

10.4 Automating Predicate Logic . 10-12

10.5 Conjunctive Normal Form for Predicate Logic 10-15

10.6 Substitutions . 10-17

10.7 Unification . 10-19

10.8 Resolution with Unification . 10-24

10.9 Prolog . 10-26

Appendices A-1

A Sets, Relations and Functions A-1

A.1 Sets and Set Notation . A-1

A.2 Relations . A-3

A.3 Back and Forth Between Sets and Pictures A-5

A.4 Relational Properties . A-6

A.5 Functions . A-9

A.6 Recursion and Induction . A-11

B Solutions to the Exercises B-1

0-8 CONTENTS

Chapter 1

General Introduction

1.1 Inference, Observation, Communication

Much of our interaction with each other in daily life has to do with information processing
and reasoning about knowledge and ignorance of the people around us. If I ask a simple
question, like “Can you tell me where to find the Opera House?”, then I convey the infor-
mation that I do not know the answer, and also, that I think that you may know. Indeed, in
order to pick out the right person for asking such informative questions, we need to reason
about knowledge of others. It is our ability to reason in the presence of other reasoning
agents that has made us historically so successful in debate, organization, and in planning
collective activities. And it is reasoning in this broad sense that this course is about.

We will study informational processes of inference and information update – and while
we can start dealing with these for single agents, our theories must also work interac-
tively when many agents exchange information, say, in a conversation or a debate. As
we proceed, you will see many further aspects of this program, and you will learn about
mathematical models for it, some quite recent, some already very old.

Reasoning and Proof While reasoning in daily life and solving practical tasks is im-
portant, many logical phenomena become more pronounced when we look at specialized
areas, where our skills have been honed to a greater degree.

To see the power of pure inference unleashed, think of mathematical proofs. Already in
Greek Antiquity (and in parallel, in other cultures), logical inference provided a search-
light toward surprising new mathematical facts. In our later chapter on Proof, we will give
examples, including the famous Pythagorean proof that

√
2 is not a rational number.The

Holy Writ of this tradition are Euclid’s Elements from around 300 BC with its formal
set-up of axioms, definitions, and theorems for geometry.

1-1

1-2 CHAPTER 1. GENERAL INTRODUCTION

(1.1)

Indeed, mathematical methods have deeply influenced the development of logic. They did
so in two ways. First, mathematical proof is about the purest form of inference that exists,
so it is an excellent ‘laboratory’ for studying inference. But also, mathematics is about
the clearest way that we have for modeling phenomena and studying their properties,
and logical systems of any kind, even when dealing with daily life, use mathematical
techniques.

Reasoning and Observation Combinations of inference with other information sources
drive the natural sciences, where experiments provide information that is just as crucial
as mathematical proof. Observations about Nature made by scientists involves the same
sort of information update as in simple question answering. Seeing new facts removes
uncertainty. And the art is to ask the right questions, to find the right mixtures of new
evidence and deduction from what we have seen already.

The same skill actually occurs in other specialized practices. Conan Doyle’s famous
detective Sherlock Holmes is constantly thinking about what follows from what he has
seen already, but he also uses his powers of deduction to pinpoint occasions where he
needs new evidence. In a famous story, the dog did not bark at night-time (and so, the
intruder must have been known to the dog), but this conclusion also directs attention
toward making further observations, needed to see which of the various familiar persons
committed the crime.

1.2. THE ORIGINS OF LOGIC 1-3

(1.2)

Reasoning and Argumentation From crime it is only one step to lawyers and courts.
Legal reasoning is another major tradition where logic is much in evidence, and we will
return to this later.

1.2 The Origins of Logic

Logic as a systematic discipline dates back two and a half millennia: younger than Math-
ematics or the Law, but much older than most current academic disciplines, social institu-
tions, or for that matter, religions. Aristotle and the Stoic philosophers formulated explicit
systems of reasoning in Greek Antiquity around 300 BC.

Aristotle appearing on two Greek postal stamps The early Stoic Zeno of Citium

(1.3)

Independent traditions arose around that time in China and in India, which produced
famous figures like the Buddhist logician Dignaga, or Gangesa, and this long tradition
lives on in some philosophical schools today. Through translations of Aristotle, logic also
reached the Islamic world. The work of the Persian logician Avicenna around 1000 AD
was still taught in madrassa’s by 1900. All these traditions have their special concerns
and features, and there is a growing interest these days in bringing them closer together.

1-4 CHAPTER 1. GENERAL INTRODUCTION

We mention this point because the cross-cultural nature of logic is a social asset beyond
its scientific agenda.

Mo Zi, founder of Mohism Dignaga, Indian Buddhist Logician Avicenna, Persian Logician

(1.4)

Still, with all due respect for this historical past that is slowly coming to light, it seems fair
to say that logic made a truly major leap in the nineteenth century, and the modern logic
that you will see in this course derives its basic mind-set largely from the resulting golden
age of Boole, Frege, Gödel, and others: a bunch of European university professors, some
quite colourful, some much less so.

George Boole on the cover of Gottlob Frege with on the right
the ‘Laws of Thought’ (1847), the first page of his ‘Begriffsschrift’ (1879),

the book that created propositional logic, with the system of first-order predicate logic
the theme of the next chapter. that can analyze much of mathematics.

(1.5)

Even so, it remains an intriguing and unsolved historical question just how and why logic
arose — and we will have more to say on this below. The standard story is that great
thinkers like Aristotle suddenly realized that there is structure to the human reasoning
that we see all around us. Some patterns are valid and reliable, while others are not. But it
has also been suggested that an interest in logic arose out of philosophical, mathematical,
juridical, or even political practice. Some ‘moves’ worked, others did not – and people
became curious to see the general reasons why.

1.3. USES OF INFERENCE 1-5

1.3 Uses of Inference

The TV has gone dark. If it goes dark, this is due to the apparatus or the remote (or both).
But the remote is working, so it must be the apparatus, and we must start repairs there.
This pattern involves a logical key-word, the disjunction ‘or’:

A or R, not R. So: A. (1.6)

In pure form, we can also see this pattern at work in solving Sudoku puzzles. Logic also
helps create new Sudoku puzzles. Start with any complete nine-digit diagram. Now pick
a random slot and remove the digit in that slot. The remaining digits in the diagram still
completely determine what should be in the open slot, for the digit in that slot follows
by logical inference (or: by valid inference) from the other digits and the general sudoku
constraints. In this way, one can go on picking filled positions at random, and checking
if the digit in that position still follows from others by a valid inference. Keep doing this
until no longer possible. You have now generated a minimal puzzle, and since your steps
are hidden, it may take readers quite a while to figure out the unique solution.

Cognitive scientists have suggested that the primary use of logic may have been in plan-
ning. Clearly, thinking about constraints and consequences of tasks beforehand is an
immense evolutionary advantage. Here is a simple illustration.

Planning a party How can we send invitations given the following constraints?

(i) John comes if Mary or Ann comes.

(ii) Ann comes if Mary does not come.

(iii) If Ann comes, John does not.

(1.7)

In the chapter on propositional logic, you will learn simple techniques for solving this: for
now, just try! (Here is a hint: start out with a ‘maximal’ invitation list John, Ann, Mary,
and check what you have to drop to satisfy the constraints. Bear in mind that there may
be several solutions to this.)

Legal reasoning We also said that daily skills can be optimized for special purposes.
As we said already, inference is crucial to legal reasoning, and so is the earlier-mentioned
multi-agent feature that different actors are involved: defendant, lawyer, prosecutor, judge.

The prosecutor has to prove that the defendant is guilty (G) on the basis of the available
admissible evidence (E), i.e., she has to prove the conclusion G from evidence E. But
the usual ‘presumption of innocence’ means that the lawyer has another logical task:
viz. making it plausible that G does not follow from E. This does not require her to
demonstrate that her client is innocent: she just needs to paint one scenario consistent
with the evidence E where G fails, whether it is the actual one or not.

1-6 CHAPTER 1. GENERAL INTRODUCTION

Logical key-words There are certain logical key-words driving patterns of inference.
Expressions like ‘not’, ‘and’, ‘or’, ‘if then’ are sentence forming constructions that clas-
sify situations as a whole. What we mean by this is that these expressions can be used to
construct new sentences from existing sentences. From “it is raining” to “it is not raining”.
From “it is raining” and “it is wet” to “if it is raining then it is wet”, and so on.

But there are other expressions that tell us more about the internal structure of these situ-
ations, in terms of objects and their properties and relations. “Hans is friendly” ascribes
a property to a person. “Hans and Jan are colleagues” describes a relation between two
persons. Historically, the most important example are quantifiers, expressions of quan-
tity such as ‘all’, ‘every’, ‘some’ or ‘no’. “All logicians are friendly” describes how the
properties of being a logician and being friendly are related, using the quantifier ‘all’.

The view of inference as the result of replacing some parts in expressions by variable
parts, so that only logical key-words and variables remain, can already be found in the
work of the Bohemian philosopher and priest Bernhard Bolzano (1781 – 1848).

Bernard Bolzano

(1.8)

Aristotle’s syllogisms listed the basic inference patterns with quantifiers, such as

All humans are animals, no animals are mortal. So, no humans are mortal. (1.9)

This is a valid inference. But the following is not valid:

Not all humans are animals, no animals are mortal. So, some humans are mortal.
(1.10)

Syllogistic forms were long considered the essence of logical reasoning, and their format
has been very influential until the 19th century. Today, they are still popular test cases for
psychological experiments about human reasoning.

Quantifiers are essential to understanding both ordinary and scientific discourse. If you
unpack standard mathematical assertions, you will find any amount of stacked quantifiers.
For instance, think of saying that 7 is a prime number. This involves:

All of 7’s divisors are either equal to 1 or to 7, (1.11)
where x divides y if for some z: x · z = y.

1.3. USES OF INFERENCE 1-7

Here ‘all of’ and ‘for some’ are the quantifiers that provide the logical glue of the ex-
planation of what it means to be prime, or to be a divisor. Other examples with many
quantifiers occur in Euclid’s geometry and spatial reasoning in general.

We will devote two entire chapters to the logic of the quantifiers ‘all’, ‘some’, given its
central importance. Actually, natural language has many further quantifier expressions,
such as ‘three’, ‘most’, ‘few’, ‘almost all’, or ‘enough’. This broad repertoire raises
many issues of its own about the expressive and communicative function of logic, but we
sidestep these here.

Many further logical key-words will emerge further on in this course, including expres-
sions for reasoning about knowledge and action.

Another crucial feature of logic, that makes it a true scientific endeavour in a systematic
sense, is the turning of human reasoning to itself as a subject of investigation. But things
go even one step further. Logicians study reasoning practices by developing mathematical
models for them – but then, they also make these systems themselves into a new object of
investigation.

Logical systems Indeed, Aristotle already formulated explicit logical systems of infer-
ence in his Syllogistics, giving all valid rules for syllogistic quantifier patterns. Interest-
ingly, Aristotle also started the study of grammar, language looking at language — and
earlier than him, the famous Sanskrit grammarian Panini had used mathematical systems
there, creating a system that is still highly sophisticated by modern standards:

(1.12)

This mathematical system building tradition has flourished over time, largely (but not
exclusively) in the West. In the nineteenth century, George Boole gave a complete analysis
of propositional logic for reasoning with sentential operators like ‘not’, ‘and’, ‘or’, that
has become famous as the ‘Boolean algebra’ that underlies the switching circuits of your
computer. Boole showed that all valid principles of propositional reasoning can be derived
from a simple calculus, by purely algebraic manipulations. We will explain how this
works later on in this course.

Subsequently, Frege gave formal systems for reasoning with quantifiers in ways that go
far beyond Aristotle’s Syllogistic. Over time, systems in this line have proved strong
enough to formalize most of mathematics, including its foundational set theory.

1-8 CHAPTER 1. GENERAL INTRODUCTION

Foundations of mathematics Through this process of scrutiny, mathematical and logi-
cal theories themselves become objects of investigation. And then, some startling discov-
eries were made. For instance, here is the so-called Russell Paradox from the foundations
of set theory.

Set theory is a general way of talking about collections of entities What the Russell para-
dox tells us is that we have to be very careful in how to express ourselves in talking about
collections of entities. For suppose anything goes in defining sets, so that, if we have
a description we can construct the set of all things satisfying the description. Then the
following can happen.

Some sets contain themselves as a member (e.g., the set of all non-teaspoons
is not a teaspoon, so the set of non-teaspoon has itself as a member). Others
do not (for instance, the set of all teaspoons is not itself a teaspoon.) Now
consider the set R of all sets that do not have themselves as members. It is
easy to see that R is a member of R if and only if R is not a member of R:
and that is a contradiction.

The sort of reasoning that leads to this paradox will be taken up in several later chapters.
The formal definition of the Russell set R is: R = {x | x /∈ x}. The paradoxical
statement is: R ∈ R if and only if R /∈ R. If you have never seen the symbol ∈ or the
bracket notation {x | . . .} then you should at some point consult Appendix A to catch up
with the rest of us.

The foundational problems in the development of logic illustrated by Russell’s paradox
led to the so-called foundational study of mathematics, which investigates formal prop-
erties of mathematical theories, and power and limits of proofs. A famous name here is
Kurt Gödel, probably the greatest figure in the history of logic. His incompleteness theo-
rems are fundamental insights into the scope and reliability of mathematics, that got him
on the TIME 2001 list of most influential intellectuals of the twentieth century. But in
Amsterdam, we also cite our own L.E.J. Brouwer, the father of ‘intuitionistic logic’, an
important program in the foundations of mathematics and computation. These mathemat-
ical theoretical aspects of logic belong more properly to an advanced course, but we will
give you some feeling for this theme further on in this book.

1.4. LOGIC AND OTHER DISCIPLINES 1-9

Kurt Gödel Brouwer on a Dutch post stamp

(1.13)

1.4 Logic and Other Disciplines

Looking at the list of topics discussed above, you have seen switches from language and
conversation to mathematics and computation. Indeed, in a modern university, logic lies
at a cross-roads of many academic disciplines. This course will make you acqainted with
a number of important systems for doing logic, but it will also draw many connections
between logic and related disciplines. We have already given you a taste of what logic has
to do with mathematics. Mathematics supplies logic with its techniques, but conversely,
logic can also be used to analyze the foundations of mathematics. Now we look at a few
more important alliances.

Logic, language and philosophy Perhaps the oldest connection of logic is with phi-
losophy. Logic has to do with the nature of assertions, meaning, and knowledge, and
philosophers have been interested in these topics from the birth of philosophy. Logic can
serve as a tool for analyzing philosophical arguments, but it is also used to create philo-
sophical systems. Logical forms and calculating with these is a role model for conceptual
abstraction. It has even been claimed that logical patterns of the sort sketched here are
close to being a ‘universal language of thought’.

But it will also be clear that logic has much to do with linguistics, since logical patterns
arise from abstraction out of the grammar of ordinary language, and indeed, logic and
linguistics share a long history from Antiquity through the Middle Ages.

Logic and computation Another long-standing historical theme interleaves logic and
computation. Since the Middle Ages, people have been fascinated by machines that would

1-10 CHAPTER 1. GENERAL INTRODUCTION

automate reasoning, and around 1700, Leibniz

Gottfried Wilhelm von Leibniz The first binary addition mechanism as
described by Leibniz in a paper called
‘Mechanica Dyadica’ (around 1700)

(1.14)

realized that logical inference may be viewed as a sort of computation, though not with
ordinary but with binary numbers. A straight line runs from here to modern computers
and computer science, and the seminal work of Turing and others.

Alan Turing A ‘Turing Machine’

(1.15)

Logic and games While mathematics, philosophy, linguistics, and computer science
are old neighbours of logic, new interfaces keep emerging. We end with one directed
toward the social and behavioural sciences. As we have said before, logic had its origins
in a tradition of conversation, debate, and perhaps legal procedure. This brings us back
to our earlier theme that much logical behaviour is interactive, crucially involving other
persons.

Argumentation itself is a key example. There are different parties playing different roles,
and reacting to each other over time. This clearly has the structure of a game. In such a
game logical operations like ‘or’, ‘and’ and ‘not’ function as a sort of ‘switches’, not just
in a Boolean computer, but also in discussion. When I defend that ‘A or B’, then you can
hold me to this, and I have to choose eventually which of the two I will defend. Thus,
a disjunction offers a choice to its defender — and likewise, a conjunction ‘A and B’

1.5. OVERVIEW OF THE COURSE 1-11

offers a choice to the attacker: since the defender is committed to both parts. Interesting
interactions also arise by means of the third item of Boolean algebra: logical negation.
This triggers a role switch: defending ‘not A’ is attacking ‘A’, and vice versa. Indeed,
being able to ‘put yourself in another person’s place’ has been called the quintessential
human cognitive achievement.

In this way, logic comes to describe the structure of rational interaction between conver-
sation partners. Traditions of vigorous regimented logical debating games flourished in
the Middle Ages, and they still do in some parts of the world:

Karma Guncho, ten monasteries battle each other
on Buddhist philosophy using logical analysis.

(1.16)

In this game setting, we may call an inference valid if the defender of the conclusion has
a ‘winning strategy’: that is, a rule for playing which will always lead her to win the game
against any defender of the premises, whatever that person brings up over time.

But if logic has much to do with games, then it also has links with economic game theory,
and not surprisingly, this is another flourishing interface today. We will develop this topic
in greater depth in a separate chapter, but now you know why.

1.5 Overview of the Course

In this course, logic will be presented as a key element in the general study of reasoning,
information flow and communication: topics with a wide theoretical and practical reach.
The course starts with introductions to three important systems of reasoning: proposi-
tional logic (Chapter 2), syllogistics (Chapter 3), and predicate logic (Chapter 4). To-
gether, these describe situations consisting of objects with a great variety of structure, and
in doing so, they cover many basic patterns that are used from natural language to the
depths of mathematics.

Next, we move on to the newer challenges on a general agenda of studying information
flow. The first is agents having information and interacting through questions, answers,
and other forms of communication. This social aspect is crucial if you think about how
we use language, or how we behave in scientific investigation. We will model observation
and reasoning in a multi-agent setting, introducing the logic of knowledge in Chapter ??.

1-12 CHAPTER 1. GENERAL INTRODUCTION

To model the dynamic aspect of all this, we turn to the basic logic of action in Chapter 6.
And Chapter 7 takes up a more recent theme: the use of games as a model of interaction.
These bring together many of the separate topics in the course so far.

The next group of chapters then develop three logical methods more in detail. Chapter 8
is about precise ways of testing logical validity, that give you a sense of how a significant
logical calculus really works. Chapter 9 goes into mathematical proof and its structures.
Chapter 10 gives more details on the many relations between logic and computation.

In all of these chapters, and even more in the internet version of this text, you will find
links to topics in philosophy, mathematics, linguistics, cognition and computation, and
you will discover that logic is a natural ‘match-maker’ between these disciplines.

We have tried to give an indication of the difficulty of the exercises, as follows: ♥ indi-
cates that a problem is easy (solving the problems marked as ♥ can be used as a test to
check that you have digested the explanations in the text), ♠ indicates that a problem is
a bit harder than average, and ♠♠ indicates that a problem is quite hard. If you feel you
can handle an extra challenge, you are encouraged to try your hand at these.

Classical Systems

1-13

Chapter 2

Propositional Logic

Overview The most basic logical inferences are about combinations of sentences, ex-
pressed by such frequent expressions as ‘not’, ‘and’, ‘or’, ‘if, then’. Such combinations
allow you to describe situations, and what properties these situations have or lack: some-
thing is ‘not this, but that’. You could call this reasoning about ‘classification’, and it is
the basis of any description of the world. At the same time, these logical sentence com-
binations are also fundamental in another sense, as they structure how we communicate
and engage in argumentation. When you disagree with a claim that someone makes, you
often try to derive a consequence (’if then’) whose negation (‘not’) is easier to show. We
will study all these patterns of reasoning below.

More precisely, in this first chapter you will be introduced to propositional logic, the
logical system behind the reasoning with ‘not’, ‘and’, ‘or’, ‘if, then’ and other basic
sentence-combining operators. You will get acquainted with the notions of formula, logi-
cal connective, truth, valid consequence, information update, formal proof, and expressive
power, while we also present some backgrounds in computation and cognition.

2.1 Reasoning in Daily Life

Logic can be seen in action all around us:

In a restaurant, your Father has ordered Fish, your Mother ordered Vegetarian,
and you ordered Meat. Out of the kitchen comes some new person carrying
the three plates. What will happen?

We have know this from experience. The waiter asks a first question, say “Who ordered
the meat?”, and puts that plate. Then he asks a second question “Who has the fish?”, and
puts that plate. And then, without asking further, he knows he has to put the remaining
plate in front of your Mother. What has happened here?

2-1

2-2 CHAPTER 2. PROPOSITIONAL LOGIC

Starting at the end, when the waiter puts the third plate without asking, you see a major
logical act ‘in broad daylight’: the waiter draws a conclusion. The information in the two
answers received allows the waiter to infer automatically where the third dish must go.
We represent this in an inference schema with some special notation (F for “fish”, M for
“meat”, V for “vegetarian”):

F or V or M, not M, not F =⇒ V. (2.1)

This formal view has many benefits: one schema stands for a wide range of inferences,
for it does not matter what we put for F , V and M .

Inferences often come to the surface especially vividly in puzzles, where we exercise our
logical abilities just for the fun of it. Think of successive stages in the solution of a 3× 3
Sudoku puzzle, produced by applying the two basic rules that each of the 9 positions must
have a digit, but no digit occurs twice on a row or column:

(2.2)

Each successive diagram displays a bit more explicit information about the solution,
which is already implicitly determined by the initial placement of the two digits 1, 2.
And the driving mechanism for these steps is exactly our Restaurant inference. Think of
the step from the first to the second picture. The top right dot is either 1, 2 or 3. It is not
1. It is not 2. Therefore, it has to be 3.

But is much more information flow in this Restaurant scene. Before his final inference,
the waiter first actively sought to find out enough facts by another typical information-
producing act, viz. asking a question. And the answers to his two questions were also
crucial.

The essence of this second process is a form of computation on information states. During
a conversation, information states of people – singly, and in groups – change over time,
triggered by communicative events. The Restaurant scenario starts with an initial infor-
mation state consisting of six options, all the ways in which three plates can be distributed
over three people (MFV,MV F, ...). The answer to the first question then reduces this to
two (the remaining orders FV , V F), and the answer to the second question reduces this
to one, zooming in on just the actual situation (for convenience, assume it is MFV). This
may be pictured as a diagram (‘video’) of successive updates:

2.2. INFERENCE PATTERNS, VALIDITY, AND INVALIDITY 2-3

MFV MVF

FMV FVM

VMF VFM

MFV MVF MFV

6

2
1

second answerfirst answer

(2.3)

2.2 Inference Patterns, Validity, and Invalidity

Consider the following statement from your doctor:

If you take my medication, you will get better.

But you are not taking my medication.

So, you will not get better.

(2.4)

Here the word ‘so’ (or ‘therefore’, ‘thus’, etc.) suggests the drawing of a conclusion
from two pieces of information: traditionally called the ‘premises’. We call this an act of
inference. Now, as it happens, this particular inference is not compelling. The conclusion
might be false even though the two premises are true. You might get better by taking that
greatest medicine of all (but so hard to swallow for modern people): just wait. Relying
on a pattern like this might even be pretty dangerous in some scenarios:

If I resist, the enemy will kill me.

But I am not resisting.

So, the enemy will not kill me.

(2.5)

Now contrast this with another pattern:

If you take my medication, you will get better.

But you are not getting better.

So, you have not taken my medication.

(2.6)

This is valid: there is no way that the two stated premises can be true while the conclusion
is false. It is time for a definition. Broadly speaking,

2-4 CHAPTER 2. PROPOSITIONAL LOGIC

we call an inference valid if there is ‘transmission of truth’: in every situation
where all the premises are true, the conclusion is also true.

Stated differently but equivalently, an inference is valid if it has no ‘counter-examples’:
that is, situations where the premises are all true while the conclusion is false. This is a
crucial notion to understand, so we dwell on it a bit longer.

What validity really tells us While this definition makes intuitive sense, it is good to
realize that it may be weaker than it looks a first sight. For instance, a valid inference with
two premises

P1, P2, so C (2.7)

allows many combinations of truth and falsity. If any premise is false, nothing follows
about the conclusion. In particular, in the second doctor example, the rule may hold (the
first premise is true), but you are getting better (false second premise), and you did take
the medication (false conclusion). Of all eight true-false combinations for three sentences,
validity rules out 1 (true-true-false)! The most you can say for sure thanks to the validity
can be stated in one of two ways:

(a) if all premises are true, then the conclusion is true

(b) if the conclusion is false, then at least one premise is false
(2.8)

The first version is how people often think of logic: adding more things that you have
to accept given what you have accepted already. But there is an equally important use
of logic in refuting assertions, perhaps made by your opponents. You show that some
false consequence follows, and then cast doubt on the original assertion. The second
formulation says exactly how this works. Logical inferences also help us see what things
are false — or maybe more satisfyingly, refute someone else. But note the subtlety: a false
conclusion does not mean that all premises were false, just that at least one is. Detecting
this bad apple in a basket may still take further effort.

To help you understand both aspects of validity, consider the tree below: representing a
‘complex argument’ consisting of individual inferences with capital letters for sentences,
premises above the bar, and the conclusion below it. Each inference in the tree is valid:

A C

D

B

A

E

E

F

A

B

G

(2.9)

You are told reliably that sentence A is true and G is false. For which further sentences
that occur in the tree can you now determine their truth and falsity? (The answer is that
A, B, are true, C, D, E , G are false, while we cannot tell whether F is true or false.)

2.3. CLASSIFICATION, CONSEQUENCE, AND UPDATE 2-5

Inference patterns The next step in the birth of logic was the insight that the validity
and invalidity here have to do with abstract patterns, the shapes of the inferences, rather
than their specific content. Clearly, the valid second argument would also be valid in the
following concrete form, far removed from doctors and medicine:

If the enemy cuts the dikes, Holland will be inundated.

Holland is not inundated.

So, the enemy has not cut the dikes.

(2.10)

This form has variable parts (we have replaced some sentences by others), but there are
also constant parts, whose meaning must stay the same, if the inference is to be valid. For
instance, if we also replace the negative word ‘not’ by the positive word ‘indeed’, then we
get the clearly invalid inference:

If the enemy cuts the dikes, Holland will be inundated.

Holland is indeed inundated.

So, the enemy has indeed cut the dikes.

(2.11)

For counter-examples: the inundation may be due to faulty water management, rain, etc.

To bring out the relevant shared underlying form of inferences, we need a notation for
both fixed and variable parts. We do this by using variable letters for expressions that can
be replaced by others in their linguistic category, plus special notation for key expressions
that determine the inference, often called the logical constants.

2.3 Classification, Consequence, and Update

Classification The main ideas of propositional logic go back to Antiquity (the Stoic
philosopher Chrysippus of Soli, c.280–c.207 BC), but its modern version starts in the
nineteenth century, with the work of the British mathematician George Boole (1815–
1864).

2-6 CHAPTER 2. PROPOSITIONAL LOGIC

Chrysippus George Boole

Our earlier examples were essentially about combinations of propositions (assertions ex-
pressed by whole sentences). From now on, we will indicate basic propositions by letters
p, q, etcetera. A finite number of such propositions generates a finite set of possibilities,
depending on which are true and which are false. For instance, with just p, q there are
four true/false combinations, that we can write as

pq, pq, pq, pq (2.12)

where p represents that p is true and p that p is false. Thus, we are interested in a basic
logic of this sort of classification. (Note that p is not meant as a logical proposition here,
so that it is different from the negation not-p that occurs in inferences that we will use
below. The distinction will only become clear later.)

Drawing consequences Now consider our earlier examples of valid and invalid argu-
ments. For instance,

(a) the argument “from if-p-then-q and not-p to not-q” was invalid,

whereas

(b) the argument “from if-p-then-q, not-q to not-p” was valid.

Our earlier explanation of validity for a logical consequence can now be sharpened up. In
this setting, it essentially says the following:

each of the above four combinations that makes the premises true must also
make the conclusion true.

You can check whether this holds by considering all cases in the relevant list that satisfy
the premises. For instance, in the first case mentioned above,

2.3. CLASSIFICATION, CONSEQUENCE, AND UPDATE 2-7

(a) not-p is true at pq and pq. if-p-then-q holds also in these two situations,
since the condition p is not true. So, the first of the two situations, pq, sup-
port the two premises but the conclusion not-q is false in this situation. The
argument is therefore invalid!

For the second case we get

(b) not-q is true at pq and pq. while if-p-then-q only holds in the second, so
pq is the only situation in which all the premises hold. In this situation not-p
also holds, and therefore, the argument is valid.

Updating information Propositional logic describes valid (and invalid) inference pat-
terns, but it also has other important uses. In particular, it describes the information flow
in earlier examples, that may arise from observation, or just facts that are being told.

With the set of all combinations present, we have no information about the actual situa-
tion. But we may get additional information, ruling out options. To see how, consider a
simple party, with just two possible invitees Mary and John. We write p and q, respec-
tively, for “Mary comes to the party” and “John comes to the party”. Suppose that we are
first told that at least one of the invitees comes to the party: p-or-q. Out of four possible
situations this new information rules out just one, viz. pq. Next, the we learn that not-p.
This rules out two more options, and we are left with only the actual situation pq. Here is
a ‘video-clip’ of the successive information states, that get ‘updated’ by new information:

MFV MVF

FMV FVM

VMF VFM

MFV MVF MFV

6

2
1

second answerfirst answer

pq

pq

pq

pq

pq pq

pq

pq

p or q

pq

q
pq

not p
(2.13)

Incidentally, you can now also see why the conclusion q is a valid inference from ‘p or
q’ and ‘not p’. Adding the information that q does not change the final information state,
nothing is ruled out:

MFV MVF

FMV FVM

VMF VFM

MFV MVF MFV

6

2
1

second answerfirst answer

pq

pq

pq

pq

pq pq

pq

pq

p!q ¬p

pq

q
pq (2.14)

But if adding the information that q does not change anything, this means that q is already
true. So the truth of q is guaranteed by the fact that the two earlier updates have taken
place. This must mean that q is logically implied by the earlier formulas.

Exercise 2.1 Consider the case where there are three facts that you are interested in. You wake
up, you open your eyes, and you ask yourself three things: “Have I overslept?”, “Is it raining?”,

2-8 CHAPTER 2. PROPOSITIONAL LOGIC

“Are there traffic jams on the road to work?”. To find out about the first question, you have to
check your alarm clock, to find out about the second you have to look out of the window, and to
find out about the third you have to listen to the traffic info on the radio. We can represent these
possible facts with three basic propositions, p, q and r, with p expressing “I have overslept”, q
expressing “It is raining”, and r expressing “There are traffic jams.” Suppose you know nothing
yet about the truth of your three facts. What is the space of possibilities?

Exercise 2.2 (Continued from previous exercise.) Now you check your alarm clock, and find out
that you have not overslept. What happens to your space of possibilities?

Toward a system Once we have a system in place for these tasks, we can do many
further things. For instance, instead of asking whether a given inference is valid, we can
also just look at given premises, and ask what would be a most informative conclusion.
Here is a case that you can think about (it is used as a basic inference step to program
computers that perform reasoning automatically):

Exercise 2.3 You are given the information that p-or-q and (not-p)-or-r. What can you conclude
about q and r? What is the strongest valid conclusion you can draw? (A statement is stronger than
another statement if it rules out more possibilities.)

A precise system for the above tasks can also be automated, and indeed, propositional
logic is historically important also for its links with computation and computers. Comput-
ers become essential with complex reasoning tasks, that require many steps of inference
or update of the above simple kinds, and logical systems are close to automated deduc-
tion. But as we shall see later in Section 2.10, there is even a sense in which propositional
logic is the language of computation, and it is tied up with deep open problems about the
nature of computational complexity.

But the start of our story is not in computation, but in natural language. We will identify
the basic expressions that we need, and then sharpen them up in a precise notation.

2.4 The Language of Propositional Logic

Reasoning about situations involves complex sentences with the ‘logical connectives’ of
natural language, such as ‘not’, ‘and’, ‘or’ and ‘if .. then’. These are not the only ex-
pressions that drive logical reasoning, but they do form the most basic level. We could
stay close to natural language itself to define our system (traditional logicians often did),
but it has become clear over time that working with well-chosen notation makes things
much clearer, and easier to manipulate. So, just like mathematicians, logicians use formal
notations to improve understanding and facilitate computation.

2.4. THE LANGUAGE OF PROPOSITIONAL LOGIC 2-9

From natural language to logical notation As we have seen in Section 2.3, logical
forms lie behind the valid inferences that we see around us in natural language. So we
need a good notation to bring them out. For a start, we will use special symbols for the
key logical operator words:

Symbol In natural language Technical name

¬ not negation

∧ and conjunction

∨ or disjunction

→ if ... then implication

↔ if and only if equivalence

(2.15)

Other notations occur in the literature, too: some dialects have & for ∧, and ≡ for↔. We
write small letters for basic propositions p, q, etcetera. For arbitrary propositions, which
may contain connectives as given in the table (2.15), we write small Greek letters ϕ, ψ, χ,
etc.

Inclusive and exclusive disjunction The symbol ∨ is for inclusive disjunction, as in
‘in order to pass the exam, question 3 or question 4 must have been answered correctly’.
Clearly, you don’t want to be penalized if both are correct! This is different from the
exclusive disjunction (most often written as ⊕), as in ‘you can marry Snowwhite or Cin-
derella’. This is not an invitation to marry both at the same time. When we use the word
‘disjunction’ without further addition we mean the inclusive disjunction.

Now we can write logical forms for given assertions, as ‘formulas’ with these symbols.
Consider a card player describing the hand of her opponent:

Sentence “He has an Ace if he does not have a Knight or a Spade”

Logical formula ¬(k ∨ s)→ a

It is useful to see this process of formalization as something that is performed in separate
steps, for example, as follows. In cases where you are in doubt about the formalization
of a phrase in natural language, you can always decide to ‘slow down’ to such a stepwise
analysis, to find out where the crucial formalization decision is made.

2-10 CHAPTER 2. PROPOSITIONAL LOGIC

He has an Ace if he does not have a Knight or a Spade,
if (he does not have a Knight or a Spade), then (he has an Ace),
(he does not have a Knight or a Spade)→ (he has an Ace),
not (he has a Knight or a Spade)→ (he has an Ace),
¬ (he has a Knight or a Spade)→ (he has an Ace),
¬ ((he has a Knight) or (he has a Spade))→ (he has an Ace),
¬ ((he has a Knight) ∨ (he has a Spade))→ (he has an Ace),
¬(k ∨ s)→ a

In practice, one often also sees mixed notations where parts of sentences are kept intact,
with just logical keywords in formal notation. This is like standard mathematical lan-
guage, that mixes symbols with natural language. While this mixing can be very useful
(the notation enriches the natural language, and may then be easier to absorb in cogni-
tive practice), you will learn more here by looking at the extreme case where the whole
sentence is replaced by a logical form.

Ambiguity The above process of taking natural language to logical forms is not a rou-
tine matter. There can be quite some slack, with genuine issues of interpretation. In
particular, natural language sentences can be ambiguous, having different interpretations.
For instance, another possible logical form for the card player’s assertion is the formula

(¬k ∨ s)→ a (2.16)

Check for yourself that this says something different from the above. One virtue of logical
notation is that we see such differences at a glance: in this case, by the placement of the
brackets, which are auxiliary devices that do not occur as such in natural language (though
it has been claimed that some actual forms of expression do have ‘bracketing functions’).

Sometimes, the logical form of what is stated is even controversial. According to some
people, ‘You will get a slap (s), unless you stop whining (¬w)’ expresses the implication
w → s. According to others, it expresses the equivalence w ↔ s. Especially, negations
in natural language may quickly get hard to grasp. Here is a famous test question in a
psychological experiment that many people have difficulty with. How many negations
are there, and what does the stacking of negations mean in the following sentence:

“Nothing is too trivial to be ignored?”

Formal language and syntactic trees Logicians think of the preceding notations, not
just as a device that can be inserted to make natural language more precise, but as some-
thing that is important on its own, namely, an artificial or formal language.

You can think of formulas in such a language as being constructed, starting from basic
propositions, often indicated by letters p, q, etcetera, and then applying logical operations,
with brackets added to secure unambiguous readability.

2.4. THE LANGUAGE OF PROPOSITIONAL LOGIC 2-11

Example 2.4 The formula ((¬p ∨ q) → r) is created stepwise from proposition letters
p, q, r by applying the following construction rules successively:

(a) from p, create ¬p,

(b) from ¬p and q, create (¬p ∨ q)
(c) from (¬p ∨ q) and r, create ((¬p ∨ q)→ r)

This construction may be visualized in trees that are completely unambiguous. Here
are trees for the preceding example plus a variant that we already noted above. Mathe-
matically, bracket notation and tree notation are equivalent — but their cognitive appeal
differs, and trees are widely popular in mathematics, linguistics, and elsewhere:

((¬p ∨ q)→ r)

(¬p ∨ q)

¬p

p

q

r

(¬(p ∨ q)→ r)

¬(p ∨ q)

(p ∨ q)

p q

r

This example has prepared us for the formal presentation of the language of propositional
logic. There are two ways to go about this, they amount to the same: an ‘inductive
definition’ (for this technical notion, see Appendix A). Here is one way:

Every proposition letter (p, q, r, . . .) is a formula. If ϕ is a formula, then ¬ϕ
is also a formula. If ϕ1 and ϕ2 are formulas, then (ϕ1 ∧ ϕ2), (ϕ1 ∨ ϕ2),
(ϕ1 → ϕ2) and (ϕ1 ↔ ϕ2) are also formulas. Nothing else is a formula.

We can now clearly recognize that the way we have constructed the formula in the ex-
ample above is exactly according to this pattern. That is merely a particular instance of
the above definition. The definition is formulated in more abstract terms, using the for-
mula variables ϕ1 and ϕ2. An even more abstract specification, but one that amounts to
exactly the same inductive definition, is the so-called BNF specification of the language
of propositional logic. BNF stands for ‘Backus Naur Form’, after the computer scientists
John Backus and Peter Naur who introduced this device for the syntax of programming
languages.

Definition 2.5 (Language of propositional logic) Let P be a set of proposition letters
and let p ∈ P .

ϕ ::= p | ¬ϕ | (ϕ ∧ ϕ) | (ϕ ∨ ϕ) | (ϕ→ ϕ) | (ϕ↔ ϕ)

2-12 CHAPTER 2. PROPOSITIONAL LOGIC

We should read such a definition as follows. In the definition we define objects of the type
‘formula in propositional logic’, in short: formulas. The definition starts by stating that
every atomic proposition is of that type, i.e., is a formula. Then it says that if an object
is of type ϕ, then ¬ϕ is also of type ϕ. Note that it does not say that ¬ϕ is the same
formula ϕ. It merely says that both can be called ‘formula’. This definition then helps us
to construct concrete formulas step by step, as in the previous example.

Backus Naur form is an example of linguistic specification. In fact, BNF is a computer
science re-invention of a way to specify languages that was proposed in 1956 by the
linguist Noam Chomsky.

In practice we often do not write the parentheses, and we only keep them if their removal
would make the expression ambiguous, as in p ∨ q ∧ r. This can mean ((p ∨ q) ∧ r) but
also (p ∨ (q ∧ r)) and that makes quite a difference. The latter is already true if only p is
true, but the former requires r to be true. Or take a natural language example: “Haddock
stays sober or he drinks and he gets angry.”

Exercise 2.6 Write in propositional logic:

• I will only go to school if I get a cookie now.

• John and Mary are running.

• A foreign national is entitled to social security if he has legal employment or if he has had
such less than three years ago, unless he is currently also employed abroad.

Exercise 2.7 Which of the following are formulas in propositional logic:

• p→ ¬q

• ¬¬ ∧ q ∨ p

• p¬q

Exercise 2.8 Construct trees for the following formulas:

• (p ∧ q)→ ¬q

• q ∧ r ∧ s ∧ t (draw all possible trees: think of bracket arrangements).

Exercise 2.9 From the fact that several trees are possible for q∧r∧s∧t, we see that this expression
can be read in more than one way. Is this ambiguity harmful or not? Why (not)? If you find this
hard to answer, think of a natural language example.

2.5. SEMANTIC SITUATIONS, TRUTH TABLES, BINARY ARITHMETIC 2-13

A crucial notion: pure syntax Formulas and trees are pure symbolic forms, living
at the level of syntax, as yet without concrete meaning. Historically, identifying this
separate level of form has been a major abstraction step, that only became fully clear in
19th century mathematics. Most uses of natural language sentences and actual reasoning
come with meanings attached, unless very late at parties. Pure syntax has become the
basis for many connections between logic, mathematics, and computer science, where
purely symbolic processes play an important role.

Logic, language, computation, and thought The above pictures may remind you of
parse trees in grammars for natural languages. Indeed, translations between logical forms
and linguistic forms are a key topic at the interface of logic and linguistics, which has also
started working extensively with mathematical forms in the 20th century. Connections be-
tween logical languages and natural language have become important in Computational
Linguistics and Artificial Intelligence, for instance when interfacing humans with com-
puters and symbolic computer languages. In fact, you can view our syntax trees in two
ways, corresponding to two major tasks in these areas. ‘Top down’ they analyze complex
expressions into progressively simpler ones: a process of parsing given sentences. But
‘bottom up’ they construct new sentences, a task called language generation.

But also philosophically, the relation between natural and artificial languages has been
long under debate. The more abstract level of logical form has been considered more
‘universal’ as a sort of ‘language of thought’, that transcends differences between natural
languages (and perhaps even between cultures). You can also cast the relation as a case
of replacement of messy ambiguous natural language forms by clean logical forms for
reasoning and perhaps other purposes — which is what the founding fathers of modern
logic had in mind, who claimed that natural languages are ‘systematically misleading’.
But less radically, and perhaps more realistic from an empirical cognitive viewpoint, you
can also see the relation as a way of creating hybrids of existing and newly designed
forms of expression. Compare the way the language of mathematicians consists of natural
language plus a growing fund of notations, or the way in which computer science extends
our natural repertoire of expression and communication.

2.5 Semantic Situations, Truth Tables, Binary Arithmetic

Differences in formal syntax often correspond to differences in meaning: the above two
trees are an example. To explain this in more detail, we now need a semantics that, for
a start, relates syntactic objects like formulas to truth and falsity in semantic situations.
Thus, formulas acquire meaning in specific settings, and differences in meaning between
formulas are often signalled by differences in truth in some situation.

2-14 CHAPTER 2. PROPOSITIONAL LOGIC

Truth values and valuations for atoms As we said already, each set of proposition
letters p, q, r, . . . generates a set of different situations, different ways the actual world
might be, or different states that it could be in (all these interpretations make sense in
applications). Three proposition letters generate 23 = 8 situations:

{pqr, pqr, pqr, pqr, pqr, pqr, pqr, pqr} (2.17)

Here proposition letters stand for ‘atomic propositions’, while logical operations form
‘molecules’. Of course this is just a manner of speaking, since what counts as ‘atomic’
in a given application is usually just our decision ‘not to look any further inside’ the
proposition. A convenient mathematical view of situations is as functions from atomic
propositions to truth values 1 (‘true’) and 0 (‘false’). For instance, the above situation
pqr corresponds to the function sending p to 1, q to 0, and r to 1. An alternative notation
for truth values is t and f , but we use numbers for their suggestive analogy with binary
arithmetic (the heart of computers). We call these functions V valuations; V (ϕ) = 1 says
that the formula ϕ is true in the situation (represented by) V , and V (ϕ) = 0 says that
the formula ϕ is false in the situation V . For V (ϕ) = 1 we also write V |= ϕ and for
V (ϕ) = 0 we also write V 6|= ϕ. One can read V |= ϕ as “V makes true ϕ”, or as “V
satisfies ϕ” or “V is a model of ϕ”. The notation using |= will reappear in later chapters.

Boolean operations on truth values Any complex sentence constructed from the rel-
evant atomic proposition letters is either true or false in each situation. To see how this
works, we first need an account for the meaning of the logical operations. This is achieved
by assigning them Boolean operations on the numbers 0, 1, in a way that respects (as far
as reasonable) their intuitive usage. For instance, if V (ϕ) = 0, then V (¬ϕ) = 1, and
vice versa; and if V (ϕ) = 1, then V (¬ϕ) = 0, and vice versa. Such relations are easier
formatted in a table.

Definition 2.10 (Semantics of propositional logic) A valuation V is a function from propo-
sition letters to truth values 0 and 1. The value or meaning of complex sentences is com-
puted from the value of basic propositions according to the following truth tables.

ϕ ¬ϕ

0 1

1 0

ϕ ψ ϕ ∧ ψ ϕ ∨ ψ ϕ→ ψ ϕ↔ ψ

0 0 0 0 1 1

0 1 0 1 1 0

1 0 0 1 0 0

1 1 1 1 1 1

(2.18)

Bold-face numbers give the truth values for all relevant combinations of argument values:
four in the case of connectives with two arguments, two in the case of the connective with
one argument, the negation.

2.5. SEMANTIC SITUATIONS, TRUTH TABLES, BINARY ARITHMETIC 2-15

Explanation The tables for negation, conjunction, disjunction, and equivalence are
quite intuitive, but the same does not hold for the table for implication. The table for
implication has generated perennial debate, since it does not match the word ‘implies’ in
natural language very well. E.g., does having a false antecedent (condition) ϕ and a true
consequent ψ really make the implication if-ϕ-then-ψ true? But we are just doing the best
we can in our simple two-valued setting. Here is a thought that has helped many students.
You will certainly accept the following assertion as true: ‘All numbers greater than 13 are
greater than 12’. Put differently, ‘if a number n is greater than 13 (p), then n is greater
than 12 (q)’. But now, just fill in different numbers n, and you get all combinations in the
truth table. For instance, n = 14 motivates the truth-value 1 for p → q at pq, n = 13
motivates 1 for p→ q at pq, and n = 12 motivates 1 for p→ q at pq.

A mismatch with natural language can actually be very useful. Conditionals are a ‘hot
spot’ in logic, and it is a challenge to create systems that get closer to their behaviour.
Propositional logic is the simplest treatment that exists, but other logical systems today
deal with further aspects of conditionals in natural language and ordinary reasoning. You
will see a few examples later in this course.

Computing truth tables for complex formulas How exactly can we compute truth
values for complex formulas? This is done using our tables by following the construction
stages of syntax trees. Here is how this works. Take the valuation V with V (p) = V (q) =
1, V (r) = 0 and consider two earlier formulas:

((¬p ∨ q)→ r 0

(¬p ∨ q) 1

¬p 0

p 1

q 1

r 0

(¬(p ∨ q)→ r) 1

¬(p ∨ q) 0

(p ∨ q) 1

p 1 q 1

r 0

Incidentally, this difference in truth value explains our earlier point that these two variant
formulas are different readings of the earlier natural language sentence.

Computing in this manner for all valuations, we can systematically tabulate the truth value

2-16 CHAPTER 2. PROPOSITIONAL LOGIC

behaviour of complex propositional formulas in all relevant situations:

p q r ((¬p ∨ q)→ r) (¬(p ∨ q)→ r)

0 0 0 0 0

0 0 1 1 1

0 1 0 0 1

0 1 1 1 1

1 0 0 1 1

1 0 1 1 1

1 1 0 0 1

1 1 1 1 1

(2.19)

Paying attention to the proper placement of brackets in formulas, you can compute truth-
tables step by step for all situations. As an example we take the second formula from (2.19).
First, start with summing up the situations and copy the truth-values under the proposition
letters as has been done in the following table.

p q r (¬ (p ∨ q) → r)

0 0 0 · 0 · 0 · 0

0 0 1 · 0 · 0 · 1

0 1 0 · 0 · 1 · 0

0 1 1 · 0 · 1 · 1

1 0 0 · 1 · 0 · 0

1 0 1 · 1 · 1 · 1

1 1 0 · 1 · 0 · 0

1 1 1 · 1 · 1 · 1

(2.20)

Then start filling in the truth-values for the first possible operator. Here it is the disjunc-
tion: it can be computed because the values of its arguments are given (you can also see
this from the construction tree). (p ∨ q) gets value 0 if and only if both p and q have the
value 0. The intermediate result is given in the first table in (2.21). The next steps are the

2.5. SEMANTIC SITUATIONS, TRUTH TABLES, BINARY ARITHMETIC 2-17

negation and then the conjunction. This gives the following results:

(¬ (p ∨ q) → r)

· 0 0 0 · 0

· 0 0 0 · 1

· 0 1 1 · 0

· 0 1 1 · 1

· 1 1 0 · 0

· 1 1 0 · 1

· 1 1 1 · 0

· 1 1 1 · 1

(¬ (p ∨ q) → r)

1 0 0 0 · 0

1 0 0 0 · 1

0 0 1 1 · 0

0 0 1 1 · 1

0 1 1 0 · 0

0 1 1 0 · 1

0 1 1 1 · 0

0 1 1 1 · 1

(¬ (p ∨ q) → r)

1 0 0 0 0 0

1 0 0 0 1 1

0 0 1 1 1 0

0 0 1 1 1 1

0 1 1 0 1 0

0 1 1 0 1 1

0 1 1 1 1 0

0 1 1 1 1 1

(2.21)

One does not have to draw three separate tables. All the work can be done in a single
table. We just meant to indicate the right order of filling in truth-values.

Exercise 2.11 Construct truth tables for the following formulas:

• (p→ q) ∨ (q → p),

• ((p ∨ ¬q) ∧ r)↔ (¬(p ∧ r) ∨ q).

Exercise 2.12 Using truth tables, investigate all formulas that can be readings of

¬p→ q ∨ r

(by inserting brackets in appropriate places), and show that they are not equivalent.

If, Only If, If and Only If Here is a useful list of different ways to express implications:

If p then q p→ q
p if q q → p

p only if q p→ q

The third item on this list may come as a surprise. To see that the third item is correct,
reflect on how one can check whether “We will help you only if you help us” is false.
This can can happen only if “We help you” is true, but “You help us” is false.

These uses of ‘if’ and ‘only if’ explain the use of the common abbreviation ‘if and only
if’ for an equivalence. “We will help you if and only if you help us” states that “you help
us” implies “we help you”, and vice versa. A common abbreviation for ’if and only if’
that we will use occasionally is iff.

2-18 CHAPTER 2. PROPOSITIONAL LOGIC

2.6 Valid Consequence and Consistency

We now define the general notion of valid consequence for propositional logic. It is a
more precise version of the notion of a valid argument that we introduced on page 2-4.

The notion runs over all possible valuations, and as we will see in a moment, we can use
truth tables to check given inferences for validity. (In what follows, k can be any number.
If it is k = 0, then there are no premises.)

Definition 2.13 (Valid consequence) The inference from a finite set of premises

ϕ1, . . . , ϕk

to a conclusion ψ is a valid consequence, something for which we write

ϕ1, . . . , ϕk |= ψ,

if each valuation V with V (ϕ1) = . . . = V (ϕk) = 1 also has V (ψ) = 1.

Definition 2.14 (Logical equivalence) If ϕ |= ψ and ψ |= ϕ we say that ϕ and ψ are
logically equivalent.

Here it is useful to recall a warning that was already stated above. Do not confuse valid
consequence with truth of formulas in a given situation: validity quantifies over truth in
many situations, but it has no specific claim about truth or falsity of the premises and
conclusions in the situation. Indeed, validity rules out surprisingly little in this respect: of
all the possible truth/falsity combinations that might occur for premises and conclusion,
it only rules out one case: viz. that all ϕi get value 1, while ψ gets value 0.

Another point from Section 2.2 that is worth repeating here concerns the role of propo-
sitional inference in conversation and argumentation. Valid inference does not just help
establish truth, but it can also achieve a refutation of claims: when the conclusion of a
valid consequence is false, at least one of the premises must be false. But logic does
not tell us in general which one: some further investigation may be required to find the
culprit(s). It has been said by philosophers that this refutational use of logic may be the
most important one, since it is the basis of learning, where we constantly have to give up
current beliefs when they contradict new facts.

Here is a simple example of how truth tables can check for validity:

Example 2.15 (Modus Tollens) The simplest case of refutation depends on the rule of
modus tollens:

ϕ→ ψ,¬ψ |= ¬ϕ.

2.6. VALID CONSEQUENCE AND CONSISTENCY 2-19

Below you see the complete truth table demonstrating its validity:

ϕ ψ ϕ→ ψ ¬ψ ¬ϕ

1 1 1 0 0

1 0 0 1 0

0 1 1 0 1

0 0 1 1 1 !!

(2.22)

Of the four possible relevant situations here, only one satisfies both premises (the valu-
ation on the fourth line), and we can check that there, indeed, the conclusion is true as
well. Thus, the inference is valid.

By contrast, when an inference is invalid, there is at least one valuation (i.e., a line in
the truth table) where its premises are all true, and the conclusion false. Such situations
are called counter-examples. The preceding table also gives us a counter-example for the
earlier invalid consequence

from ϕ→ ψ,¬ϕ to ¬ψ

namely, the valuation on the third line where ϕ→ ψ and ¬ϕ are true but ¬ψ is false.

Please note that invalidity does not say that all valuations making the premises true make
the conclusion false. The latter would express a valid consequence again, this time, the
‘refutation’ of ψ (since ¬ϕ is true iff ϕ is false):

ϕ1, . . . , ϕk |= ¬ψ (2.23)

Satisfiability Finally, here is another important logical notion that gives another per-
spective on the same issues:

Definition 2.16 (Satisfiable) A set of formulas X (say, ϕ1, . . . , ϕk) is satisfiable if there
is a valuation that makes all formulas in X true.

There is a close connection between satisfiability and consistency.

Satisfiable versus Consistent A set of formulas that does not lead to a contradiction is
called a consistent formula set. Here ‘leading to a contradiction’ refers to proof rules, so
this is a definition in terms of proof theory. But it is really the other side of the same coin,
for a set of formulas is consistent iff the set is satisfiable. Satisfiability gives the semantic
perspective on consistency.

2-20 CHAPTER 2. PROPOSITIONAL LOGIC

Instead of ‘not consistent’ we also say inconsistent, which says that there is no valuation
where all formulas in the set are true simultaneously.

Satisfiability (consistency) is not the same as truth: it does not say that all formulas in
X are actually true, but that they could be true in some situation. This suffices for many
purposes. In conversation, we often cannot check directly if what people tell us is true
(think of their accounts of their holiday adventures, or the brilliance of their kids), but we
often believe them as long as what they say is consistent. Also, as we noted in Chapter 1,
a lawyer does not have to prove that her client is innocent, she just has to show that it is
consistent with the given evidence that he is innocent.

We can test for consistency in a truth table again, looking for a line making all relevant
formulas true. This is like our earlier computations, and indeed, validity and consistency
are related. For instance, it follows directly from our definitions that

ϕ |= ψ if and only if {ϕ,¬ψ} is not consistent. (2.24)

Tautologies Now we look briefly at the ‘laws’ of our system:

Definition 2.17 (Tautology) A formula ψ that gets the value 1 in every valuation is called
a tautology. The notation for tautologies is |= ψ.

Many tautologies are well-known as general laws of propositional logic. They can be used
to infer quick conclusions or simplify given assertions. Here are some useful tautologies:

Double Negation ¬¬ϕ↔ ϕ

De Morgan laws ¬(ϕ ∨ ψ)↔ (¬ϕ ∧ ¬ψ)
¬(ϕ ∧ ψ)↔ (¬ϕ ∨ ¬ψ)

Distribution laws (ϕ ∧ (ψ ∨ χ))↔ ((ϕ ∧ ψ) ∨ (ϕ ∧ χ))
(ϕ ∨ (ψ ∧ χ))↔ ((ϕ ∨ ψ) ∧ (ϕ ∨ χ))

(2.25)

Check for yourself that they all get values 1 on all lines of their truth tables.

Tautologies are a special zero-premise case of valid consequences, but via a little trick,
they encode all valid consequences. In fact, every valid consequence corresponds to a
tautology, for it is easy to see that:

ϕ1, . . . , ϕk |= ψ if and only if (ϕ1 ∧ . . . ∧ ϕk)→ ψ is a tautology (2.26)

Exercise 2.18 Using a truth table, determine if the two formulas

¬p→ (q ∨ r),¬q

together logically imply

(1) p ∧ r.

2.6. VALID CONSEQUENCE AND CONSISTENCY 2-21

(2) p ∨ r.

Display the complete truth table, and use it to justify your answers to (1) and (2).

Exercise 2.19

Show using a truth table that:

• the inference from p→ (q ∧ r), ¬q to ¬p is valid and

• the inference from p→ (q ∨ r), ¬q to ¬p is not valid.

Exercise 2.20 Check if the following are valid consequences:

(1) ¬(q ∧ r), q |= ¬r

(2) ¬p ∨ ¬q ∨ r, q ∨ r, p |= r.

Exercise 2.21 Give truth tables for the following formulas:

(1) (p ∨ q) ∨ ¬(p ∨ (q ∧ r))

(2) ¬((¬p ∨ ¬(q ∧ r)) ∨ (p ∧ r))

(3) (p→ (q → r))→ ((p→ q)→ (p→ r))

(4) (p↔ (q → r))↔ ((p↔ q)→ r)

(5) ((p↔ q) ∧ (¬q → r))↔ (¬(p↔ r)→ q)

Exercise 2.22 Which of the following pairs are logically equivalent? Confirm your answer using
truth tables:

(1) ϕ→ ψ and ψ → ϕ

(2) ϕ→ ψ and ¬ψ → ¬ϕ

(3) ¬(ϕ→ ψ) and ϕ ∨ ¬ψ

(4) ¬(ϕ→ ψ) and ϕ ∧ ¬ψ

(5) ¬(ϕ↔ ψ) and ¬ϕ↔ ¬ψ

(6) ¬(ϕ↔ ψ) and ¬ϕ↔ ψ

(7) (ϕ ∧ ψ)↔ (ϕ ∨ ψ) and ϕ↔ ψ

2-22 CHAPTER 2. PROPOSITIONAL LOGIC

2.7 Proof

Proof: symbolic inference So far we tested inferences for validity with truth tables,
staying close to the semantic meaning of the formulas. But a lot of inference happens
automatically, by manipulating symbols. People usually do not reason via truth tables.
They rather combine many simple proof steps that they already know, without going back
to their motivation. The more such rules they have learnt, the faster their reasoning goes.
Likewise, mathematicians often do formal calculation and proof via symbolic rules (think
of your school algebra), and of course, computers have to do proof steps purely symboli-
cally (as long as they have not yet learnt to think, like us, about what their actions might
mean).

Logic has many formal calculi that can do proofs, and later on, we will devote a whole
chapter to this topic. But in this chapter, we give you a first taste of what it means to
do proof steps in a formal calculus. There is a certain pleasure and surprise to symbolic
calculation that has to be experienced.

Below, we present an axiomatic system organized a bit like the famous geometry book of
Euclid’s Elements from Antiquity. It starts from just a few basic principles (the axioms),
after which chains of many proof steps, each one simple by itself, lead to more and more,
sometimes very surprising theorems.

Here is a modern axiomatic symbol game for logic:

Definition 2.23 (Axiomatization) A proof is a finite sequence of formulas, where each
formula is either an axiom, or follows from previous formulas in the proof by a deduction
rule. A formula is a theorem if it occurs in a proof, typically as the last formula in the
sequence. A set of axioms and rules defines an axiomatization for a given logic.
The following is an axiomatization for propositional logic. The axioms are given in
schematic form, with the formula variables that we have already seen. It means that
we can put any specific formula in the place of these variables:

(1) (ϕ→ (ψ → ϕ))

(2) ((ϕ→ (ψ → χ))→ ((ϕ→ ψ)→ (ϕ→ χ)))

(3) ((¬ϕ→ ¬ψ)→ (ψ → ϕ))

and there is only one deduction rule, the Modus Ponens that we have already encountered:

• if ϕ and (ϕ→ ψ) are theorems, then ψ is also a theorem.

This axiomatization originates with the Polish logician Jan Łukasiewicz. In this system
for propositional logic we may only use implication and negation symbols, and no other
logical connectives, such as conjunctions. In our later section on expressivity it will be
become clear why this restricted vocabulary is sufficient.

2.7. PROOF 2-23

Training in axiomatic deduction will not be a key focus of this course. Still, we do want
you to experience the interest of performing purely syntactic proofs, as a sort of ‘symbol
game’ that can be interpreted later. We give one more abstract logical example here, and
also one closer to practice.

Example 2.24 As an example of an axiomatic proof, we show that p → p is a theorem.
This seems a self-evident tautology semantically, but now, the art is to derive it using
only the rules of our game! In what follows we use well-chosen concrete instantiations
of axiom schemas. For instance, the first line uses Axiom Schema 1 with the atomic
proposition p for the variable formula ϕ and q → p for the variable formula ψ. And so
on:

1. p→ ((q → p)→ p) Axiom (1)
2. (p→ ((q → p)→ p))→ ((p→ (q → p))→ (p→ p)) Axiom (2)
3. (p→ (q → p))→ (p→ p) Modus Ponens, from steps 1, 2
4. p→ (q → p) Axiom (1)
5. p→ p Modus Ponens, from steps 3, 4

It takes some skill to find such proofs by oneself. But it is actually an exciting game to
many students, precisely because of the purely symbolic nature of the steps involved.

More general proofs can have certain assumptions, in addition to instances of axiom
schemas. Here is an example closer to practice.

Example 2.25 Use only Modus Ponens and suitable axioms to derive the solution to the
following problem. You want to throw a party, respecting people’s incompatibilities. You
know that:

(a) John comes if Mary or Ann comes.

(b) Ann comes if Mary does not come.

(c) If Ann comes, John does not.

Can you invite people under these constraints? There are several ways of solving this,
including truth tables with update as in our next Section. But for now, can you prove what
the solution must be? Here is a little help with the formal rendering:

(i) ‘If Ann comes, John does not’ is the formula a → ¬j, (ii) ‘Ann comes if
Mary does not come’: ¬m→ a, (c) ‘John comes if Mary or Ann comes’: here
you can rewrite to an equivalent conjunction ‘John comes if Mary comes’
and ‘John comes if Ann comes’ to produce two formulas that fall inside our
language: a → j, m → j. Now try to give a proof just using the above
axioms and rule for the solution, deriving successively that ¬a, m, j. Have
fun!

This concludes our first glimpse of a proof game with a fixed repertoire.

2-24 CHAPTER 2. PROPOSITIONAL LOGIC

System properties: soundness and completeness If all theorems of an axiomatic sys-
tem are valid, the system is called sound , and conversely, if all valid formulas are provable
theorems, the logic is called complete. Soundness seems an obvious requirement, as you
want to rely totally on your proof procedure. The above system is sound, as you can see
by noting that all axioms are tautologies, while Modus Ponens always takes tautologies
to tautologies, that is, if ϕ and ϕ→ ψ are tautologies, then ψ is also a tautology.

Completeness is a different matter, and can be harder to obtain for a given system. (Does
Euclid’s system of axioms suffice for proving all truths of geometry? The answer took
centuries of investigation and reformulation of the system.) The above proof system is
indeed complete, and so are the proof systems that we will present in later chapters.
But showing that completeness holds can be hard. The completeness of predicate logic,
that we will discuss in later chapters, was one of the first deep results in modern logic,
discovered by the then 23-year old Kurt Gödel in his 1929 dissertation.

Axiomatic deduction is only one of many proof methods used in logic. Others include
natural deduction (used a lot in logical Proof Theory) and resolution (used in many auto-
mated theorem provers). Chapter 9 in Part III of the book will take you much further into
this area.

2.8 Information Update

With all this in place, we can now also define our earlier notions of information structure
and information growth:

The information content of a formula ϕ is the set MOD(ϕ) of its models,
that is, the valuations that assign the formula ϕ the truth-value 1.

You can think of this as the range of possible situations that ϕ leaves open. Note that the
more possibilities are left open by a formula ϕ, the less information ϕ contains. Formulas
that leave many possibilities open correspond to information states with much uncertainty.
Formulas that leave just one possibility open — that have just one satisfying valuation —
leave no uncertainty at all about what the situation is like.

Information update by elimination of possibilities Here is the dynamics that changes
such information states:

An update with new information ψ reduces the current set of models X to the
overlap or intersection of X and MOD(ψ). The valuations in X that assign
the value 0 to ψ are eliminated.

2.8. INFORMATION UPDATE 2-25

Thus, propositional logic gives an account of basic cognitive dynamics, where informa-
tion states (sets of satisfying valuations) shrink as new information comes in: growth of
knowledge is loss of uncertainty.

We have seen earlier how this worked with simple inferences like

‘from p ∨ q,¬p to q’,

if we assume that the premises update an initial information state of no information (max-
imal uncertainty: all valuations still present).

As a second example, we return to an earlier question in Section 2.3 (see Exercise 2.3)

What information is given by p ∨ q,¬p ∨ r?

Here are the update stages:

initial state {pqr, pqr, pqr, pqr, pqr, pqr, pqr, pqr}
update with p ∨ q {pqr, pqr, pqr, pqr, pqr, pqr}
update with ¬p ∨ r {pqr, pqr, pqr, pqr}

(2.27)

We can conclude whatever is true in all of the remaining four states. One valid conclusion
is the inclusive disjunction q∨r, and this is indeed the one used in the so-called resolution
rule of many automated reasoning systems. But actually, the two given premises are
stronger than the inference q ∨ r. The situation pqr is not among the ones that are left
after the updates in (2.27), but q ∨ r is obviously true in this situation. One trivial way of
really getting all content of the premises is of course just their conjunction:

(p ∨ q) ∧ (¬p ∨ r). (2.28)

But there is alo a disjunctive form that precisely describes the final information set {pqr, pqr, pqr, pqr}:

(p ∧ r) ∨ (¬p ∧ q). (2.29)

In practice, we want convenient descriptions of information states, and later on we will
look at some principles of Boolean Algebra that can help us with this.

Planning Other information scenarios arise in planning problems. Recall the Party
Problem in Section 2.7 (Example 2.25). Can you invite people under the three constraints?
One sure way is computing information updates from an initial state of no information
about constraints:

{maj,maj,maj,maj,maj,maj,maj,maj} (2.30)

2-26 CHAPTER 2. PROPOSITIONAL LOGIC

Now the three given premises update this initial information state, by removing options
incompatible with them. In successive steps, (a), (b), (c) give the following reductions:

(a) (m ∨ a)→ j {maj,maj,maj,maj,maj}
(b) ¬m→ a {ma,maj,maj}
(c) a→ ¬j {maj}

(2.31)

Incidentally, this is a unique solution for the stated constraints – but this need not at all be
the case in general: there could be none, or more than one option remaining, too.

Games as information processing Our update process describes the information flow
in games like Master Mind, where players have to guess the correct position of some
hidden coloured pegs. In each round, she can make a guess, that gets evaluated by black
marks for colours in correct positions, and white marks for colours that do occur, but
placed in wrong positions.

For instance, let there be four possible colours red, white, blue, orange, and three posi-
tions, with a hidden correct sequence red-white-blue. Here is a table for a possible run of
the game, indicating the information game in successive answers:

guess answer possibilities remaining

START 24

red, orange, white •◦ 6

white, orange, blue •◦ 2

blue, orange, red ◦◦ 1

You will find it useful to do the updates, and see why the given numbers are correct.

Master Mind is not really interactive (a machine could provide the answers to your guesses),
though new interactive variants are used these days in psychological experiments about
children’s reasoning with different agents. Information update with different agents, as
well as more realistic games will be studied in Chapters 5 and 7. Elimination of possibil-
ities is still fundamental there, so what you learnt here has a broad thrust.

2.9 Expressiveness

A logical language is not just an auxiliary tool for studying inferences and updates. It is
also a language that can be used for the common things we have languages for: stating
truths (and lies) about situations, communicating important facts to others, and so on. In
this light, a very fundamental issue about a logical language is its expressiveness. What
can we say with it?

2.9. EXPRESSIVENESS 2-27

For a start, propositional logic may look very poor. We can combine sentences, but we
cannot look ‘inside’ them: ”Horatio Nelson died at Trafalgar” is just an atomic proposi-
tion, say p. But the real issue how well it does within its own compass. And then we find
a pleasant surprise:

Propositional logic is quite expressive! In total, there are sixteen possible Boolean
operations (truth value assignments) with two arguments: count options in the truth table.
This is many more than the number of binary operators we have in our language. Some
of these correspond to serious expressions in natural language. In particular, the exclusive
disjunction ϕ⊕ψ corresponds to the natural language phrasing ‘either-ϕ-or-ψ’. It has the
following truth table, compare it to the one for disjunction ∨:

ϕ ψ ϕ⊕ ψ ϕ ∨ ψ

0 0 0 0

0 1 1 1

1 0 1 1

1 1 0 1

Now note that we could get the same truth table by defining exclusive disjunction ϕ ⊕ ψ
in terms of notions that we already had:

(ϕ ∨ ψ) ∧ ¬(ϕ ∧ ψ) or, alternatively ¬(ϕ↔ ψ) (2.32)

More generally, it is not hard to prove that

All sixteen possible binary propositional operations are definable
in terms of just the three operations ¬,∧ and ∨.

As an illustration,

the implication ϕ→ ψ has the same truth table as ¬ϕ∨ψ and as ¬(ϕ∧¬ψ).

In fact, even ¬,∧ alone suffice for defining all possible operations, and also ¬,∨ alone,
and ¬,→ alone. As you will recall, the latter fact was used in the axiomatization of
propositional logic in the section on proof.

Exercise 2.26 Define all connectives in terms of ¬ and ∧.

Exercise 2.27 Define all connectives in terms of ¬ and→.

2-28 CHAPTER 2. PROPOSITIONAL LOGIC

Indeed, there is even an operation that can define all propositional operations by itself, the
Sheffer stroke

ϕ | ψ,

defined as ¬ϕ ∨ ¬ψ.

Now you know how expressive our language is on its own turf: it can express anything
we want to say about combination of two-valued propositions.

This is just one of many interesting features of definability in propositional logic. Here
is another, that we state without giving details. Every propositional logical formula, no
matter how complex, is equivalent to a conjunction of disjunctions of proposition letters
or their negations. This is called the ‘conjunctive normal form’ (there is also a disjunc-
tive normal form). For instance, the conjunctive normal form for the earlier exclusive
disjunction is

(ϕ ∨ ψ) ∧ (¬ϕ ∨ ¬ψ). (2.33)

Seeking a balance Clearly, there are many things that we cannot express in proposi-
tional logic. The following chapters are about more expressive languages, such as predi-
cate logic or epistemic logic. Even so, an important thing to keep in mind is a Balance.
In logic as in science, the art is to stay as simple as possible: ‘Small is Beautiful’. A poor
language may have special properties that make it elegant or useful. Propositional logic
is very successful in bringing out basic reasoning patterns, and moreover, its very poverty
leads to elegant and simple semantics and proof methods. In richer systems, the latter
become more baroque, and sometimes essentially more complex.

This completes the standard part of this chapter. Next comes a sequence of special topics
that will help you see where propositional logic lives in a larger scientific world.

2.10 Outlook — Logic, Mathematics, Computation

Studying logical phenomena via mathematical systems has proved a powerful method
historically. Thinking about our language of logical forms yields general insights into
expressive power, as we have just learnt. But also, thinking about a system of all validities
per se yields new insights that can be used in many settings. Here are some examples:

Boolean algebra The system of laws shows many beautiful regularities. For instance,
De Morgan and Distribution laws came in pairs with conjunction and disjunction inter-
changed. This ‘duality’ is general, and it reflects the close analogy between propositional

2.10. OUTLOOK — LOGIC, MATHEMATICS, COMPUTATION 2-29

logic and binary arithmetic (arithmetic with just 0 and 1, where every number is repre-
sented in the binary, or base-2, number system). In particular, the truth tables are just laws
of binary arithmetic when we read:

∨ as the maximum of two numbers, ∧ as the minimum,
and ¬ as flipping 0 and 1.

Suppressing details, distribution for conjunction over disjunction then matches the arith-
metical distribution law x · (y + z) = (x · y) + (x · z). But binary arithmetic is even
better-behaved: it also validates another distribution law x + (y · z) = (x + y) · (x + z)
that does not hold for numbers in general (try some numbers, and you will see). We will
pursue such connections between logic and computation in more detail in later chapters.

Abstraction and application Logical systems originally arose out of concrete practice.
But conversely, once we have such abstract systems, new concrete interpretations may
be found. Boolean algebra is an example. It describes a whole range of phenomena:
propositional reasoning, binary arithmetic, reasoning with sets (where ¬ is complement,
∧ intersection, and ∨ union), and even electrical switching circuits where conjunction is
serial composition of networks, and disjunction is parallel composition. Thus, one and
the same formula says lots of things!

For instance, consider one single abstract principle, the Boolean law of ‘Absorption’:

ϕ↔ (ϕ ∧ (ϕ ∨ ψ)) (2.34)

This is a tautology for propositional reasoning that helps remove redundancies from dis-
course (or when used in the opposite direction, helping you make simple things sound
complicated). Next, in binary arithmetic, it expresses a valid equation

x = x min (x max y) (2.35)

about computing with minima and maxima. In set theory, Absorption is the valid principle

X = X ∩ (X ∪ Y) (2.36)

which says that the intersection (‘overlap’) of the set X and the union of X and Y is the
same as the set X itself.

In a similar way, propositional logic plays a role in the design of logical (electronic)
circuits. A NAND gate is an electronic circuit that behaves like the Sheffer stroke. The
gate has two inputs and an output. If both inputs are 1 (carry a high voltage) then the
output is low (carries a low voltage). For all other input combinations (high and low,
low and high, low and low) the output is high. Since any propositional connective can
be defined with just the Sheffer stroke, any desirable logical circuit can be built from a
combination of NAND gates. Here is how negation is defined with the Sheffer stroke:

ϕ | ϕ.

2-30 CHAPTER 2. PROPOSITIONAL LOGIC

The same principle can be used to build a NOT gate from a NAND gate:

NOT
input output

NAND
input output

NOT gate NOT gate implemented with NAND gate

Thus we see a glimpse of a general reality: boolean algebra underlies real Boolean circuits
in computers. The details of how this works can be found in many sources, including
many sites on the internet.

Soundness and completeness The same general properties that we stated for our proof
system also make sense here. In the nineteenth century, George Boole gave a complete
algebraic analysis of propositional logic for reasoning with sentential operators like ‘not’,
‘and’, ‘or’, that has become famous as the ‘Boolean algebra’ that underlies the switching
circuits of your computer. Here is what such a system looks like, with variables for
propositions that can be true (1) or false (0), and operations − for ‘not’, · for ‘and’, and
+ for ‘or’ in the sense of binary arithmetic:

x+ (y + z) = (x+ y) + z x · (y · z) = (x · y) · z
x+ y = y + x x · y = y · x
x+ x = x x · x = x

x+ (y · z) = (x+ y) · (x+ z) x · (y + z) = (x · y) + (x · z)

x+ (x · y) = x x · (x+ y) = x

−(x+ y) = −x · −y −(x · y) = −x+−y
x+ 0 = x x · 0 = 0

x+ 1 = 1 x · 1 = x

x+−x = 1 x · −x = 0

−− x = x

(2.37)

It is easy to see that these equations correspond to valid tautologies, when read as equiv-
alences between propositional formulas. Thus we have soundness: the calculus proves
only valid principles. Conversely, Boolean algebra is also complete, and any valid equa-
tion can be derived from it by ordinary algebraic manipulations.

Computational complexity Propositional logic is tied up with computation in many
ways, as we have seen in this chapter. In particular, truth tables make testing for logi-
cal validity a simple procedure that can be done mechanically. And indeed, there exist

2.10. OUTLOOK — LOGIC, MATHEMATICS, COMPUTATION 2-31

computer programs for all of the tasks in this chapter. Within the compass of our sim-
ple language, this realizes a famous historical project: Leibniz’s ‘Calculus Ratiocinator’
around 1700, which proposed that all reasoning can be reduced to computation. Indeed,
there is a long history of ‘logical machines’ for carrying out inference tasks, going back
to the Middle Ages.

Still, all this is computability in principle, and things are delicate in practice. A mechani-
cal method with simple steps can still be highly complex when very many of these steps
must be made. Consider truth tables. Computing truth values on a single line for a given
formula goes fast. Earlier on we wrote successive truth values in the construction tree,
and the number of time steps required for this is ‘linear’ (if the line has twice as many
symbols, the computation takes roughly twice as many steps):

Computing a truth value for a formula takes linear time,

of the same order as the number of symbols in the formula. But now consider the whole
truth table for a formula. With n atomic propositions we need 2n lines, leading to expo-
nential growth for the table in the size of the input:

Computing a truth table for validity takes exponential time.

This quickly outgrows the powers of even the fastest current computers. Therefore,
smarter methods have been investigated, cutting down on the number of steps needed
to test for validity — such as the semantic tableaus that you will see in Chapter 7. But it
was always found that, in the worst case with difficult input formulas, these still require
exponential time.

This is no coincidence. The exact computational complexity of validity in propositional
logic is unknown: there may still be a faster method than existing ones that would work
with a polynomial bound on processing time, though most experts doubt this. Determin-
ing this exact complexity is the essence of the famous

‘P = NP Problem’ ,

that occurs on the famous 2000 Millennium List of open problems in mathematics posed
by the Clay Mathematics Institute.

This problem is urgent since it has been shown that many basic computational tasks reduce
to solving problems of validity and consistency in propositional logic. Thus, on its two-
thousandth anniversary, propositional logic still poses deep problems.

2-32 CHAPTER 2. PROPOSITIONAL LOGIC

Higher expressive power and undecidability Whether highly complex or not, the
problem of testing for validity in propositional logic is decidable: there exists a me-
chanical method that computes the answer, at least in principle. Thus it may seem that
computers can always do the job of logicians. But things change when we move to log-
ics with higher expressive power, such as the predicate logic of Chapter 4 with quantifiers
‘all’, and ‘some’. It is known from the work of Gödel, Turing, and others in the 1930s that
there is no mechanical method at all for testing validity of predicate-logical inferences:
these major systems pay a price for their greater expressive power: they are undecidable.

2.11 Outlook — Logic and Practice

The art of modelling To apply an abstract system like propositional logic, you need
‘modelling skills’. For instance, we have already observed that you need to translate from
natural language sentences to logical forms to get at the essence of an inference. This
often takes practice, but it can be fun, witness the popular logic puzzles in commercial
journals. Here is one simple example.

Propositional logic has generated many puzzles. The next exercise is from Raymond
Smullyan’s The Lady or the Tiger?, Penguin Books, 1982.

Exercise 2.28 Consider these two room signs:

• A – In this room there is a lady, and in the other one there is a tiger.

• B – In one of these rooms, there is a lady, and in one of them there is a tiger”

One of these signs is true, the other false. Behind which door is the lady?

But beyond this recreational aspect, propositional logic also applies to more serious areas
of reasoning: witness, e.g., a whole literature on using propositional logic in legal reason-
ing. More technically, propositional logic has been applied to a wide variety of computa-
tional tasks, from Boolean circuits in your computer to complex train movements at the
shunting yards of the Dutch Railways.

Such applications are not routine, and require creative skills.

Improving practice Training in propositional logic is also used to improve practical
skills. This is an old tradition. Legend has it that medieval logic exams checked students’
real-time skills as follows:

Obligatio Game A finite number of rounds is chosen, the severity of the exam.
The teacher gives the student successive assertions ϕ1, . . . , ϕn that she has to
‘accept’ or ‘reject’ as they are put forward. In the former case, ϕi is added to

2.11. OUTLOOK — LOGIC AND PRACTICE 2-33

the students stock of commitments — in the latter, the negation ¬ϕi is added.
The student passes if she maintains consistency throughout.

Suppose that a student is exposed to the following three statements:

(1) q ∨ ¬(p ∨ r), (2) p→ q, (3) q. (2.38)

Here is one possible run. If you say YES to (1), you must say YES to (2), since it follows
but then you can say either YES or NO to (3), since it is independent. Next, if you say
NO to (1), you can say either YES or NO to (2), but then, in both cases, you must say NO
to (3), as it follows from the negation of (1). The whole picture is:

•

q ∨ ¬(p ∨ r)

p→ q

q
win

¬q
win

¬(p→ q)
lose

¬(q ∨ ¬(p ∨ r))

p→ q

q
lose

¬q
win

¬(p→ q)

q
lose

¬q
win

This may be viewed as a game tree with all possible plays including the winning branches.
(A complete tree would include Teacher’s choices of the next assertion from some given
set — possibly influenced by what Student has answered so far.) Either way, the tree will
show that, as is only fair on exams, the student has a winning strategy for this game of
consistency management. The logical reason is this:

Any consistent set of assertions can always be consistently expanded with at
least one of the propositions ϕ, ¬ϕ.

The winning strategy based on this seems to require consistency checking at each stage,
a hard computational problem. A simpler strategy for the student is this:

choose one model beforehand (say, a valuation making each atom true),
and evaluate each incoming assertion there, giving the obvious answers.

2-34 CHAPTER 2. PROPOSITIONAL LOGIC

2.12 Outlook — Logic and Cognition

But how do logical systems relate to our daily practice where we reason and try to make
sense without consciously thinking about how we do it? One interface with reality has
occurred a number of times now:

Logic and linguistics Natural languages have a much richer repertoire of meanings
than the formal language of propositional logic. For instance, the expression and also has
frequent non-Boolean readings. “John and Mary quarrelled” does not mean that “John
quarrelled and Mary quarrelled”, Likewise, we already noted that conditional expressions
like if ... then do not behave exactly like the truth-table conditional. In particular, a false
antecedent does not necessarily make them true: “If I were rich, I would be generous”
does not follow from my not being rich.

But all this does not mean that logical methods do not apply. In fact, the divergence
has turned a creative advantage. The richer structure of natural language has been an
inexhaustible source of new logical theory. For instance, propositional logic has been
generalized to work with more than two truth values to model vague or indeterminate
uses of language, and the study of various sorts of conditional expressions has become a
flourishing subdiscipline where logicians and linguists work together.

Logic and cognitive psychology The relation between logic and psychology has been
somewhat stormier. It has been claimed by psychologists that everyday reasoning is
highly non-logical. Here is a famous example.

The Wason selection task is a logic puzzle that states the following question:

You are shown a set of four cards placed on a table each of which has a
number on one side and a colored patch on the other side. The visible faces
of the cards show 2, 7, A and K. Which card(s) should you turn over in order
to test the truth of the proposition that if a card shows an even number on one
face, then its opposite face shows a vowel?

The Wason selection task

Here is the correct response according to the logic of this chapter:

2.12. OUTLOOK — LOGIC AND COGNITION 2-35

turn the cards showing 2 and K, but no other card.

The reason is this: to test the implication EVEN → VOWEL, we clearly need to check
the card with the even number 2, but also should not forget the refutation case discussed
several times before: if the card does not show a vowel, we need to make sure that it did
not have an even number. Now the results of the experiment, repeated over many decades:

most people either (a) turn the 2 only, or (b) they turn the 2 and the A card.

Psychologists have suggested many explanations, including a ‘confirmation bias’ (refuta-
tion comes less natural to us) and an ‘association bias’ (red is mentioned so we check it).
This seems to suggest that real reasoning is very different from what logic says.

However, the selection task tends to produce the correct logical response when presented
in more concrete contexts that the experimental subjects are familiar with. For example,
if the rule is ‘If you are drinking alcohol, then you must be over 18’, and the cards have an
age on one side and a beverage on the other, e.g., ‘17’, ‘beer’, ‘22’, ‘coke’, most people
have no difficulty in selecting the correct cards (‘17’ and ‘beer’). Psychologists have used
this as another argument against logic: the two settings have the same logical form, but
very different behaviour results from familiarity effects.

More information on this famous experiment can be found on the webpage http://
en.wikipedia.org/wiki/Wason_selection_task.

Frankly, all this polemics is not interesting. Clearly, people are not irrational, and if
they ignored logic all the time, extracting the wrong information from the data at their
disposal, it is hard to see how our species could survive. What seems to be the case is
rather an issue of representation of reasoning tasks, and additional principles that play a
role there. Moreover, the variation in outcomes fits with a conspicuous trend in modern
logic, namely, the study of task-dependent forms of inference, whose rules may differ
from the strict standards set in this chapter. These include more heuristic ‘default rules’
that are not valid in our strict sense, but that can be used until some problem arises that
requires a revision of what we concluded so far.

But let us give the last word to George Boole, often considered the father of the purely
mathematical approach to (propositional) logic. The title of his great work “The Laws of
Thought” would seem to sit uneasily with a diehard normative mathematical perspective.
But toward the end of the book, Boole remarks that he is serious about the title: the laws of
propositional logic describe essential human thought. He also acknowledges that human
reasoning often deviates from this canon. What that means is, he says, that there are
further laws of human thought that still need to be discovered. That is what the modern
interface of logic and cognitive science is about.

2-36 CHAPTER 2. PROPOSITIONAL LOGIC

Further Exercises

Exercise 2.29 Prove that all propositional connectives are definable with the ‘Sheffer stroke’

ϕ | ψ,

defined by ¬ϕ ∨ ¬ψ.

Exercise 2.30 In how many ways can you win the following obligatio game?

(1) (p→ q) ∨ (r → q), (2) ¬((p ∧ r)→ q), (3) q.

Exercise 2.31 Consider the following formula:

(p ∧ (q → r))→ ¬(¬p ∨ ((¬q → q) ∧ (r → ¬r))).

The logical symbols in this formula are all the symbols except parentheses and propositional vari-
ables. As you can see, the formula has 11 logical symbols. Answer the following questions:

(1) How many truth value entries does the truth table for this formula have. How does that
number depend on the number of logical symbols?

(2) The truth table for a formula with 3 propositional variables has 23 = 8 rows. How many
entries in the truth table for such a formula do you have to compute (in the worst case) in
order to find out if the formula is valid or not, given that you know that the formula has n
logical symbols?

Summary You have now seen your first logical system, and know how to reason in an
exact mathematical manner with propositions. In particular, you have learnt these skills:

• read and write propositional formulas,

• translate simple natural language sentences into formulas,

• compute truth tables for various purposes,

• test validity of inferences,

• compute updates of information states,

• do some very simple formal proofs.

In addition, you now have a working knowledge of the notions of

syntax, semantics, valuation, truth, valid consequence, tautology, consis-
tency, axiomatic proof, expressive power, logical system.

Finally, you have seen a first glimpse of connections between propositional logic and
mathematical proof, computation, complexity, and some cognitive topics, namely, natural
language and psychological experiments.

2.12. OUTLOOK — LOGIC AND COGNITION 2-37

Further Reading Propositional logic was already known to the Stoic philosophers. See
[Mat73] for an account. Propositional logic is fully developed in the famous book of
George Boole [Boo54]. Boole gives an algebraic treatment of the logic of propositions.
This kind of algebra is now known as Boolean algebra. A modern treatment of Boolean
algebra is given in [GH09]. If you are in for some logic entertainment you should consult
[CSI08] or the famous logic puzzle books by Raymond Smullyan [Smu09, Smu11].

2-38 CHAPTER 2. PROPOSITIONAL LOGIC

Chapter 3

Syllogistic Reasoning

This chapter ‘opens the box’ of propositional logic, and looks further inside the statements
that we make when we describe the world. Very often, these statements are about objects
and their properties, and we will now show you a first logical system that deals with
these. Syllogistics has been a standard of logical reasoning since Greek Antiquity. It
deals with quantifiers like ‘All P are Q’ and ‘Some P are Q’, and it can express much
of the common sense reasoning that we do about predicates and their corresponding sets
of objects. You will learn a famous graphical method for dealing with this, the so-called
‘Venn Diagrams’, after the British mathematician John Venn (1834–1923), that can tell
valid syllogisms from invalid ones. As usual, the chapter ends with some outlook issues,
toward logical systems of inference, and again some phenomena in the real world of
linguistics and cognition.

3.1 Reasoning About Predicates and Classes

Aristotle John Venn

The Greek philosopher Aristotle (384 BC – 322 BC) proposed a system of reasoning in

3-1

3-2 CHAPTER 3. SYLLOGISTIC REASONING

his Prior Analytics (350 BC) that was so successful that it has remained a paradigm of
logical reasoning for more than two thousand years: the Syllogistic.

Syllogisms A syllogism is a logical argument where a quantified statement of a specific
form (the conclusion) is inferred from two other quantified statements (the premises).

The quantified statements are all of the form “Some/all A are B,” or “Some/all A are not
B,” and each syllogism combines three predicates or properties. Notice that “All A are not
B” can be expressed equivalently in natural language as “No A are B,” and “Some A are
not B” as “Not all A are B.” We can see these quantified statements as describing relations
between predicates, which is well-suited to describing hierarchies of properties. Indeed,
Aristotle was also an early biologist, and his classifications of predicates apply very well
to reasoning about species of animals or plants.

Your already know the following notion. A syllogism is called valid if the conclusion
follows logically from the premises in the sense of Chapter 2: whatever we take the real
predicates and objects to be: if the premises are true, the conclusion must be true. The
syllogism is invalid otherwise.

Here is an example of a valid syllogism:

All Greeks are humans

All humans are mortal

All Greeks are mortal.

(3.1)

We can express the validity of this pattern using the |= sign introduced in Chapter 2:

All Greeks are humans, All humans are mortal |= All Greeks are mortal. (3.2)

This inference is valid, and, indeed, this validity has nothing to do with the particular
predicates that are used. If the predicates human, Greek and mortal are replaced by dif-
ferent predicates, the result will still be a valid syllogism. In other words, it is the form
that makes a valid syllogism valid, not the content of the predicates that it uses. Replacing
the predicates by symbols makes this clear:

All A are B

All B are C

All A are C.

(3.3)

The classical quantifiers Syllogistic theory focusses on the quantifiers in the so called
Square of Opposition, see Figure (3.1). The quantifiers in the square express relations
between a first and a second predicate, forming the two arguments of the assertion. We

3.1. REASONING ABOUT PREDICATES AND CLASSES 3-3

All A are B No A are B

Some A are B Not all A are B

Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
QQ

�
�
�

�
�
�

�
�
�

�
��

Figure 3.1: The Square of Opposition

think of these predicates very concretely, as sets of objects taken from some domain of
discourse that satisfy the predicate. Say, ‘boy’ corresponds with the set of all boys in the
relevant situation that we are talking about.

The quantified expressions in the square are related across the diagonals by external (sen-
tential) negation, and across the horizontal edges by internal (or verb phrase) negation.
It follows that the relation across the vertical edges of the square is that of internal plus
external negation; this is the relation of so-called quantifier duality.

Because Aristotle assumes that the left-hand predicate A is non-empty (see below), the
two quantified expressions on the top edge of the square cannot both be true; these ex-
pressions are called contraries. Similarly, the two quantified expressions on the bottom
edge cannot both be false: they are so-called subcontraries.

Existential import Aristotle interprets his quantifiers with existential import: All A
are B and No A are B are taken to imply that there are A. Under this assumption, the
quantified expressions at the top edge of the square imply those immediately below them.
The universal affirmative quantifier all implies the individual affirmative some and the
universal negative no implies the individual negative not all. Existential import seems
close to how we use natural language. We seldom discuss ‘empty predicates’ unless in
the realm of phantasy. Still, modern logicians have dropped existential import for reasons
of mathematical elegance, and so will we in this course.

The universal and individual affirmative quantifiers are said to be of types A and I re-
spectively, from Latin Aff Irmo, the universal and individual negative quantifiers of type
E and O, from Latin NEgO. Aristotle’s theory was extended by logicians in the Middle
Ages whose working language was Latin, whence this Latin mnemonics. Along these
lines, Barbara is the name of the syllogism with two universal affirmative premises and a
universal affirmative conclusion. This is the syllogism (3.1) above.

3-4 CHAPTER 3. SYLLOGISTIC REASONING

Here is an example of an invalid syllogism:

All warlords are rich

No students are warlords

No students are rich

(3.4)

Why is this invalid? Because one can picture a situation where the premises are true
but the conclusion is false. Such a counter-example can be very simple: just think of
a situation with just one student, who is rich, but who is not a warlord. Then the two
premises are true (there being no warlords, all of them are rich – but you can also just add
one rich warlord, if you like existential import). This ‘picturing’ can be made precise, and
we will do so in a moment.

3.2 The Language of Syllogistics

Syllogistic statements consist of a quantifier, followed by a common noun followed by
a verb: Q N V . This is an extremely general pattern found across human languages.
Sentences S consist of a Noun Phrase NP and a Verb Phrase VP, and the Noun Phrase can
be decomposed into a Determiner Q plus a Common Noun CN:

S

NP

Q CN

VP

Thus we are really at the heart of how we speak. In these terms, a bit more technically,
Aristotle studied the following inferential pattern:

Quantifier1 CN1 VP1

Quantifier2 CN2 VP2

Quantifier3 CN3 VP3

where the quantifiers are All, Some, No and Not all. The common nouns and the verb
phrases both express properties, at least in our perspective here (‘man’ stands for all men,
‘walk’ for all people who walk, etcetera). To express a property means to refer to a class
of things, at least in a first logic course. There is more to predicates than sets of objects
when you look more deeply, but this ‘intensional’ aspect will not occupy us here.

3.3. SETS AND OPERATIONS ON SETS 3-5

In a syllogistic form, there are two premises and a conclusion. Each statement refers to
two classes. Since the conclusion refers to two classes, there is always one class that
figures in the premises but not in the conclusion. The CN or VP that refers to this class is
called the middle term that links the information in the two premises.

Exercise 3.1 What is the middle term in the syllogistic pattern given in (3.3)?

To put the system of syllogistics in a more systematic setting, we first make a brief excur-
sion to the topic of operations on sets.

3.3 Sets and Operations on Sets

Building sets The binary relation ∈ is called the element-of relation. If some object
a is an element of a set A then we write a ∈ A and if this is not the case we write
a 6∈ A. Note that if a ∈ A, A is certainly a set, but a itself may also be a set. Example:
{1} ∈ {{1}, {2}}.
If we want to collect all the objects together that have a certain property, then we write:

{x | ϕ(x)} (3.5)

for the set of those x that have the property described by ϕ. Sometimes we restrict this
property to a certain domain of discourse or universe U of individuals. To make this
explicit, we write:

{x ∈ U | ϕ(x)} (3.6)

to denote the set of all those x in U for which ϕ holds. Note that {x ∈ U | ϕ(x)} defines
a subset of U .

To describe a set of elements sharing multiple properties ϕ1, . . . , ϕn we write:

{x | ϕ1(x), . . . , ϕn(x)} (3.7)

Instead of a single variable, we may also have a sequence of variables. For example, we
may want to describe a set of pairs of objects that stand in a certain relation. Here is an
example.

A = {(x, y) | x is in the list of presidents of the US , y is married to x} (3.8)

For example, (Bill Clinton,Hillary Clinton) ∈ A but, due to how the 2008 presidential
election turned out, (Hillary Clinton,Bill Clinton) 6∈ A. Sets of pairs are in fact the
standard mathematical representation of binary relations between objects (see Chapter
A).

3-6 CHAPTER 3. SYLLOGISTIC REASONING

Operations on sets In talking about sets, one often also wants to discuss combinations
of properties, and construct new sets from old sets. The most straightforward operation
for this is the intersection of two sets:

A ∩B = {x | x ∈ A and x ∈ B} (3.9)

If A and B represent two properties then A ∩ B is the set of those objects that have both
properties. In a picture:

A B

The intersection of the set of ‘red things’ and the set of ‘cars’ is the set of ‘red cars’.

Another important operation is the union that represents the set of objects which have at
least one of two given properties.

A ∪B = {x | x ∈ A or x ∈ B} (3.10)

The ‘or’ in this definition should be read in the inclusive way. Objects which belong to
both sets also belong to the union. Here is a picture:

A B

A third operation which is often used is the difference of two sets:

A \B = {x | x ∈ A and x 6∈ B} (3.11)

If we think of two properties represented by A and B then A \ B represents those things
that have the property A but not B. In a picture:

A B

3.3. SETS AND OPERATIONS ON SETS 3-7

These pictorial representations of the set operations are called Venn diagrams, after the
British mathematician John Venn (1834 - 1923). In a Venn diagram, sets are represented
as circles placed in such a way that each combination of these sets is represented. In the
case of two sets this is done by means of two partially overlapping circles. Venn diagrams
are easy to understand, and interestingly, they are a method that also exploits our powers
of non-linguistic visual reasoning.

Next, there is the complement of a set (relative to some given universe U (the domain of
discourse):

A = {x ∈ U | x 6∈ A} (3.12)

In a picture:

A

Making use of complements we can describe things that do not have a certain property.

The complement operation makes it possible to define set theoretic operations in terms of
each other. For example, the difference of two sets A and B is equal to the intersection of
A and the complement of B:

A \B = A ∩B (3.13)

Complements of complements give the original set back:

A = A (3.14)

Complement also allows us to relate union to intersection, by means of the following
so-called de Morgan equations:

A ∪B = A ∩B
A ∩B = A ∪B

(3.15)

From the second de Morgan equation we can derive a definition of the union of two sets
in terms of intersection and complement:

A ∪B = A ∪B = A ∩B (3.16)

This construction is illustrated with Venn diagrams in Figure 3.2. Also important are
the so-called distributive equations for set operations; they describe how intersection dis-
tributes over union and vice versa:

A ∩ (B ∪ C) = (A ∩B) ∪ (A ∩ C)

A ∪ (B ∩ C) = (A ∪B) ∩ (A ∪ C)
(3.17)

3-8 CHAPTER 3. SYLLOGISTIC REASONING

A B

BA

A ∩ B

A ∩ B

Figure 3.2: Construction of A ∪B using intersection and complement.

Figure 3.3 demonstrates how the validity of the first of these equations can be computed
by means of Venn-diagrams. Here we need three circles for the three sets A, B and C,
positioned in such a graphical way that every possible combination of these three sets is
represented in the diagrams.

The relation between sets and propositions The equalities between sets may look
familiar to you. In fact, these principles have the same shape as propositional equivalences
that describe the relations between ¬, ∧ and ∨. In fact, the combinatorics of sets using
complement, intersection and union is a Boolean algebra, where complement behaves like
negation, intersection like conjunction and union like disjunction. The zero element of the
algebra is the empty set ∅.
We can even say a bit more. The Venn-diagram constructions as in Figures 3.2 and 3.3 can
be viewed as construction trees for set-theoretic expressions, and they can be reinterpreted
as construction trees for formulas of propositional logic. Substitution of proposition let-
ters for the base sets and replacing the set operations by the corresponding connectives
gives a parsing tree with the corresponding semantics for each subformula made visible
in the tree. A green region corresponds to a valuation which assigns the truth-value 1 to
the given formula, and a white region to valuation which assigns this formula the value
0. You can see in the left tree given in Figure 3.3 that the valuations which makes the
formula a ∧ (b ∨ c) true are abc, abc and abc (see Figure 3.4).

3.3. SETS AND OPERATIONS ON SETS 3-9

B B A CC A

A B ∪ C

A ∩ (B ∪ C)

A ∩ B A ∩ C

(A ∩ B) ∪ (A ∩ C)

B B A CC A

A B ∪ C

A ∩ (B ∪ C)

A ∩ B A ∩ C

(A ∩ B) ∪ (A ∩ C)

Figure 3.3: One of the distribution laws illustrated by means of Venn diagrams.

abc abc

abc

abc

abc

abc
abc

abc

Figure 3.4: The support for a ∧ (b ∨ c) in a Venn-diagram.

3-10 CHAPTER 3. SYLLOGISTIC REASONING

3.4 Syllogistic Situations

Since all syllogistic forms involve just three predicatesA,B andC, we can draw a general
picture of a syllogistic situation as the following Venn Diagram:

A B

C

The rectangular box stands for a set of objects that form the domain of discourse, with
three possible properties A, B and C. Note that there are 8 regions in all, quite properly,
since that is the number of all possible combinations. An individual without any of these
properties has to be outside of the three circles, like this:

A B

C

◦

An object with propertyA but lacking the propertiesB andC has to be inside theA circle,
but outside the B and C circles, like this:

A B

C

◦

Now let us look in detail at what the Aristotelian quantifiers express. All A are B expresses
that the part of the A circle outside the B circle has to be empty. We can indicate that in
the picture by crossing out the forbidden regions, like this:

3.4. SYLLOGISTIC SITUATIONS 3-11

A B

C

×
×

Note that the preceding picture does not take existential import into account. As we
already said, we will leave it out in the interest of simplicity. And we lose nothing in this
way. If you want to say that a predicate P is non-empty, you can always do so explicitly
with a quantifier ‘Some’.

No A are B expresses that the part of the A circle that overlaps with the B circle has to be
empty. Again, we can indicate this in a picture by crossing out the forbidden areas:

A B

C

×
×

Again, existential import (“there must be A’s”) is not taken into account by this picture.

Now we move from universal quantifiers to existential ones. Some A are B expresses that
the part of the picture where the A and the B circles overlap has to be non-empty. We can
indicate that in the picture by putting an individual in an appropriate position. Since we
do not know if that individual has property C or not, this can be done in two ways:

A B

C

◦ A B

C

◦

Not all A are B, or equivalently Some are are not B, expresses that the part of the A circle
that falls outside the B circle has to be non-empty. There has to be at least one individual

3-12 CHAPTER 3. SYLLOGISTIC REASONING

that is an A but not a B. Since we do not know whether this individual has property C or
not, we can again picture this information in two possible ways:

A B

C

◦ A B

C

◦

Some authors do not like this duplication of pictures, and prefer putting the small round
circle for the individual on the border line of several areas.

You no doubt realize that such a duplication of cases makes the picture method much
harder in terms of complexity, and hence, as we shall see, the art in checking validity for
syllogisms is avoiding it whenever possible.

3.5 Validity Checking for Syllogistic Forms

The diagrams from the preceding section lead to a check for syllogistic validity:

Working with diagrams We illustrate the method with the following valid syllogism:

All warlords are rich

No student is rich

No warlord is a student

(3.18)

To carry out the validity check for this inference, we start out with the general picture
of a domain of discourse with three properties. Next, we update the picture with the
information provided by the premises. Here, the understanding is this:

Crossing out a region with × means that this region is empty (there are no
individuals in the domain of discourse with this combination of properties),
while putting a ◦ in a region means that this region is non-empty (there is
at least one individual with this combination of properties). Leaving a blank
region means that there is no information about this region (there may be
individuals with this combination of properties, or there may not).

3.5. VALIDITY CHECKING FOR SYLLOGISTIC FORMS 3-13

The method is this: we update with the information from the premises, and next check
in the resulting picture whether the conclusion holds or not. Let A represent the property
of being a warlord, B the property of being rich, and C the property of being a student.
Then we start with the following general picture:

A B

C

According to the first premise, All A are B has to be true, so we get:

A B

C

×
×

By the second premise, No C are B has to be true, so we extend the picture as follows:

A B

C

×
× × ×

Finally, we have to check the conclusion. The conclusion says that the regions where
A and C overlap have to be empty. Well, they are, for both of these regions have been
crossed out. So the conclusion has to be true. Therefore, the inference is valid.

The general method The method we have used consists of the following four steps:

3-14 CHAPTER 3. SYLLOGISTIC REASONING

Draw the Skeleton Draw an empty picture of a domain of discourse with three properties
A, B and C. Make sure that all eight combinations of the three sets are present.

Crossing out – Universal step Take the universal statements from the premises (the state-
ments of the form “All . . . ” and “No . . . ”, and cross out the forbidden regions in
the diagram.

Filling up – Existential step Take the existential statements from the premises (the state-
ments of the form “Some . . . ” and “Not all . . . ”), and try to make them true in the
diagram by putting a ◦ in an appropriate region, while respecting the× signs. (This
step might lead to several possibilities, all of which have to satisfy the check in the
next item.)

Check Conclusion If the conclusion is universal it says that certain regions should have
been crossed out. Are they? If the conclusion is existential it says that certain
regions should have been marked with a ◦. Are they? If the answer to this question
is affirmative the syllogism is valid; otherwise a counterexample can be constructed,
indicating that the syllogism is invalid.

To illustrate the procedure once more, let us now take the invalid syllogism 3.4 that was
mentioned before (repeated as 3.19).

All warlords are rich

No student is a warlord

No student is rich

(3.19)

The symbolic form of this syllogism is:

All A are B No C are A Therefore: No C are B. (3.20)

The premise statements are both universal. Crossing out the appropriate regions for the
first premise gives us:

A B

C

×
×

After also crossing out the regions forbidden by the second premise we get:

3.5. VALIDITY CHECKING FOR SYLLOGISTIC FORMS 3-15

A B

C

×
× ×

Note that the region for the AC’s outside B gets ruled out twice. It looks like the second
premise repeats some of the information that was already conveyed by the first premise
(unlike the case with the previous example). But though this may say something about
presentation of information, it does not affect valid or invalid consequences.

Finally, we check whether the conclusion holds. No C are B means that the regions where
C andB overlap are forbidden. Checking this in the diagram we see that the region where
A,B andC overlap is indeed crossed out, but the region outsideAwhereB andC overlap
is not. Indeed, the diagram does not contain information about this region. This means
that we can use the diagram to construct a counterexample to the inference.

The diagram allows us to posit the existence of an object that satisfies B and
C but not A, in the concrete case of our example, a rich student who is not a
warlord:

A B

C

×
× × ◦

This final diagram gives the shape that all counterexamples to the valididity of 3.19 have
in common. All these counterexamples will have no objects in the forbidden regions, and
at least one object in the region marked with ◦.

Venn diagrams actually have a long history in logic, going back to the 18th century, and
they are still an object of study in cognitive science, since they somehow combine visual
and symbolic reasoning – a basic human ability that is not yet fully understood..

3-16 CHAPTER 3. SYLLOGISTIC REASONING

Exercise 3.2 Check the following syllogistism for validity, using the method just explained.

Some philosophers are Greek

No Greeks are barbarians

No philosophers are barbarians.

(3.21)

Exercise 3.3 Check the following syllogistic pattern for validity.

No Greeks are barbarians

No barbarians are philosophers

No Greeks are philosophers.

(3.22)

Exercise 3.4 Check the following syllogistic pattern for validity.

No Greeks are barbarians

Some barbarians are philosophers

Not all philosophers are Greek.

(3.23)

Exercise 3.5 Can you modify the method so that it checks for syllogistic validity, but now with
the quantifiers all read with existential import? How?

More than three predicates What follows is a digression for the interested reader.
Venn diagrams were a high point of traditional logic, just before modern logic started.
How far does this method take us?

The validity check for syllogistics can be extended to inferences with more than two
premises (and more than three predicates). This can still be done graphically (Venn had
several beautiful visualizations), but you may also want to think a bit more prosaically in
terms of tabulating possibilities. Here is one way (disregarding matters of computational
efficiency).

For purposes of exposition, assume that four predicatesA,B,C,D occur in the inference.
List all possible combinations in a table (compare the tables for the propositonal variables
in Chapter 2 – we economized a bit here, writing the property only when it holds):

A B AB
C AC BC ABC
D AD BD ABD
CD ACD BCD ABCD

3.5. VALIDITY CHECKING FOR SYLLOGISTIC FORMS 3-17

Take as example the following entailment

All A are B,No C are B,Some C are D,Therefore: Not all D are A. (3.24)

Again we can use the update method to check whether this is valid. First update with the
information that all A are B. This rules out certain possibilities:

A × B AB
C AC × BC ABC
D AD × BD ABD
CD ACD × BCD ABCD

All A are B

The information that no C are B also rules out possibilities, as follows:

A B AB
C AC BC × ABC ×
D AD BD ABD
CD ACD BCD × ABCD ×

No C are B

Combining these two updates, we get:

A × B AB
C AC × BC × ABC ×
D AD × BD ABD
CD ACD × BCD × ABCD ×

All A are B and No C are B

The third premise, “some C are D,” is existential. It states that there has to at least one
CD combination in the table. There is only one possibility for this:

A × B AB
C AC × BC × ABC ×
D AD × BD ABD
CD ◦ ACD × BCD × ABCD ×

Finally, we must check whether “not all D are A” holds in the table that results from
updating with the premises. And indeed it does: region CD is non-empty (indicated by
the presence of the ◦), so it gives us a witness of a D which is not an A. Therefore, the
given inference must be valid.

3-18 CHAPTER 3. SYLLOGISTIC REASONING

The syllogistic system as such Working through the exercises of this section you may
have realized that the diagrammatic validity testing method can be applied to any syllo-
gism, and that, in the terms of Chapter 2:

The syllogistic is sound (only valid syllogism pass the test)
and complete (all valid syllogisms pass the test).

Moreover, the method decides the question of validity in a matter of a few steps. Thus,
again in our earlier terms:

The syllogistic is a decision method for validity,

the system of the Syllogistic is ‘decidable’. This is like what we saw for propositional
logic, and indeed, it can be shown that the two systems are closely related, though we
shall not do so here.

Much more can be said about the history of the syllogistic. The website of this course has
an improved version of the Venn Diagram method due to Christie Ladd in 1882 which
shows how it can be turned into a more efficient ‘refutation method’ when we picture the
premises, but also the negation of the conclusion, and then try to spot a contradiction.

As usual, the rest of this chapter explores a few connections with other areas, starting with
mathematical systems, then moving to computation, and ending with cognition. These
topics are not compulsory in terms of understanding all their ins and outs, but they should
help broaden your horizon.

3.6 Outlook — Satisfiability and Complexity

The tabling method for testing the validity of syllogisms suggests that the method behaves
like the truth table method for propositional logic: if there are n properties, the method
checks 2n cases. For propositional logic it is an open question whether a non-exponential
method exists for checking satisfiability: this is the famous P versus NP problem. But
how about syllogistics? Can we do better than exponential?

Focussing on universal syllogistic forms only, it is easy to see that a set of universal forms
is always satisfiable, provided we forget about existential import. The reason for this is
that a situation with all classes empty will satisfy any universal form. Therefore:

A set of syllogistic forms consisting of only universal statements is always
satisfiable.

And, as a straightword consequence of this:

3.6. OUTLOOK — SATISFIABILITY AND COMPLEXITY 3-19

A syllogism with only universal premises and an existential conclusion is
always invalid.

The reason for this is that the situation with all classes empty is a counterexample: it will
satisfy all the premisses but will falsify the existential conclusion.

If you reflect on this you see that the unsatisfiability of a set of syllogistic forms Σ is
always due to the absence of witnesses for some existential forms ψ1, ..., ψn in Σ. Now,
since the number of witnesses for a particular property does not matter – one witness for
some property is as good as many – we can limit attention to situations where there is just
a single object in the universe:

A finite set of syllogistic forms Σ is unsatisfiable if and only if there exists an
existential form ψ such that ψ taken together with the universal forms from
Σ is unsatifiable.

The interesting thing is that this restricted form of satisfiability can easily be tested with
propositional logic, as follows. Remember that we are talking about the properties of a
single object x. Let proposition letter a express that object x has property A. Then a
universal statement “all A are B” gets translated into a → b: if x has property A then x
also has property B. An existential statement “some A are B” gets translated into a ∧ b,
expressing that x has both properties A and B. The universal negative statement “no A
are B” gets translated into a → ¬b, and the negative existential statement “some A are
not B” gets translated as a ∧ ¬b. The nice thing about this translation is that it employs a
single proposition letter for each property. No exponential blow-up here.

Note that to test the satisfiability of a set of syllogistic statements containing n existential
statements we will need n tests: we have to check for each existential statement whether
it is satisfiable when taken together with all universal statements. But this does not cause
exponential blow-up if all these tests can be performed efficiently. We will show now that
they can.

It may look like nothing is gained by our translation to propositional logic, since all known
general methods for testing satisfiability of propositional logical formulas are exponential.
But the remarkable thing is that our translation uses a very well-behaved fragment of
propositional logic, for which satisfiability testing is easy.

In this outlook, we briefly digress to explain how propositional logic can be written in
clausal form, and how satisfiability of clausal forms can be tested efficiently, provided the
forms are in a ‘nice’ shape. Here are some definitions:

literals a literal is a proposition letter or its negation. If l is a literal, we use l for its
negation: if l has the form p, then l equals ¬p, if l has the form ¬p, then l equals p.
So if l is a literal, then l is also a literal, with opposite sign.

clause a clause is a set of literals.

3-20 CHAPTER 3. SYLLOGISTIC REASONING

clause sets a clause set is a set of clauses.

Read a clause as a disjunction of its literals, and a clause set as a conjunction of its clauses.

Here is an example: the clause form of

(p→ q) ∧ (q → r)

is
{{¬p, q}, {¬q, r}}.

And here is an inference rule for clause sets called Unit Propagation:

Unit Propagation If one member of a clause set is a singleton {l} (a ‘unit’), then:

(1) remove every other clause containing l from the clause set (for since l has to be
true, we know these other clauses have to be true as well, and no information
gets lost by deleting them);

(2) remove l from every clause in which it occurs (for since l has to be true, we
know that l has to be false, so no information gets lost by deleting l from any
disjunction in which it occurs).

The result of applying this rule is an equivalent clause set. Example: applying unit prop-
agation using unit {p} to

{{p}, {¬p, q}, {¬q, r}, {p, s}}.

yields:
{{p}, {q}, {¬q, r}}.

Applying unit propagation to this, using unit {q} yields

{{p}, {q}, {r}}.

The Horn fragment of propositional logic consists of all clause sets where every clause
has at most one positive literal. HORNSAT is the problem of checking Horn clause sets
for satisfiability. This check can be performed in polynomial time (linear in the size of
the formula, in fact).

If unit propagation yields a clause set in which units {l}, {l} occur, the original clause set
is unsatisfiable, otherwise the units in the result determine a satisfying valuation. Recipe:
for any units {l} occurring in the final clause set, map their proposition letter to the truth
value that makes l true; map all other proposition letters to false.

The problem of testing satisfiability of syllogistic forms containing exactly
one existential statement can be translated to the Horn fragment of proposi-
tional logic.

3.7. OUTLOOK — THE SYLLOGISTIC AND ACTUAL REASONING 3-21

To see that this is true, check the translations we gave above:

All A are B 7→ a→ b or equivalently {{¬a, b}}.

No A are B 7→ a→ ¬b or equivalently {{¬a,¬b}}.

Some A are B 7→ a ∧ b or equivalently {{a}, {b}}.

Not all A are B 7→ a ∧ ¬b or equivalently {{a}, {¬b}}.

As you can see, these translations are all in the Horn fragment of propositional logic. We
conclude that satisfiability of sets of syllogistic forms can be checked in time polynomial
in the number of properties mentioned in the forms.

Exercise 3.6 ♠ Consider the following three syllogisms:

No A are B

Not all B are C

Some C are A

No A are B

Some B are C

Not all C are A

All B are A

Some C are A

Some A are B

(1) One of the three syllogisms is valid. Which one?

(2) Use the diagram method to show the validity of the syllogism you claim is valid.

(3) Use a diagram to show that the other syllogisms are invalid.

(4) Next, show, for these three cases, how the validity of the syllogisms can be checked by
translating the premisses and the negation of the conclusion into clausal form, and then
using unit propagation to check the resulting clause set for satisfiability. (Note: the clause
set is satisfiable iff the syllogism is invalid.)

3.7 Outlook — The Syllogistic and Actual Reasoning

Aristotle’s system is closely linked to the grammatical structure of natural language, as
we have said at the start. Indeed, many people have claimed that it stays so close to
our ordinary language that it is part of the natural logic that we normally use. Medieval
logicians tried to extend this, and found further patterns of reasoning with quantifiers
that share these same features of staying close to linguistic syntax, and allowing for very
simple inference rules. ’Natural Logic’ is a growing topic these days, where one tries to
find large simple inferential subsystems of natural language that can be described without
too much mathematical system complexity. Even so, we have to say that the real logical
hitting power will only come in our next chapter on predicate logic, which consciously

3-22 CHAPTER 3. SYLLOGISTIC REASONING

deviates from natural language to describe more complex quantifier reasoning of types
that Aristotle did not handle.

Syllogistic reasoning has also drawn the attention of cognitive scientists, who try to draw
conclusions about what goes on in the human brain when we combine predicates and
reason about objects. As with propositional reasoning, one then finds differences in per-
formance that do not always match what our methods say, calling attention to the issue
how the brain represents objects and their properties and relations. From another point
of view, the diagrammatic aspect of our methods has attracted attention from cognitive
scientists lately. It is known that the brain routinely combines symbolic language-oriented
and visual and diagrammatic representations, and the Venn Diagram method is one of the
simplest pilot settings for studying how this combination works.

Summary In this chapter you have learnt how one simple but very widespread kind
of reasoning with predicates and quantifiers works. This places you squarely in a long
logical tradition, before we move to the radical revolutions of the 19th century in our next
chapter. More concretely, you are now able to

• write basic syllogistic forms for quantifiers,

• understand set diagram notation for syllogistic forms,

• test syllogistic inferences using Venn diagrams,

• understand how diagrams allow for update,

• understand connections with propositional logic,

• understand connections with data representation.

Further Reading If you wish to be instructed in logic by the teacher of Alexander him-
self, you should consult the Prior Analytics [Ari89] (available online, in a different trans-
lation, at classics.mit.edu/Aristotle/prior.html). For a full textbook on
Aristotelean logic, see [PH91].

Aristotelean logic can be viewed as a logic of concept description. See the first and
second chapter [NB02, BN02] of the Description Logic Handbook [BCM+02] for more
information about this connection. Connections between Aristotelian logic and predicate
logic (see next Chapter of this book) are discussed in [Łuk51]. Extensions of Aristotelian
logic in the spirit of syllogistics are given in [PH04] and [Mos08].

Chapter 4

The World According to Predicate
Logic

Overview At this stage of our course, you already know propositional logic, the system
for reasoning with sentence combination, which forms the basic top-level structure of ar-
gumentation. Then we zoomed in further on actual natural language forms, and saw how
sentences make quantified statements about properties of objects, providing a classifica-
tion of the world in terms of a hierarchy of smaller or larger predicates. You also learnt
the basics of syllogistic reasoning with such hierarchies.

In this Chapter, we look still more deeply into what we can actually say about the world.
You are going to learn the full system of ‘predicate logic’ of objects, their properties, but
also the relations between them, and about these, arbitrary forms of quantification. This
is the most important system in logic today, because it is a universal language for talking
about structure. A structure is any situation with objects, properties and relations, and it
can be anything from daily life to science: your family tree, the information about you
and your friends on Facebook, the design of the town you live in, but also the structure of
the number systems that are used in mathematics, geometrical spaces, or the universe of
sets. In the examples for this chapter, we will remind you constantly of this broad range
from science to daily life.

Predicate logic has been used to increase precision in describing and studying structures
from linguistics and philosophy to mathematics and computer science. Being able to use
it is a basic skill in many different research communities, and you can find its notation
in many scientific publications. In fact, it has even served as a model for designing new
computer languages, as you will see in one of our Outlooks. In this chapter, you will
learn how predicate logic works, first informally with many examples, later with more
formal definitions, and eventually, with outlooks showing you how this system sits at the
interface of many disciplines. But this power comes at a price. This chapter is not easy,
and mastering predicate logic until it comes naturally to you takes a while – as successive
generations of students (including your teachers) have found.

4-1

4-2 CHAPTER 4. THE WORLD ACCORDING TO PREDICATE LOGIC

4.1 Learning the Language by Doing

Zooming in on the world Propositional logic classifies situations in terms of ‘not’,
‘and’, ‘or’ combinations of basic propositions. This truth-table perspective is powerful
in its own way (it is the basis of all the digital circuits running your computer as you are
reading this), but poor in other respects. Basic propositions in propositional logic are not
assumed to have internal structure. “John walks” is translated as p, “John talks” as q, and
the information that both statements are about John gets lost. Predicate logic looks at the
internal structure of such basic facts. It translates “John walks” as Wj and “John talks”
as Tj, making it clear that the two facts express two properties of the same person, named
by the constant j.

As we said, predicate logic can talk about the internal structure of situations, especially,
the objects that occur, properties of these objects, but also their relations to each other.
In addition, predicate logic has a powerful analysis of universal quantification (all, every,
each, . . .) and existential quantification (some, a, . . .). This brings it much closer to two
languages that you already knew before this course: the natural languages in the common
sense world of our daily activities, and the symbolic languages of mathematics and the
sciences. Predicate logic is a bit of both, though in decisive points, it differs from natural
language and follows a more mathematical system. That is precisely why you are learning
something new in this chapter: an additional style of thinking.

Two founding fathers Predicate logic is a streamlined version of a “language of thought”
that was proposed in 1878 by the German philosopher and mathematician Gottlob Frege
(1848 – 1925). The experience of a century of work with this language is that, in principle,
it can write all of mathematics as we know it today. Around the same time, essentially
the same language was discovered by the American philosopher and logician Charles
Saunders Peirce. Peirce’s interest was general reasoning in science and daily life, and his
ideas are still inspirational to modern areas philosophers, semioticists, and researchers in
Artificial Intelligence. Together, these two pioneers stand for the full range of predicate
logic.

Charles Sanders Peirce Gottlob Frege

4.1. LEARNING THE LANGUAGE BY DOING 4-3

We will now introduce predicate logic via a sequence of examples. Grammar comes later:
further on in this chapter we give precise grammatical definitions, plus other information.

If you are more technically wired, you can skim the next four introductory
sections, and then go straight to the formal part of this chapter.

We do not start in a vacuum here: the natural language that you know already is a running
source of examples and, in some cases, contrasts:

The basic vocabulary We first need names for objects. We use constants (‘proper
names’) a, b, c, . . . for special objects, and variables x, y, z, . . . when the object is
indefinite. Later on, we will also talk about function symbols for complex objects.

Then, we need to talk about properties and predicates of objects. Capital letters are
predicate letters, with different numbers of ‘arguments’ (i.e., the objects they relate) indi-
cated. In natural language, 1-place predicates are intransitive verbs (“walk”) and common
nouns (“boy”), 2-place predicates are transitive verbs (“see”), and 3-place predicates are
so-called ditransitive verbs (“give”). 1-place predicates are also called unary predicates,
2-place predicates are called binary predicates, and 3-place predicates are called ternary
predicates. In natural language ternary predicates are enough to express the most complex
verb pattern you can get, but logical languages can handle any number of arguments.

Next, there is still sentence combination. Predicate logic gratefully incorporates the usual
operations from propositional logic: ¬, ∧, ∨, →, ↔. But in addition, and very impor-
tantly, it has a powerful way of expressing quantification. Predicate logic has quantifiers
∀x (“for all x”) and ∃x (“there exists an x”) tagged by variables for objects, that can
express an amazing number of things, as you will soon see.

From natural language to predicate logic For now, here is a long list of examples
showing you the underlying ‘logical form’ of the statements that you would normally
make when speaking or writing. Along the way we will point out various important
features.

Atomic statements We start with the simplest statements about objects:

natural language logical formula
John walks Wj
John is a boy Bj
He walks Wx
John sees Mary Sjm
John gives Mary the book Gjmb

4-4 CHAPTER 4. THE WORLD ACCORDING TO PREDICATE LOGIC

Predicate logic treats both verbs and nouns as standing for properties of objects, even
though their syntax and communicative function is different in natural language. The
predicate logical form of “John walks” uses a predicate letter and a single constant. The
form of “John is a boy” also uses a predicate letter with a constant: Bj.

These examples demonstrate the variety of predication in natural language: intransitive
verbs like ‘Walk” take one object, transitive verbs like “see” take two, verbs like “give”
even take three. The same variety occurs in mathematics as we will see a bit later, and it
is essential to predicate logic: atomic statements express basic properties of one or more
objects together. In the history of logic, this is a relatively late insight. The theory of
syllogistics describes only properties of single objects, not relations between two or more
objects.

Exercise 4.1 The hold of the syllogistic of our preceding chapter, and its emphasis on “unary”
properties of single objects has been so strong that many people have tried to reduce binary pred-
icates to unary ones. One frequent proposal has been to read, say, “x is smaller than y” as “x is
small and y is not small”. Discuss this, and show why it is not adequate. Does it help here to make
the property “small” context-dependent: “small compared to...”?

Translation key Note that in writing predicate logical translations, one has to choose a
“key” that matches natural language expressions with corresponding logical letters. And
then stick to it. For mnemonic purposes, we often choose a capital letter for a predicate as
close to the natural language expression as we can (e.g., B for “boy”). Technically, in the
logical notation, we should indicate the exact number of object places that the predicate
takes (“B has one object place”), but we drop this information when it is clear from
context. The object places of predicates are also called argument places. If a predicate
takes more than one argument, the key should say in which order you read the arguments.
E.g., our key here is that Sjm says that John sees Mary, not that Mary sees John. The
latter would be Smj.

Predicates in language and mathematics Let us discuss predicates a bit further, since
their variety is so important to predicate logic. In mathematics, 2-place predicates are
most frequent. Common examples are = (‘is equal to’), < (‘is smaller than’), ∈ (‘is an
element of’). It is usual to write these predicates in between their arguments: 2 < 3.
(We will say more about the expressive possibilities of the predicate “=” on page 4-41.)
Occasionally, we also have 3-place predicates. An example from geometry is “x lies
between y and z”, an example from natural language is the word “give” (with a giver, an
object, and a recipient).

4.1. LEARNING THE LANGUAGE BY DOING 4-5

informal mathematics logical/mathematical formula
Two is smaller than three 2 < 3
x is smaller than three x < 3
x is even (i.e., 2 divides x) 2|x
Point p lies between q and r Bpqr

In the special case of talking about mathematics there are standard names for objects and
relations. In x < 3, the term “3” is a constant that names a particular natural number,
and “<” is a standard name for a specific relation. The notation x|y expresses that x is a
divisor of y, i.e., that division of y by x leaves no remainder. Natural language also has
special names for distinguished objects, such as “Alexander the Great”, “Indira Ghandi”,
or “The Great Wall”.

Note that betweenness is not a conjunction of “x lies between y” and “x lies between z”:
that would be nonsense. However, an abbreviation that is often used in mathematics is
x < y < z, to express that the number y is in between x and z. This is not an example of
real 3-place predicate. Rather, it is an abbreviation of x < y ∧ y < z. In this special case,
when an order is ‘linear’, betweenness does reduce to a conjunction after all.

Exercise 4.2 Express ¬(x < y < z) in terms of the binary predicate < and propositional connec-
tives, using the fact that x < y < z is an abbreviation of x < y ∧ y < z.

The standard in predicate logic is to write the predicate first, then the objects. The ex-
ceptions to this rule are the names for binary relations in mathematics: < for less than, >
for greater than, and so on. The general rule is for uniformity, and it takes getting used
to. Many natural languages put predicates in the middle (English, French, but also the
informal language of mathematics), but other languages put them first, or last. Dutch and
German are interesting, since they put predicates in the middle in main clauses (“Jan zag
Marie”), but shift the predicate to the end in subordinate clauses (“Ik hoorde dat Jan Marie
zag”).

Referring to objects: pronouns and variables We already saw how proper names
like “John” or “Mary” refer to specific objects, for which we wrote constants like a, b.
But both natural language and mathematics use ‘variable names’ as well, that stand for
different objects in different contexts. Pronouns in language work like this: “John sees
her” (Sjx) refers to some contextually determined female “her”, and x < 2 expresses that
some contextually determined number x is smaller than 2. Think of a geometry textbook
where x is introduced as the side of a triangle with two other sides of length 1. The famous
author Italo Calvino once wittily called pronouns “the lice of thought” [Cal88]. But are
they just a nuisance? To the contrary, what pronouns do is provide coherence in what you
say, by referring back to the same individual in the right places. That is also exactly what
mathematical variables do. So we get analogies between pronouns in natural language
and contextually determined variables in mathematics, like:

4-6 CHAPTER 4. THE WORLD ACCORDING TO PREDICATE LOGIC

John sees her Sjx
He sees her Syx
This is less than that x < y
He sees himself Sxx

Note that whether x < y is true totally depends on specifying x and y. It is true for
x = 2 and y = 5 but false for x = 5 and y = 2. ‘This’ and ‘that’ in natural language are
demonstrative pronouns for pointing at things. Mathematicians use variables as pointers.
Instead of “suppose this is some number greater than one” they say “suppose x is a number
greater than one”. Next, they use x to refer to this number.

Adding on propositional logic Propositional operators can be added in the obvious
way to the preceding statements, with the same function as before:

John does not see Mary ¬Sjm
Three is not less than two ¬3 < 2, or abbreviated: 3 ≮ 2.
John sees Mary or Paula Sjm ∨ Sjp
Three is less than three or three is less than four 3 < 3 ∨ 3 < 4.
x is odd (i.e., two does not divide x) ¬(2|x)
If John sees Mary, he is happy Sjm→ Hj

As a small detail in style, in the last example, natural language uses a pronoun (“he is
happy”), while the logical translation does not use a variable but a second occurrence of
the constant j to refer to the same object as before. Logic is more precise, natural language
is more flexible. The reuse of the constant j rules out any possibility of misunderstanding,
while the correct interpretation of “he” still depends on context.

Exercise 4.3 Translate the following sentences into predicate logical formulas:

(1) If John loves Mary, then Mary loves John too.

(2) John and Mary love each other.

(3) John and Mary don’t love each other.

(4) If John and Peter love Mary then neither Peter nor Mary loves John.

Exercise 4.4 Rephrase “x ≤ y ∧ y ≤ z” in predicate logic, using binary relations < for “less
than” and = for “equal”.

Exercise 4.5 Rephrase “¬(x ≤ y ∧ y ≤ z)” in predicate logic, using binary relations < for “less
than” and = for “equal”.

4.1. LEARNING THE LANGUAGE BY DOING 4-7

A first glimpse of quantifiers Now we move to the most important new operators,
quantifiers which say that objects exist without naming them explicitly:

Someone walks ∃xWx
Some boy walks ∃x(Bx ∧Wx)
A boy walks ∃x(Bx ∧Wx)
John sees a girl ∃x(Gx ∧ Sjx)
A girl sees John ∃x(Gx ∧ Sxj)
A girl sees herself ∃x(Gx ∧ Sxx)

Here you can see what variables do: they keep track of which object does what when that
object occurs several times in the sentence. With long sentences or long texts, a systematic
mechanism like this becomes crucial in keeping reasoning straight.

Here are some examples with universal quantifiers:

Everyone walks ∀xWx
Every boy walks ∀x(Bx→ Wx)
Every girl sees Mary ∀x(Gx→ Sxm)

Note that “Some boy walks” is translated with a conjunction symbol, and “Every boy
walks” is translated using an implication symbol. The following exercise explains why.

Exercise 4.6 Let B be the predicate for “boy” and W the predicate for “walk”.

(1) What does ∀x(Bx ∧Wx) express?

(2) And what does ∃x(Bx→Wx) express?

At first, you may find this predicate-logical formulation somewhat strange. But give it
some more thought, and you may come to see that the predicate-logical formulas really
get to the heart of the meaning and structure of objects.

Remark on natural language and logic Our examples show similarities between natu-
ral language and logic, but also a bit of friction. It may seem that “John is a boy” contains
an existential quantifier (“there is a boy”), but this appearance is misleading. This has
been much discussed: already ancient Greek logicians felt that their own language has a
redundancy here: the indefinite article “a” is redundant. Indeed, many natural languages
do not put an “a” in this position. An example from Latin: “puer est” (“he is a child”).
But such languages also do not put an “a” in positions where there is a real existential
quantifier. Another example from Latin: “puer natus est” (“a child is born”). Likewise,
the ancient Greek logicians already observed that the “is” of predication in “John is a boy”
does not seem to do any real work, and again, might just be an accident of language. As
one can imagine, debates about how natural language structure relates to logical form are
far from over — and they remain a powerful inspiration for new research.

4-8 CHAPTER 4. THE WORLD ACCORDING TO PREDICATE LOGIC

Quantifier combinations The advantages of the austere notation of predicate logic
quickly become clearer when we combine quantifiers. This creates patterns that are
essentially more sophisticated than those in our previous chapter on syllogistic reason-
ing. Combined patterns occur widely in science and natural language, but predicate logic
makes them especially perspicuous:

Everyone sees someone ∀x∃ySxy
Someone sees everyone ∃x∀ySxy
Everyone is seen by someone ∀x∃ySyx
Someone is seen by everyone ∃x∀ySyx

You can again think of mathematical examples just as easily:“every number has a greater
number”, “some number has no smaller number”, “some sets have no elements”, etc.

The domain of quantifiers Quantifiers in natural and formal languages come with an
additional feature, that we left implicit so far. The quantifiers range over all objects in
some given set of relevant objects, the domain of discourse. In the above natural language
examples, the domain only contains human beings, perhaps even just a small set of them
— in mathematical examples, it can be numbers or geometrical figures. But in principle,
every set of objects, large or small, can be a domain of discourse. We will make this
feature more explicit later when we talk about the semantics of predicate logic.

Technically, the restriction to domains of discourse is sometimes reflected in how we
“restrict” a quantifier to some relevant subset, indicated by a unary predicate. For in-
stance, in the obvious translations of syllogistic statements like “AllA areB”, the formula
∀x(Ax→Bx) has its universal quantifier restricted to the predicate A, and likewise, the
existential quantifier for “Some A are B” is restricted as follows: ∃x(Ax∧Bx).

This completes our first tour of predicate logic. The next section will help you in much
more detail with finding logical forms for natural language sentences.

4.2 Practising Translations

In a logic course, going from sentences to formulas is taught as a sort of art allowing you to
see the structure of ordinary assertions, and doing inference with them. And this art also
makes sense for our other extreme of mathematics: mathematicians also speak natural
language, be it with many special notations, and they have never switched completely to
using only formulas. The modern area of “natural language processing” has developed the
translation process also into a sort of science, where computers actually translate given
natural language sentences into logical representations. In what follows, we go through
some detailed examples that may help you develop a methodical style of translating.

If you feel that you get the picture by now, you can skip this section.

4.2. PRACTISING TRANSLATIONS 4-9

Translating simple syllogistic sentences Here is how the syllogistic statements of the
preceding chapter can be expressed in predicate logic:

All A are B ∀x(Ax→ Bx)

No A are B ¬∃x(Ax ∧Bx)

Some A are B ∃x(Ax ∧Bx)

Not all A are B ¬∀x(Ax→ Bx)

Exercise 4.7 Give the predicate logical formulas for the following syllogistic statements:

(1) No B are C.

(2) Some A are C.

But the real power of predicate logic shows only in combinations.

Translating sentences with multiple quantifiers We can also use these patterns for
finding translations for sentences involving double quantifications, as in the following
example:

Every boy loves a girl. (4.1)

To begin with we translate the pattern for “All B are . . . ”:

∀x (Bx→ ϕ(x)) (4.2)

Here B is a unary predicate to represent ‘boy’, and ϕ(x) stands for the property that we
want to assign to all the boys x: “x loves a girl”. This part of the sentence is in fact
something of the form “Some C are D”, where C represents the class of girls and D the
class of those objects which are loved by x. The predicate logical translation of ϕ(x)
therefore looks as follows:

∃y (Gy ∧ Lxy) (4.3)

with Gy for “y is a girl” and Lxy for “x loves y”. Substitution of this translation for ϕ(x)
in (4.2) gives us the full predicate logical translation of (4.1):

∀x (Bx→ ∃y (Gy ∧ Lxy)) (4.4)

In the following figure, a parse tree of the translation is given which shows the composi-
tional structure of predicate logic. Every subformula corresponds to a sentence in natural

4-10 CHAPTER 4. THE WORLD ACCORDING TO PREDICATE LOGIC

language:
∀x

Every boy loves some girl

→
If x is a boy then x loves some girl

Bx

x is a boy
∃y

x loves some girl

∧
y is a girl whom x loves

Gy

y is a girl
Lxy

x loves y
(4.5)

This way of constructing translations can be of great help in finding predicate logical
formulas for natural language sentences.

In ordinary language we are used to writing from left to right, but in predicate logic the
order of putting together connectives and quantifiers is often non-linear. The following
longer example illustrates this.

No girl who loves a boy is not loved by some boy. (4.6)

Although this sentence looks quite complicated, its surface structure coincides with the
syllogistic form “No A are B”, and so our first translation step is:

¬∃x (ϕ(x) ∧ ψ(x)) (4.7)

where ϕ(x) are those x who are girls who love some boy, and ψ(x) represents the class of
those x who are loved by no boy. The first part, ϕ(x), is a conjunction of two properties:
x is a girl and x loves a boy. This is just a small step towards a complete translation:

¬∃x ((Gx ∧ ϕ1(x)) ∧ ψ(x)) (4.8)

with ϕ1(x) representing “x loves a boy”. This part can be translated into:

∃y (By ∧ Lxy) (4.9)

Substitution of this result for ϕ1(x) in (4.8) gives us the following intermediate result:

¬∃x ((Gx ∧ ∃y (By ∧ Lxy)) ∧ ψ(x)) (4.10)

4.2. PRACTISING TRANSLATIONS 4-11

The subformula ψ(x) represents “No boy loves x”, which can be translated into:

¬∃z (Bz ∧ Lzx) (4.11)

This yields the final result:

¬∃x ((Gx ∧ ∃y (By ∧ Lxy)) ∧ ¬∃z (Bz ∧ Lzx)) (4.12)

Below a complete composition tree is given for this translation. Again, every subformula
can be paraphrased in natural language:

¬
No girl who loves a boy is not loved by some boy

∃x
Some girl who loves a boy is not loved by some boy

∧
x is a girl who loves a boy is not loved by some boy

∧
x is a girl who loves a boy

Gx

x is a girl
∃y

x loves a boy

∧
y is a boy who is loved by x

By

y is a boy
Lxy

x loves y

¬
x is not loved by some boy

∃z
x is loved by some boy

∧
z is a boy who loves x

Bz

z is a boy
Lzx

z loves x
(4.13)

Iterating quantifiers: twice, and more Two-quantifier combinations occur in natural
language as we have just seen, and they are also very common in mathematics. The
same logical form that expressed ‘Everyone sees someone’ is also that for a statement
like ‘Every number has a larger number’. And the above form for ‘Some girl sees every
boy’ is also that for ‘There is an odd number that divides every even number’ (namely,
the number 1).

Can there be still higher nestings of quantifiers? Yes, indeed. For instance, three quanti-
fiers are involved in the famous saying that “You can fool some people some of the time,

4-12 CHAPTER 4. THE WORLD ACCORDING TO PREDICATE LOGIC

and you can fool some people all of the time, but you cannot fool all people all of the
time”. To see that this really involves three quantifiers, observe that the “you” must be
read as “someone”. The translation of “Someone can fool some people some of the time”
(with P for “person”, T for “instant of time”, F for “fooling”):

∃x(Px ∧ ∃y(Py ∧ ∃z(Tz ∧ Fxyz))).

And for ”Someone cannot fool all people all of the time”:

¬∃x(Px ∧ ∀y(Py → ∀z(Tz → Fxyz))).

Likewise, three-quantifier combinations occur in mathematics. A typical example is the
definition of ‘continuity’ of a function f in a point x:

For every number r, there is a number s such that for all y with |x− y| < s:
|f(x)− f(y)| < r.

Nestings of four quantifiers are rare, they get hard for humans to understand.

Exercise 4.8 Assume the domain of discourse to be all human beings. Translate the following
sentences into predicate logic:

(1) Augustus is not loved by everyone. (Use a for Augustus, L for love.)

(2) Augustus and Livia respect each other. (Use a for Augustus, l for Livia and R for respect.)

(3) Livia respects everyone who loves Augustus.

Exercise 4.9 Assume the domain of discourse is all animals. Translate: Some birds do not fly.
(Use B for being a bird and F for being able to fly.)

Exercise 4.10 For each of the following, specify an appropriate domain of discourse, specify a
key, and translate into predicate logic. (Note: you have to understand what a sentence means
before you can attempt to translate it.)

(1) Dogs that bark do not bite.

(2) All that glitters is not gold.

(3) Friends of Michelle’s friends are her friends.

(4) There is a least natural number.

(5) There is no largest prime number.

Exercise 4.11 Translate the following sentences into predicate logical formulas. Assume the do-
main of discourse is human beings.

4.3. REASONING PATTERNS WITH QUANTIFIERS 4-13

(1) Every boy loves Mary.

(2) Not all girls love themselves.

(3) No boy or girl loves Peter.

(4) Peter loves some girl that loves John.

Exercise 4.12 For each sentence from the previous exercise, draw a picture that makes it true.

Exercise 4.13 Translate the following sentences into predicate logical formulas. Assume the do-
main of discourse is human beings.

(1) Some boy doesn’t love all girls.

(2) Every boy who loves a girl is also loved by some girl.

(3) Every girl who loves all boys does not love every girl.

(4) No girl who does not love a boy loves a girl who loves a boy.

4.3 Reasoning Patterns with Quantifiers

Let us now turn to the kind of reasoning that predicate logic brings to light. As with
earlier systems, the basis here is your intuitive understanding of reasoning, in this case,
with quantifiers. The formal system then makes this more precise and systematic. In this
section, we look at some valid inferences, without formal analysis: we are appealing to
your intuitions.

Monadic Predicate Logic Before unleashing the full power of quantifiers in predicate
logic, we first consider a more modest stepping stone.

The language of the Syllogism (Chapter 3) is a small fragment of predicate logic that
imposes a restriction on the form of the predicates that are allowed: they have to be “unary
properties”, with atomic statements involving one object only. This special system with
only 1-place predicates (unary properties of objects) is called monadic predicate logic.
This restriction on predicate form curbs the power of quantification considerably, but it
also makes it easier to understand. Let us see how syllogistic reasoning can be expressed
in monadic predicate logic.

Consider the syllogism with premises “All A are B” and “All B are C” and conclusion
‘All A are C”. It corresponds to the valid predicate-logical inference

∀x(Ax→ Bx), ∀x(Bx→ Cx) imply ∀x(Cx→ Ax)

4-14 CHAPTER 4. THE WORLD ACCORDING TO PREDICATE LOGIC

by using a small variation of one of the methods of Chapter 3.

Of course, you have already learnt the Venn Diagram method that tests such inferences
for validity or invalidity. More in terms of predicate logic, here are some further patterns.
Syllogistic theory has the following equivalences:

• Not all A are B has the same meaning as Some A are not B.

• All A are not B has the same meaning is there are no A that are also B.

The predicate logical versions of these equivalences give important information about the
interaction between quantification and negation:

• ¬∀x(Ax → Bx) is equivalent to ∃x¬(Ax → Bx), which is in turn equivalent to
∃x(Ax ∧ ¬Bx),

• ∀x(Ax → ¬Bx) is equivalent to ¬∃x¬(Ax → ¬Bx), which is in turn equivalent
to ¬∃x(Ax ∧Bx).

From this we can distill some important general quantification principles:

• ¬∀xϕ is equivalent to ∃x¬ϕ,

• ¬∃xϕ is equivalent to ∀x¬ϕ.

Reflecting on these principles a bit further, we see that negation allows us to express one
quantifier in terms of the other, as follows:

• ∀xϕ is equivalent to ¬∃x¬ϕ,

• ∃xϕ is equivalent to ¬∀x¬ϕ.

Exercise 4.14 Translate the following syllogistic statements into predicate logic, without using
existential quantifiers:

(1) Some A are B.

(2) Some A are not B.

(3) No A are B.

Exercise 4.15 Translate the following syllogistic statements into predicate logic, without using
universal quantifiers:

(1) All A are B.

4.3. REASONING PATTERNS WITH QUANTIFIERS 4-15

(2) All A are non-B.

(3) No A are B.

Actually, monadic predicate logic also has basic inferences that are not syllogistic in
nature. Here is a key example:

∀ distributes over ∧.

On the other hand, ∀ does not distribute over ∨. Here is a simple counterexample. The
Greeks held the view that all people are either Greeks or Barbarians. So, with all people
as the domain of discourse:

∀x(Gx ∨Bx).

But they did certainly not hold the view that either all people are Greek or all people are
Barbarians. For they knew that the following was false:

∀xGx ∨ ∀xBx.

Exercise 4.16 What are the analogous observations for ∃, ∧ and ∨?

Syllogistic reasoning is still very simple, and indeed, validity in monadic predicate logic,
which has unary predicates only, is still decidable: there are mechanical methods for
testing whether given inferences are valid, as we have seen in Chapter 3. This is no longer
true for predicate logic as a whole, but we will come to that point only later.

Logic and natural language once more Modern logicians view the syllogistic as a
tiny (monadic) fragment of the much richer full natural language. From that point of
view, traditional logic was extremely weak, and its success in history becomes hard to
understand. But this is an essential misunderstanding of how a logical system functions.
Syllogistic forms are used for analysis of given sentences, and they provide a sort of top-
level logical form, while the predicates A, B, etc. may stand for large chunks of natural
language text of potentially very high (non-syllogistic!) complexity. For instance, here is
a surface “All A are B” form: “All prisoners who have inflicted much damage on several
people (A) fall under the provisions of most criminal codes invented by different cultures
(B)”.

In this sense you should not misunderstand the art of translation that we have shown
you. Outside the realm of our toy examples, it is usually hopeless to translate a complete
natural language sentence into a logical formula. The point is rather that you formalize
part of the outer structure of the sentences involved, say, enough to see whether a claimed
inference is valid or not. Leaving large internal chunks of the sentences unformalized is
not a problem in such a case: it is rather the sign of a certain sense for taste and elegance.

4-16 CHAPTER 4. THE WORLD ACCORDING TO PREDICATE LOGIC

Reasoning with binary and higher predicates, and with quantifiers Valid reasoning
in predicate logic extends far beyond syllogistic forms. The following is a famous 19th
century example of a non-syllogistic valid inference involving binary relations:

“All horses are animal”, therefore: “All horse tails are animal tails”

Using a binary predicate P for “possess” or “have”, we can translate this as follows:

∀x(Hx→ Ax)

∀y((Ty ∧ ∃x(Hx ∧ Pxy))→ ∃z(Az ∧ Pzy))

This is one instance of a general phenomenon: “monotonicity inferences” with predicate
replacement of the sort discussed in the preceding chapter work in much greater generality
than just the syllogistic. Predicate logic tells you how.

Another natural set of inferences has to do with iterated quantifiers. First, here are some
rather trivial, but nevertheless valid inferences:

∀x∀yϕ↔ ∀y∀xϕ is valid.

Much more interesting, of course, are other combinations. For a start, it is easy to see that
a quantifier combination ∀x∃y does not imply ∃y∀x: everyone has a mother, but no one is
a mother of everyone. And even ∀x∃yRxy does not imply the same shape with variables
permuted: ∀x∃yRyx. Everyone has a parent, but not everyone has a child. Here is about
the only interesting valid inference between 2-quantifier combinations:

∃x∀yϕ implies ∀y∃xϕ.

You may formulate for yourself why this is intuitively (and really) valid.

Exercise 4.17 Determine validity or invalidity of all the remaining possible implications between
repeated quantifiers.

This ends our list of intuitively valid principles of reasoning with quantifiers.

Warning: the role of compositionality We do not want to leave you with the wrong
impression. From our progressive list, you might think that we have now classified 2-
quantifier inferences, then we should go on to 3-quantifier ones, and so on. This was
indeed how some medieval logicians saw the task ahead for logic. But this is mistaken.
We do not have to go up the hierarchy that seemed in the making. There is a complete
proof system for predicate logic whose rules just tell us explicitly what single quantifiers
do. All the valid behaviour of complex quantifier combinations then follows automatically
by finding the right combinations of proof steps for single quantifiers.

4.4. FORMULAS, SITUATIONS AND PICTURES 4-17

4.4 Formulas, Situations and Pictures

By now, it will have become clear to you that predicate logic is a very general language for
talking about situations where objects have certain properties or are in certain relations.
But what that really means is that these situations are crucial to understanding truth or
falsity of formulas. Therefore, let us talk a bit more about what they are, intuitively, and
how they connect up with formulas.

You can also see this point as follows. The semantics of a language ties the syntactic
expressions of that language to real situations that language users talk about, say when
communicating information to each other. Thus semantics has two independent pillars:
language, and reality: the situations which that language can in principle describe.

Scenes from daily life Here is a simple example from everyday life:

Suppose we use B for the property of being a bicycle, M for the property of being a man,
and R for the relation of riding, then we can say that the following formula describes the
following salient fact about the situation in the picture:

∃x∃y(Mx ∧By ∧Rxy).

Of course, you can also write statements about the trees.

Exercise 4.18 Consider the following picture:

4-18 CHAPTER 4. THE WORLD ACCORDING TO PREDICATE LOGIC

Use G for the property of being a girl, H for the property of being a hat, and W for the relation of
wearing (so that Wxy expresses that x is wearing y). Now do the following:

(1) Give a predicate logical formula that is true for the situation in the picture.

(2) Give a predicate logical formula that is false for the situation in the picture.

Venn diagrams The Venn diagrams that you know from our chapter on syllogistic rea-
soning are abstract pictures of situations where objects have certain properties. Look at
the Venn picture of the set of things that are in A but not in B:

A B

(4.14)

Here is one relevant predicate logical formula:

Ax ∧ ¬Bx. (4.15)

The green area in the picture corresponds to the set of individuals x that make formula
4.15 true. Here, the formula (4.15) contains a free variable x, that is, x is not bound by a
quantifier. This serves as a place-holder where different objects can be put to make true
or false statements, and hence this formula describes a property of objects. Of course,
this is exactly how mathematicians use variables as well: given the situation of the real
numbers, the formula x2 < x defines a particular subset, namely the real numbers from 0
up to, but not including 1.

Graphs for representing relations A widely used concrete picture for a situation is
a graph: a set of points connected by lines (often called an “undirected graph”) or by
directed arrows (a “directed graph”). Graphs are used everywhere in science, from pure
mathematics to social networks, and also in daily life: the NS railway map of The Nether-
lands is a graph of cities and railway connections. In fact, they have already been used
in this course itself! Trees are a special kind of graph with nodes and connections from
nodes to their children, and you have already used trees to represent logical formulas.

Graphs are one of the most useful mathematical structures all around, being abstract yet
simple to grasp. They are often used to demonstrate points about logic.

Here is a picture of a directed graph: a set of nodes, linked by arrows called “edges”:

4.4. FORMULAS, SITUATIONS AND PICTURES 4-19

Let us take one binary predicateR for expressing that two objects in the picture are linked
by an edge, with the arrow pointing from the first to the second object. Then it is easy to
see that the following formulas are true:

∃x∃yRxy
∃xRxx
¬∀x∃yRxy

Now let us change the picture by adding one more edge, to make the relation symmetric:

Effectively, this changes the picture into an undirected graph: since every arrow can be
reversed, there is no need anymore to indicate the direction of the edges, and the picture
can be simplified, as follows:

The formula ∀x∀y(Rxy → Ryx), is not just true here, but is true in all undirected graphs:
it expresses that the link relation is symmetric.

Symmetry is one of many important properties of binary relations that can be defined in
predicate logic. We will see a few more in a moment.

4-20 CHAPTER 4. THE WORLD ACCORDING TO PREDICATE LOGIC

Exercise 4.19 The formula

∀x∀z(∃y(Rxy ∧Ryz)→ Rxz)

expresses transitivity of the relation R. Which of the following relations are transitive:

(1) being an ancestor of . . . on the set of human beings,

(2) being a parent of . . . on the set of human beings,

(3) the ‘less than’ relation < on the natural numbers,

Example 4.20 The binary relation in the last picture above is not transitive. Here is
why not. Consider the left and the middle point in the picture. There is a link from left
to middle, and there is a link from middle to left. This is so because, as we have just
seen, the relation in the picture is symmetric. Now transitivity says that if you can get
somewhere in two steps by following a relation, then you can also get there in a single
step in that relation. Thus, transitivity demands that you can go from the left point to the
left point in a single step. This is not the case, so the relation is not transitive.

Exercise 4.21 A relation R is called linear if the following holds:

∀x∀y(Rxy ∨ x = y ∨Ryx).

Clearly, the relation in the last picture above is not linear, for there is no link between the middle
point and the point on the right in the picture. Which of the following relations are linear:

(1) being an ancestor of . . . on the set of human beings,

(2) being a parent of . . . on the set of human beings,

(3) the ‘less than’ relation < on the natural numbers,

The next graph has a distinction between two kinds of nodes. This is something we can
talk about with an additional 1-place predicate:

4.4. FORMULAS, SITUATIONS AND PICTURES 4-21

Let us say that the solid dots • have the property P , and the open dots ◦ lack that property.
The true statement “All solid dots are linked to at least one open dot” can now be expressed
as follows:

∀x(Px→ ∃y(¬Py ∧Rxy)).

And here is how we express that links are only between solid and open dots:

∀x∀y(Rxy → (Px↔ ¬Py)).

Most useful graphs in logic are directed, with arrows making links. A very nice example
are family relations, as represented in genealogical trees. Here is the family tree of the
famous Egyptian pharao Tutankhamun, as revealed by DNA research in 2010:

Exercise 4.22 Using relation symbols P for “parent of”, and M for male, give a predicate logical
formula that expresses the surprising fact (well, not so surprising, if you know something about
ancient Egyptian royal families) that came to light about the lineage of Tutankhamun: The parents
of Tutankhamun were brother and sister.

Directed graphs visualize relations of many kinds. A concrete example is divisibility on
the natural numbers {1, 2, 3, 4, 5, 6}:

4-22 CHAPTER 4. THE WORLD ACCORDING TO PREDICATE LOGIC

1 5

62 3

4 (4.16)

The circles around the numbers represent reflexive arrows: every number divides itself:
∀x (x|x), where | is used as an infix symbol for the relation of divisibility. Another basic
property of the divisibility relation is transitivity:

∀x∀y∀z ((x|y ∧ y|z)→ x|z).

This says that if one number divides a second, and that second a third, then the first
number divides the third. Many relations are transitive: think of being older than, being
as old as, being no older than (think about this!), being an ancestor of. Another general
feature of divisibility is its anti-symmetry:

∀x∀y((x|y ∧ y|x)→ x = y)

This, too, holds for many relations: though not for being “as old as”: why not?

Example 4.23 We can use the predicate for “divides” to give a predicate logical definition
of being a prime number, as follows. A prime number is a natural number with the
property that it has no proper divisors greater than 1. A proper divisor of a number x is a
number y that is smaller than x and that divides y. In predicate logic: y is a proper divisor
of x greater than 1 if 1 < y ∧ y < x ∧ y|x. Therefore, the following formula gives a
definition of being prime:

P (x)↔ ¬∃y(1 < y ∧ y < x ∧ y|x).

You will encounter many more graphs later on in this course. Chapter 5 on knowledge and
communication will have many undirected ones, Chapter 6 on action has directed graphs.
We now state a few more exercises, since graphs concretely visualize much of what we
are going to say more abstractly in the following sections.

Exercise 4.24 Predicate logic can be used to tell two graphs apart: find a formula that is true in
the one but not in the other. Consider the following two pictures:

4.4. FORMULAS, SITUATIONS AND PICTURES 4-23

Give a formula, with R for the relation, that is true on the left and false on the right.

Exercise 4.25 ♥ When a formula is false in a graph, we may want to change that graph in a
minimal manner to make the formula true after all. Think of an engineer changing a blueprint to
meet a given specification. Consider the following graph:

The formula ∃x∀yRxy is false in the graph ifR is interpreted as the→ relation. Make the formula
true by adding a single→ link to the graph.

Exercise 4.26 ♠ Here is a harder problem. Suppose that we are talking about finite directed
graphs whose ordering is reflexive and connected, where the latter property means that for any two
points, an arrow runs from at least one to the other. (How would you write this as a formula?) Many
communication networks are like this. Now call a point in the graph a “Great Communicator” if
it can reach every point in the graph by one, or at most two successive arrows. (How would you
write this in a formula?) Now the real question:

Show that every finite connected graph has a “Great Communicator”.

You may want to draw some pictures first to get a feeling for what these graphs are like. While we
are at it, here is one more question. The stated inference does not hold for infinite graphs: can you
give a counter-example?

We conclude with a few general observations on the link between predicate-logical for-
mulas and situations (from numbers to pharao’s) that we have now demonstrated in many
concrete settings.

4-24 CHAPTER 4. THE WORLD ACCORDING TO PREDICATE LOGIC

“The missing link”: semantic interpretation Assigning meaning to a language really
involves three ingredients, not just the two we discussed so far. We already had the
sentences of the language, a syntactic code. Then we looked at the situations described,
consisting of objects with structure: properties, relations, and the like. But the syntactic
code only acquires meaning by connecting it with structures, a process of “interpretation”.
If you receive a letter in a language that you do not know, you just have the code. If
you see a newspaper article in a language that you do not know, but with an inserted
picture of Mount Etna, you may know the situation (yesterday’s spectacular eruption)
and the code, but you still do not know what the message says, since you do not know
its interpretation. This three-way scheme gives language an amazing versatility. One
piece of syntactic code can talk about many situations, and even about one situation under
different interpretations, one situation can be described in many languages, and so on.

These ideas apply also to the language of predicate logic. As we have seen, it describes
“universes of discourse”’ consisting of objects, but we need a link. In the above, this
link was often given informally as a “key” mapping predicate-logical symbols to corre-
sponding structural components of the relevant situation. How does this linkage work in
general?

In propositional logic, the link was the valuation mapping proposition letters to truth
values. But this will no longer do. For checking whether a statement saying that a certain
object has a certain property, or that certain objects are in a certain relation is true we need
something more refined. Instead of just saying that “John is boy” is assigned the value
true, we now need an interpretation for “John” and an interpretation for “being a boy”.
Here is a list, to give you a first impression of what we need:

(1) Individual constants denote concrete objects,much like proper names.

(2) Unary predicate letters denote concrete properties of objects, and likewise, binary
predicate letters concrete binary relations, and so on. (We can think of these as-
signed predicates in terms of sets of objects or of ordered tuples and so on, but this
is just a particular mathematical implementation, not the essence of the matter.)

(3) Variables will not denote fixed objects, but they can run through objects: something
for which we will use a special device later on called an “assignment”.

(4) Logical expressions like Boolean connectives and quantifiers are given their stan-
dard meaning that we have already seen at work throughout this text.

Interpreting complex sentences in stages Mapping the basic alphabet of the language
to corresponding items in a situation allows us to interpret atomic sentences saying that
one or more objects stand in some relation. What about more complex sentences formed
with perhaps lots of logical operations, a set containing infinitely many expressions of
extremely high syntactic complexity?

4.5. SYNTAX OF PREDICATE LOGIC 4-25

One of the many amazing things about predicate logic, and indeed, one of the major
discoveries by its 19th century founding fathers, is that we do not have to worry about
this. As we will see in more formal detail soon, formulas with nested quantifiers are con-
structed systematically by stepwise syntax rules introducing one symbol at a time. Next,
these rules can be interpreted semantically, and then meanings for expressions of arbitrary
complexity just arise automatically by calling on the meaning of single propositional op-
erators and quantifiers as many times as required.

This process of stepwise interpretation from components is called compositionality, and
it is a major design principle, not just in logic, but also, for instance, in programming
languages or algebraic formalisms in mathematics. Compositionality is also important to
philosophers, since it seems to provide an explanation for what is after all a very mysteri-
ous phenomenon. On the basis of only a finite amount of information (sample sentences
from your parents, perhaps some grammatical rules in school) competent speakers of a
language understand a potential infinity of new sentences when confronted with them,
even when they have never seen them before.

4.5 Syntax of Predicate Logic

The time has come to confront the formal details of how predicate logic works. You have
now seen informally how the language of predicate logic works in a number of settings,
and how it can describe various structures from mathematics to our daily world. Next, you
may want to see how it works for the same purposes that you have seen in earlier chapters,
such as information update and, in particular, inference. But before we do that, it is time
to sharpen up things, and say exactly what we mean by the language and semantics of
predicate logic.

The first step is an investment in ‘formal grammar’. It looks a bit technical, but still
a far cry from the complexities of a real natural language like English. The following
grammar is a simple model of basics of the grammar of many languages, including even
programming languages in computer science.

Formulas As we have seen, predicate logic is an extension of propositional logic with
structured basic propositions and quantification.

• An atomic formula consists of an n-ary predicate followed by n variables.

• A universally quantified formula consists of the symbol ∀ followed by a variable
followed by a formula.

• An existentially quantified formula consists of the symbol ∃ followed by a variable
followed by a formula.

4-26 CHAPTER 4. THE WORLD ACCORDING TO PREDICATE LOGIC

• The rules for Boolean connectives are as in propositional logic.

Formal grammar We will now give a formal definition of the language of predicate
logic. The definition assumes that individual terms are either variables or constants. We
use a popular notation from computer science (“BNF format”) for optimal perspicuity:

v ::= x | y | z | · · ·
c ::= a | b | c | · · ·
t ::= v | c

P ::= P | Q | R | · · ·
Atom ::= P t1 · · · tn where n is the arity of P

ϕ ::= Atom | ¬ϕ | (ϕ ∧ ϕ) | (ϕ ∨ ϕ) | (ϕ→ ϕ) | (ϕ↔ ϕ) |
∀ v ϕ | ∃ v ϕ.

Here is how you read such a schema. The lines separating items stand for a disjunction of
cases. Then, e.g., the clause for formulas says that a formula is either an atomic formula,
or a negation of something that is already a formula, and so on. The class of formulas is
understood to be the smallest set of symbol sequences that is generated in this way.

The following strings are formulas of the predicate logical language:

• ¬Px

• (Px ∧Qy)

• ((Px ∧Qy) ∨Rxz)

• ∀xRxx

• ∃x(Rxy ∧ Sxyx)

The semantics for this formal syntax will be given in the next section.

This official language definition places more parentheses than we have used so far. One
usually omits parentheses when they are not essential for disambiguation.

We will now do a bit of “basic grammar” of predicate logic. The following may seem like
a lot, but it is really very mild. Compare how much basic grammar you have to learn to
use a natural language!

4.5. SYNTAX OF PREDICATE LOGIC 4-27

Free and bound variables Quantifiers and variables work closely together. In formulas
we distinguish between the variable occurrences that are bound by a quantifier occurrence
in that formula and the variable occurrences that are not. Binding is a syntactic notion, and
it can simply be stated as follows. In a formula ∀xϕ (or ∃xϕ), the quantifier occurrence
binds all occurrences of x in ϕ that are not bound by any quantifier occurrence ∀x or ∃x
inside ϕ.

As an example, consider the formula Px ∧ ∀x(Qx→ Rxy). Here is its syntax tree:

Px ∧ ∀x(Qx→ Rxy)

Px ∧ ∀x(Qx→ Rxy)

∀x Qx→ Rxy

Qx → Rxy

The occurrence of x in Px is free, as it is not in the scope of a quantifier; the other
occurrences of x (the one inQx and inRxy) are bound, as they are in the scope of ∀x. An
occurrence of x is bound in ϕ if some quantifier occurrence binds it, and free otherwise.

Exercise 4.27 Give the bound occurrences of x in the following formula.

∃x(Rxy ∨ Sxyz) ∧ Px

Exercise 4.28 Which quantifier occurrence binds which variable occurrences?

∀x(Px→ ∃xRxx).

A predicate logical formula is called open if it contains at least one variable occurrence
which is free (not bound by any quantifier); it is called closed otherwise. A closed pred-
icate logical formula is also called a predicate logical sentence, which makes a complete
assertion. Px ∧ ∃xRxx is an open formula, but ∃x(Px ∧ ∃xRxx) is a sentence.

Exercise 4.29 Which of the following formulas are sentences?

(1) ∀xPx ∨ ∀xQx,

(2) Px ∨ ∀xQx,

(3) Px ∨Qx,

(4) ∀x(Px→ Rxy),

4-28 CHAPTER 4. THE WORLD ACCORDING TO PREDICATE LOGIC

(5) ∀x(Px→ ∃yRxy).

If a formula ϕ has no free occurrences of x, quantifiers ∀xϕ, ∃xϕ in it are called vacuous.
While this may seem perverse in communication, technically, vacuous quantifiers do help
in keeping the syntax and proof system of predicate logic smooth and simple.

Exercise 4.30 Which quantifications are vacuous? Replace each formula with vacuous quantifi-
cation by an equivalent formula without vacuous quantification.

(1) ∀x∃xRxx.

(2) ∀x∃yRxx.

(3) ∀x∃yRxy.

(4) ∀x∃yRyy.

Substitution Now consider the ways we have for talking about objects. A term is either
a constant or a variable. Thus, x is a term, and the constant c is also a term.

Here is a function that substitutes a term t for the occurrences of a variable v in a term s,
with notation svt :

cvt := c

vvt := t

v1
v
t := v1 for v1 different from v

This follows the clauses constructing terms in the syntax of predicate logic.

Here is how this definition works out in a concrete case:

xyz is equal to x, xxc is equal to c, xxy is equal to y.

Next, we use the definition of svt to define the widely used notion of substitution of a term
t for all free occurrences of a variable v in a formula ϕ, with notation

ϕvt .

This says that the property expressed by ϕ holds of the object denoted by t. This time, the
definition follows the above syntactic clauses for constructing of the formulas of predicate
logic:

4.5. SYNTAX OF PREDICATE LOGIC 4-29

(Pt1 · · · tn)vt := Pt1
v
t · · · tnvt

(¬ϕ)vt := (¬ϕvt)
(ϕ1 ∧ ϕ2)

v
t := (ϕ1

v
t ∧ ϕ2

v
t)

(ϕ1 ∨ ϕ2)
v
t := (ϕ1

v
t ∨ ϕ2

v
t)

(ϕ1 → ϕ2)
v
t := (ϕ1

v
t → ϕ2

v
t)

(ϕ1 ↔ ϕ2)
v
t := (ϕ1

v
t ↔ ϕ2

v
t)

(∀v1ϕ)vt :=

{
∀v1ϕ if v1 equals v,
∀v1ϕvt otherwise.

(∃v1ϕ)vt :=

{
∃v1ϕ if v1 equals v,
∃v1ϕvt otherwise.

Exercise 4.31 Give the results of the following substitutions:

(1) (Rxx)xc .

(2) (Rxx)xy .

(3) (∀xRxx)xy .

(4) (∀yRxx)xy .

(5) (∃yRxy)xz .

Defining notions by recursion A remarkable feature of our grammatical definitions is
their use of recursion. We explain what (¬ϕ)vt means by assuming that we already know
what substitution does on smaller parts: ϕvt , and so on. This recursion works because
the definition follows precisely the construction pattern that was used for defining the
formulas in the first place.

Alphabetic variants Using the notion of a substitution, we can say what it means that
a formula is an alphabetic variant of another formula. This is useful since we often want
to switch bound variables while retaining the essential structure of a formula.

Suppose ϕ does not have occurrences of z, and consider ϕxz , the result of replacing all free
occurrences of x in ϕ by z. Note that ∀zϕxz quantifies over variable z in all places where
∀xϕ quantifies over x. We say that ∀xϕ and ∀zϕxz are alphabetic variants.

Here are some examples: ∀xRxx and ∀yRyy are alphabetic variants, and so are ∀x∃yRxy
and ∀z∃xRzx. The quantification patterns are the same, although different variable bind-
ings are employed to express them.

4-30 CHAPTER 4. THE WORLD ACCORDING TO PREDICATE LOGIC

This section has given you some basic parts of the grammar of predicate logic. There are
some other grammatical notions that are widely used, such as the ‘quantifier depth’ of a
formula, being the longest ‘nesting’ of quantifiers that take scope over each other inside
the formula. Again, this can be defined by recursion on the construction of the formulas,
as given by the grammar definition: atomic formulas have quantifier depth 0, negations
do not change depth, the depth of a conjunction is calculated as the maximum of the
depths of its conjuncts, and similarly for the other binary boolean connectives, and finally
a quantifier increases the depth by one. The following definition expresses this formally:

d(Pt1 · · · tn) := 0

d(¬ϕ) := d(ϕ)

d(ϕ1 ∧ ϕ2) := max(d(ϕ1), d(ϕ2))

d(ϕ1 ∨ ϕ2) := max(d(ϕ1), d(ϕ2))

d(ϕ1 → ϕ2) := max(d(ϕ1), d(ϕ2))

d(ϕ1 ↔ ϕ2) := max(d(ϕ1), d(ϕ2))

d(∀vϕ) := 1 + d(ϕ)

d(∃vϕ) := 1 + d(ϕ)

For the moment, you have seen enough grammatical precision, and we can proceed.

4.6 Semantics of Predicate Logic

Now it is time to say in more detail how the formal language of predicate logic gets
interpreted systematically on semantic structures. We have said a lot already about these
situations in Section 4.4, now the time has come to be more precise. The following
notion packages together the notion of “structure” that we had before with the notion of
an “interpretation” linking syntactic expressions in the language to matching parts of the
structure.

Models We will give our definition for a special case, but once you grasp that, you will
easily see how things work in general for the formal language that we have defined in the
preceding section. Let us suppose that the predicate letter P has arity 1, R has arity 2,
and S has arity 3. What should a relevant situation look like? A modelM is a pair (D, I)
with a domain D consisting of individual objects, together with an I that assigns the right
kind of predicates on objects in D: a property for P , a binary relation for R, and a ternary

4.6. SEMANTICS OF PREDICATE LOGIC 4-31

relation for S. In set-theoretic notation, this may be written as follows:

I(P) ⊆ D,

I(R) ⊆ D ×D,
I(S) ⊆ D ×D ×D.

Here D×D (sometimes also written as D2) is the set of all ordered pairs of objects in D,
and D×D×D (also written as D3) is the set of all ordered triples of objects in D. Here

is a useful notation. We write I(P) as PI , I(R) as RI , and I(S) as SI . This gives a clear
distinction between a predicate letter P and the predicate PI that interprets this predicate
letter. We will not give new illustrations for such models: everything we have done in

Section 4.4 is an illustration.

In general, for any predicate-logical language (with any sort of vocabulary), a model
M = (D, I) has a non-empty domain D of objects plus an interpretation function I
mapping the relation symbols of L to appropriate predicates on D, and the constants of L
to objects in D.

Variable assignments Having dealt with predicates and constants, it remains to make
sense of our final important piece of syntax: variables for objects. Intuitively, a model
M = (D, I) suffices for giving truth values to sentences of our language, that make an
assertion that is true or false in the model. But in doing so recursively, we cannot avoid
dealing also with formulas containing free variables: unpeeling one quantifier will already
leave us with a component formula of the latter sort.

This calls for a new notion. Let V be the set of variables of the language:

A function g from variables to objects in D is called a variable assignment.

Later on, we will need to make minimal changes to variable assignments:

g[v := d] is the variable assignment that is completely like g except that v
now gets the value d (where g might have assigned a different value).

For example, let D = {1, 2, 3}, and let V = {v1, v2, v3}. Let g(v1) = 1, g(v2) =
2, g(v3) = 3. See the following picture, where the g links are indicated by dotted ar-
rows.

4-32 CHAPTER 4. THE WORLD ACCORDING TO PREDICATE LOGIC

1 2 3

v1 v2 v3

Then g[v1 := 2] is the variable assignment that is like g except that v1 gets the value 2, i.e.
the assignment that assigns 2 to v1, 2 to v2, and 3 to v3:

1 2 3

v1 v2 v3

Assignments and computation We emphasize this picture of value change because it
has found important other applications, after it was first proposed. In particular, the above
pictures drive the semantics of imperative programming languages (a topic that will be
explained in Chapter 6 below). An assignment models a memory state of a computer,
where the variables are “addresses” that store “current values”. A computer typically
works by successively replacing values in addresses by new values – and that is precisely
what the above assignment change does.

But right here, we put assignments to work in the semantics of predicate logic.

Truth definition for predicate logic At last, we are ready for the core of the semantics
of predicate logic: the definition of truth of a formula in a model. This truth definition for
predicate logic is due to the Polish logician Alfred Tarski (1901–1983):

4.6. SEMANTICS OF PREDICATE LOGIC 4-33

Alfred Tarski

Let M = (D, I) be a model for predicate logical language L, and let g be a variable
assignment for L in M . Consider any formula ϕ of L. We will assume for concreteness
that L has a unary predicate symbol P , a binaryR, and a ternary S, plus a constant symbol
c. The general treatment will then be obvious from what follows. We are going to define
the notion

M |=g ϕ, for ϕ is true in M under assignment g.

We also sometimes say that g satisfies ϕ in model M .

Values of terms First, we consider the terms of the language: variables are interpreted
by the variable assignment, constants using the “hard-wired” interpretation function of
the model:

[[v]]gI = g(v)
[[c]]gI = cI

Truth in a model Next, we define truth of a formula in a model given a variable as-
signment g. As usual, the definition follows the construction in the definition of predicate
logical formulas in a stepwise manner:

4-34 CHAPTER 4. THE WORLD ACCORDING TO PREDICATE LOGIC

M |=g Pt1 · · · tn iff ([[t1]]
g
I , . . . , [[tn]]gI) ∈ PI

M |=g ¬ϕ iff it is not the case that M |=g ϕ.
M |=g ϕ1 ∧ ϕ2 iff M |=g ϕ1 and M |=g ϕ2

M |=g ϕ1 ∨ ϕ2 iff M |=g ϕ1 or M |=g ϕ2

M |=g ϕ1 → ϕ2 iff M |=g ϕ1 implies M |=g ϕ2

M |=g ϕ1 ↔ ϕ2 iff M |=g ϕ1 if and only if M |=g ϕ2

M |=g ∀vϕ iff for all d ∈ D it holds that M |=g[v:=d] ϕ
M |=g ∃vϕ iff for at least one d ∈ D it holds that M |=g[v:=d] ϕ

What we have presented just now is a recursive definition of truth for predicate logical
formulas in given models with a given assignment. Note in particular how the clauses for
the quantifiers involve the above-defined changing assignments.

Compositionality once more This formal definition implements the compositionality
that we have discussed earlier. It shows how a small finite set of rules can interpret
infinitely many formulas, of arbitrary syntactic complexity. In particular, if you think
back of our earlier many-quantifier formulas, say on graphs, their meaning is completely
described by the mechanism given here: meaning of single words, repeated in tandem
with formula structure.

This completes our definition of the semantics: we now explore it a bit.

Finiteness property and closed formulas If we inspect how the truth definition works
for complex formulas, the following Finiteness Property is easy to see:

The truth value of a formula π in a model M under an assignment g only
depends on the objects which g assigns to the free variables in ϕ: if two
assignments agree on those free variables, they both make ϕ true, or both
false.

In particular, then, if we evaluate closed formulas ϕ that have no free variables at all, they
are either true under all assignments, or false under all of them. Hence we can just talk
about their truth or falsity “simpliciter”: writing M |= ϕ iff there is some assignment g
with M |=g ϕ.

The importance of open formulas Still, even in evaluating a closed formula like

∀x(Px→ ∃yRxy),

4.7. VALID LAWS AND VALID CONSEQUENCE 4-35

the above recursive clause for the universal quantifier ∀x relies on truth for the formula
Px→ ∃yRxy, which is open, and hence assignments are crucial to dealing with that. But
more than this: formulas with free variables are not a nuisance, they are highly important
in their own right. We can think of them as defining properties of or relations between
the objects that fill the free variable slots. This is why, in computer science, they are often
used to query a given model, say, a data base with information about individuals. In such
a setting, the question ϕ(x)? (“Which objects are ϕ-ing?”) asks for a list of all objects in
the model that have the property ϕ.

4.7 Valid Laws and Valid Consequence

Now we can look more formally at valid reasoning in predicate logic. Our earlier notions
from Chapters 2, 3 return in this setting:

Valid laws A predicate logical formula ϕ is called logically valid if ϕ is true in every
model under every assignment. Notation: |= ϕ.

Without further ado, here is how you can test your understanding of this:

Exercise 4.32 Which of the following statements are true?

(1) |= ∃xPx ∨ ¬∃xPx.

(2) |= ∃xPx ∨ ∀x¬Px.

(3) |= ∀xPx ∨ ∀x¬Px.

(4) |= ∀xPx ∨ ∃x¬Px

(5) |= ∃x∃yRxy → ∃xRxx.

(6) |= ∀x∀yRxy → ∀xRxx.

(7) |= ∃x∃yRxy → ∃x∃yRyx

(8) |= ∀xRxx ∨ ∃x∃y¬Rxy.

(9) |= ∀xRxx→ ∀x∃yRxy

(10) |= ∃xRxx→ ∀x∃yRxy

(11) |= ∀x∀y∀z((Rxy ∧Ryz)→ Rxz).

Incidentally, our convention that the domains of our models are always non-empty is
reflected in one particular law:

|= ∀xϕ→ ∃xϕ

4-36 CHAPTER 4. THE WORLD ACCORDING TO PREDICATE LOGIC

Finally, as in propositional logic, we call two formulas ϕ, ψ logically equivalent if the
formula ϕ ↔ ψ is valid. Many practical uses of logic consist in reducing formulas to
logical equivalents that are easier to grasp or manipulate.

Valid consequence More generally, we want to study the process of valid reasoning in
predicate logic. When can we draw a conclusion ψ from premises ϕ1, . . . , ϕn? As in
earlier chapters, our answer is this. Valid consequence says that the premises can never
be true while the conclusion is false, or in other words, when the truth of the premises
always brings the truth of the conclusion in its wake:

A formula ψ logically follows from a formula ϕ (alternatively, ϕ logically
implies ψ) if every model plus assignment which makes ϕ true also makes ψ
true. The notation for ‘ϕ logically implies ψ’ is ϕ |= ψ.

The art of testing validity How can we see that statements of the form ϕ |= ψ hold or
do not hold? (where ϕ, ψ are closed formulas of predicate logic)? Sometimes a simple
informal argument confirms the validity. And in principle, it is also clear how we can
refute the statement ϕ |= ψ. We have to find a counterexample: that is a modelM plus
assignment g with M |=g ϕ, but not M |=g ψ (the latter is often abbreviated as M 6|=g ψ).
Using your intuitive skills of this sort, try to answer the following questions:

Exercise 4.33 Which of the following statements hold? If a statement holds, then you should
explain why. If it does not, then you should give a counterexample.

(1) ∀xPx |= ∃xPx

(2) ∃xPx |= ∀xPx.

(3) ∀xRxx |= ∀x∃yRxy.

(4) ∀x∀yRxy |= ∀xRxx.

(5) ∃x∃yRxy |= ∃xRxx

(6) ∀x∃yRxy |= ∀xRxx.

(7) ∃y∀xRxy |= ∀x∃yRxy

(8) ∀x∃yRxy |= ∃y∀xRxy.

(9) ∃x∃yRxy |= ∃x∃yRyx.

(10) ∀xRxx |= ∀x∃yRxy.

(11) ∃xRxx |= ∃x∃yRxy.

4.7. VALID LAWS AND VALID CONSEQUENCE 4-37

We can make all this slightly more general by allowing more than one premise. We say
that a formula ψ logically follows from ϕ1, . . . , ϕn (in notation: ϕ1, . . . , ϕn |= ψ) if for
every modelM for the language and assignment g with the property thatM |=g ϕ1 and
. . . andM |=g ϕn it is also the case thatM |=g ψ.

Exercise 4.34 Which of the following hold?

(1) ∀x∀y(Rxy → Ryx), Rab |= Rba

(2) ∀x∀y(Rxy → Ryx), Rab |= Raa

(3) ∀x∀y∀z((Rxy ∧Ryz)→ Rxz), Rab,Rac |= Rbc,

(4) ∀x∀y∀z((Rxy ∧Ryz)→ Rxz), Rab,Rab |= Rac,

(5) ∀x∀y∀z((Rxy ∧Ryz)→ Rxz), Rab,¬Rac |= ¬Rbc,

(6) ∀x∀y∀z((Rxy ∧Ryz)→ Rxz), ∀x∀y(Rxy → Ryx), Rab |= Raa.

Maybe these exercises were not too difficult, but in general, testing for predicate-logical
validity is much harder than the truth table method for propositional logic in Chapter 2,
or the Venn diagrams for syllogistic reasoning in Chapter 3. We will devote all of Chapter
8 later in this course to a general method for testing validity for predicate logic called
semantic tableaux. For now, we just explain what has become more difficult than before.

Mathematical complexity of the system Here are a few reasons why predicate-logical
validity is much harder than that for propositional logic. One is that there are infinitely
many models for the language. This infinity arises because domains of models can have
many sizes: finite 0, 1, 2, 3, ... (and there are already infinitely many finite natural num-
bers), or even infinite (the real numbers are an infinite structure, and so are the usual
geometrical spaces). This means that there is no finite enumeration of all relevant models
to be checked, the way we did in truth tables or Venn diagrams.

In fact, it can even be proved mathematically that the notion of validity for predicate logic
is harder than anything we have seen before:

Validity for predicate logic is undecidable: there is no mechanical method at
all that tests it automatically.

A proof of this result is beyond the scope of this course, but we will make some further
comments on this topic in one of the Outlooks to this chapter.

This computational complexity may be seen as the price that we pay for the nice fact
that predicate logic has much greater expressive power in its language than all the logical
systems we have seen before. Still, some good news remains: we can axiomatize the
validities of predicate logic in a formal proof system of the sort we have seen in earlier
chapters, and our next section will say a little bit about how that works. But before we go
there, here is one more relevant feature to understand.

4-38 CHAPTER 4. THE WORLD ACCORDING TO PREDICATE LOGIC

Decidable parts of predicate logic The undecidability of predicate logic has to do with
its full arsenal of expressive power: especially its use of binary and higher predicates, and
its complex patterns of nested quantification. What that leaves open is the possibility that,
inside the complex total system, there may be large decidable parts with lower expressive
power that do have decision procedures for validity, and that might still be useful. And
indeed there are many such “decidable fragments” of predicate logic, with new ones being
discovered all the time.

One classical example of a decidable part of predicate logic is monadic predicate logic
(see page 4-13 above). This is the system that arises from the above presentation when
we keep the syntax and semantics as we gave them, but make one sweeping restriction:
all predicate letters occurring in atomic statements must be unary, with just one argument
place. What can we say in such a fragment? Well, it is easy to see that our earlier
predicate-logical translation of syllogistic forms ended up inside this fragment. But so
do many other inferences about properties and kinds. Now here is a result that we state
without proof:

Monadic predicate logic has a decision method for validity.

This is actually not so hard to see, since the structure of monadic formulas is easy to ana-
lyze. In particular, one can prove that in this fragment, each formula is logical equivalent
to one without nested quantifiers. As a result we can even restrict ourselves to using finite
models up to a bounded size in testing validity for the monadic fragment – something you
may view as a sort of extended Venn diagram method. With these perhaps too mysterious
hints, we leave this topic here.

4.8 Proof

The valid laws of predicate logic can be described as the provable theorems of a formal
calculus like the ones you have seen in earlier chapters. Here is its list of principles:

(1) All propositional tautologies.

(2) ∀xϕ→ ϕxt . Condition: no variable in t occurs bound in ϕ.

(3) ∀x(ϕ→ ψ)→ (∀xϕ→ ∀xψ).

(4) ϕ→ ∀xϕ. Condition: x does not occur free in ϕ.

Next, the system includes a definition of the existential quantifier as follows:

∃xϕ↔ ¬∀x¬ϕ.

4.8. PROOF 4-39

Finally, as our deductive proof rules, we have Modus Ponens as in propositional logic,
plus a rule UG of Universal Generalization:

• MP: from ϕ and ϕ→ ψ, infer ψ.

• UG: from ϕ infer ∀xϕ. Condition: x does not occur free in any premise which has
been used in the proof of ϕ.

A theorem is now any formula that can be derived from the given axioms and definition
by the stated rules in a finite number of steps. Here are two examples:

From our Axiom 2 of “universal instantiation” we can derive a dual axiom of “existential
generalization”:

1. ∀x¬ϕ→ ¬ϕxt axiom 2
2. (∀x¬ϕ→ ¬ϕxt)→ (ϕxt → ¬∀x¬ϕ) propositional tautology
3. ϕxt → ¬∀x¬ϕ from 1,2 by MP
4. ϕxt → ∃xϕ from 3, by def of ∃

Our second example of using this proof system employs hypothetical reasoning to prove
an implication: first derive a conclusion C from a hypothesis H , and then conclude that
H → C is a theorem. We start with two hypotheses, ϕ → ∀xψ and ϕ, and we assume
that t x is not free in ϕ. Next, we drop the hypotheses one by one.

1. ϕ→ ∀xψ hypothesis
2. ϕ hypothesis
3. ∀xψ MP from 1,2
4. ∀xψ → ψ axiom 2, with x for t
5. ψ MP from 3,4
6. ϕ→ ψ drop hypothesis 2
7. ∀x(ϕ→ ψ) UG of 6
8. (ϕ→ ∀xψ)→ ∀x(ϕ→ ψ) drop hypothesis 1

Note that the use of UG in step 7 is justified by our assumption that x is not free in ϕ, and
therefore, x is not free in the hypothesis ϕ→ ∀xψ. The derivation shows that

` (ϕ→ ∀xψ)→ ∀x(ϕ→ ψ),

on condition that x is not free in ϕ.

As earlier in this course, we are not going to train you in finding formal proofs, but you
may find it rewarding to learn how to read them – and perhaps even look for some simple
ones by yourself. For now, we conclude with some background.

4-40 CHAPTER 4. THE WORLD ACCORDING TO PREDICATE LOGIC

System properties This proof system has two features that you have seen earlier. First,
we have

Soundness: Every theorem of predicate logic is valid.

This is easy to see: the stated axioms are all valid, and you can check in the above list.
Moreover, the proof rules are such that they derive valid formulas from valid formulas.
Much more complex, and in fact about the first really deep result in modern logic is

Completeness: Every valid formula is a provable theorem.

A proof of this important result (due to Kurt Gödel in his 1930 dissertation) would typi-
cally be your passport to a next-level more advanced logic course.

Kurt Gödel

But let us end this theoretical passage with a connection with the preceding section. Pred-
icate logic is undecidable, but it does have a complete proof system. Is not there a tension
between these two results? Cannot we use the above simple proof system, at least in prin-
ciple, to test for validity? Say, we write down a formula, and we enumerate all possible
proofs in the above deductive system in a long sequence, say in ascending length. (By
the way, note that this enumeration sequence will be infinite: there are infinitely many
theorems produced by the above calculus. Why?) Now if a formula is valid, we must
encounter it somewhere at some finite stage along this sequence, and we are done... Here
is the flaw in this reasoning. A method for testing should tell us after a finite number of
steps whether or not the formula is valid. But in our proof system, the only way we can
see that a formula ϕ is not valid is by running through the entire infinite sequence, and
noting that it nowhere lists a proof for ϕ. This takes infinitely many time steps, and hence
it is not a decision method.

Exercise 4.35 Here is a result known as “Post’s theorem”: Suppose that you have an infinite
enumeration of all valid formulas of a logic, and also an infinite enumeration of all non-valid
formulas. Then the system has a decision method. Show how that method would work.

4.9. IDENTITY, FUNCTION SYMBOLS, ALGEBRAIC REASONING 4-41

4.9 Identity, Function Symbols, Algebraic Reasoning

Identity First we add identity (or: ‘equality’) to predicate logic. We start with a simple
example. Define a ‘celebrity’ as a person who knows no one, but is known by everyone.
This means, of course, someone who does not know anyone else, but is known by ev-
eryone else. To express this we need a predicate for identity (or: equality). So let’s use
the predicate x = y that was mentioned before. Now we can say (employing the useful
abbreviation x 6= y for ¬x = y):

x is a celebrity (i) ∀y(x 6= y → (Kyx ∧ ¬Kxy)).
(ii) ∀y(x 6= y → Kyx) ∧ ∀y(x 6= y → ¬Kxy).

The two translations (i) and (ii) express the same thing: they are logically equivalent. The
following formula expresses that C is a definition of the property of being a celebrity:

∀x(Cx↔ ∀y(x 6= y → (Kyx ∧ ¬Kxy))). (4.17)

From definition (4.17) and the formula that expresses that Mary knows John, Kmj, it fol-
lows that ¬Cm (Mary is not a celebrity). Identiy is also needed to translate the following
example:

John loves Mary and Bill loves another girl. (4.18)

Clearly, with “another girl” is meant “a girl different from Mary.” Using identity we can
translate the example as follows:

Ljm ∧ ∃x(Gx ∧ x 6= m ∧ Lbx). (4.19)

Identity is a binary predicate with a fixed logical meaning. It is always written in infix
notation, as x = y, and with ¬x = y abbreviated as x 6= y. Here is a similar case where
identity is useful:

Mary is the only girl that John loves. (4.20)

Being the only girl with a certain property means that all other girls lack that property.
Spelling this out we get:

Gm ∧ Ljm ∧ ∀x ((x 6= m ∧Gx)→ ¬Ljx) (4.21)

By using an equivalence instead of an implication symbol we can express this a bit shorter:

∀x (Gx→ (x = m↔ Ljx)) ∧Gm (4.22)

Rephrasing this in English it says that all girls have the property that being loved by John
boils down to the same thing as being equal to Mary.

Identity provides a way of expressing uniqueness properties of objects. The following
formula states that there is exactly one object which has the property P :

∃x (Px ∧ ∀y (Py → y = x)) (4.23)

4-42 CHAPTER 4. THE WORLD ACCORDING TO PREDICATE LOGIC

In words, there exists a ‘P ’ such that each second object which has the property P as well
must be equal to the first. Again, this can be formulated somewhat shorter by using an
equivalence:

∃x∀y (Py ↔ y = x) (4.24)

There is an object x such that for each object having the property P is the same thing as
being equal to x.

Bertrand Russell

The British philosopher Bertrand Russell proposed to use this recipe to translate definite
descriptions.

The father of Charles II was executed. (4.25)

This can be translated, using F for the property of being father of Charles II, as:

∃x(Fx ∧ ∀y(Fy → x = y) ∧ Ex), (4.26)

or, as we have seen, more succinctly as:

∃x(∀y(Fy ↔ x = y) ∧ Ex). (4.27)

Russell’s analysis then gets extended to an account of the meaning of proper names as
disguised or abbreviated descriptions.

In a similar way we can give a formula stating that there exists exactly two objects which
have the property P :

∃x∃y (¬x = y ∧ ∀z (Pz ↔ (z = y ∨ z = x))) (4.28)

This says that there exists a pair (of two different things) such that having the property
P is the same as being equal to one of the members of this pair. To avoid such long re-
formulation of relatively simple information (4.28) is sometimes abbreviated as ∃!2xPx,
and in general ∃!nPx is used to express that exactly n things have the property P . In the
case n = 1 we also write ∃!xP .

4.9. IDENTITY, FUNCTION SYMBOLS, ALGEBRAIC REASONING 4-43

Exercise 4.36 Write out the predicate logical translation for “there are exactly three objects with
property P ”.

Exercise 4.37 The ∃!2-quantifier can be used to give a predicate logical description of prime
numbers in the divisibility graph as depicted in (4.16) on page 4-22. How? And what kind of
numbers do you get when you replace ∃!2 in your definition by ∃!3?

Exercise 4.38

(1) Explain why the two following sentences have different meanings (by a description of a
situation in which the sentences have a different truth-value)

There is exactly one boy who loves exactly one girl. (∃!x ∃!y (Bx∧Gy∧Lxy))

There is exactly one girl who is loved by exactly one boy. (∃!y ∃!x (Bx∧Gy ∧
Lxy))

(2) Explain why ∃!x (Ax ∨Bx) and ∃!xAx ∨ ∃!xBx have different meanings.

Function symbols There is still one other device that predicate logic has for speaking
about objects: function symbols. Mathematics is replete with functions that create new
objects out of old, and likewise, predicate logic becomes more expressive if we allow
function symbols for functions like ‘the square of x’ or ‘the sum of x and y’. We will
see later how this can be used to write algebraic facts and do calculations, but for starters,
note that function symbols also make sense for natural language. On the domain of human
beings, for instance, the father function gives the father of a person. Suppose we write
f(x) for the father of x and m(x) for the mother of x. Then we can say things like:

Paula’s father loves her Lf(p)p
Bill and John are full brothers f(b) = f(j) ∧m(b) = m(j)
Not everyone has the same father ¬∀x∀yf(x) = f(y)

In the lingo of mathematics, function symbols are combined with equality to express
algebraic equations like the following:

x · (y + z) = x · y + x · z. (4.29)

This is a statement of the sort that you learn to manipulate in high school. In fact, this can
be viewed as a formula of predicate logic. There is the equality predicate here, but the
main point is made with the function symbols for addition and multiplication.

Finally, let us see what changes to the truth definition are needed to take the identity
relation and function symbols into account. Identity statements are treated by adding the
following clause to the semantics definition:

4-44 CHAPTER 4. THE WORLD ACCORDING TO PREDICATE LOGIC

M |=g t1 = t2 iff [[t1]]
g
I = [[t2]]

g
I

This treats identity as a special binary predicate, with a fixed interpretation: t1 = t2 is true
if and only if t1 and t2 get interpreted as the same object in the model under consideration.

To extend the semantics to function symbols, we have to extend the truth definition to
structured terms (terms containing function symbols). For that, we have to assume that
the interpretation function I knows how to deal with a function symbol.

If f is a one-place function symbol, then I should map f to a unary operation on the
domain D, i.e. to a function fI : D → D. In general it holds that if f is an n-place
function symbol, then I should map f to an n-ary operation on the domain D, i.e. to a
function fI : Dn → D. We use C for the set of zero-place function symbols; these are the
constants of the language, and we have that if c ∈ C then cI ∈ D.

The interpretation of terms, given an assignment function g for variables and an interpre-
tation function I for constants and function symbols, is now defined as follows. Note the
by now familiar use of recursion in the definition.

[[t]]gI =

tI if t ∈ C,
g(t) if t ∈ V,
fI([[t1]]

g
I , . . . , [[tn]]gI) if t has the form f(t1, . . . , tn).

Algebraic reasoning In a domain of numbers (natural numbers, integers, fractions, re-
als) + is a function symbol that takes two numbers and creates a number. The symbol ·
(also written as ×) is also a binary function symbol for the same domain of discourse.

Algebraic equations typically say that two complex terms, viewed as two different instruc-
tions for computation, denote the same object. If x, y, z refer to numbers, then x · (y + z)
also refers to a number, and equation 4.29 given above states that x · y+ x · z refers to the
same number.

Figure 4.1 gives a general set of equations that describes the interaction of addition and
multiplication in a so-called ring, for a language with constants 0 and 1, and with binary
functions + and · (called binary operators) and unary function−. It is left to you to check
that the equations hold, if we interpret the variables as integer numbers, but also if we
interpret them as floating point numbers (fractional numbers, rational numbers), and also
if we interpret the variables as real numbers (but do not worry if the difference between
rational and real numbers escapes you).

4.9. IDENTITY, FUNCTION SYMBOLS, ALGEBRAIC REASONING 4-45

x+ 0 = x

x+ (−x) = 0

x+ y = y + x

x+ (y + z) = (x+ y) + z

x · 1 = x

1 · x = x

x · (y · z) = (x · y) · z
x · (y + z) = x · y + x · z
(x+ y) · z = x · z + y · z

Figure 4.1: Axioms for the interplay of + and · in rings.

x ∨ y = y ∨ x
x ∧ y = y ∧ x

x ∨ (y ∨ z) = (x ∨ y) ∨ z
x ∧ (y ∧ z) = (x ∧ y) ∧ z
x ∧ (x ∨ y) = x

x ∨ (x ∧ y) = x

x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z)

x ∨ x′ = 1

x ∧ x′ = 0

x ∨ 1 = 1

x ∧ 0 = 0

Figure 4.2: Laws of Boolean Algebra.

4-46 CHAPTER 4. THE WORLD ACCORDING TO PREDICATE LOGIC

The same syntax with function symbols works everywhere in mathematics. Think of
mathematical notation for sets. The domain of discourse now is a universe of sets. Letters
x, y, . . . , stand for arbitrary sets, ∅ is the special constant name of the empty set, and
function terms for intersection and union create complex terms like x∩(y∪z) that denote
sets in the way you have already seen when computing pictures for Venn Diagrams and
related structures.

We can also look at propositional logic in an algebraic way. The equations in Figure
4.2 describe the laws of Boolean algebra, with binary operators ∧,∨, a unary operator ′

for complement (negation), and constants 1 and 0. It is left to you to check that these
equations are indeed valid laws of propositional logic, if we read identity as propositional
equivalence, 1 as truth, and 0 as falsity.

4.10 Outlook — Mathematical Background

Using the proof system we presented in Section 4.8, you can talk about all models of
predicate logic, for a given choice of predicate letters and function symbols. But it is also
common to add axioms, in order to talk about specific topics. As you may already have
guessed, predicate logic can be used to talk about anything.

Mathematical Theories: Arithmetic Suppose we want to talk about addition on the
natural numbers. This is the aritmethic of first grade, the stuff that comes before the
tables of multiplication. The domain of discourse is

N = {0, 1, 2, 3, 4, . . .}.

The predicate logical language that we can use for this has a constant for zero (we will use
0 for this; the intention is to use 0 as a name for the number 0), and two function symbols,
one for taking the successor of a number (we will use s for this), and the familiar + for
addition. The successor of the number is the number immediately following it.

We have four axioms and an axiom scheme (a recipe for constructing further axioms).

The first axiom states that 0 is not the successor of any number:

∀x ¬sx = 0. (PA1)

The second axiom states that different numbers cannot have the same successor, or stated
otherwise, that if sx = sy then x = y.

∀x∀y(sx = sy → x = y). (PA2)

Note that sx = sy → x = y is equivalent to x 6= y → sx 6= sy, so this does indeed
express that different numbers have different successors.

4.10. OUTLOOK — MATHEMATICAL BACKGROUND 4-47

The third axiom expresses that adding zero to a number doesn’t change anything:

∀x x+ 0 = x. (PA3)

The fourth axiom expresses a sum of the form x+ sy as the successor of x+ y:

∀x∀y x+ sy = s(x+ y). (PA4)

The third and fourth axiom together define addition for any pair of numbers x and z, as
follows. Either z is equal to 0, and then apply (PA3) to see that the outcome is x, or z
is the successor of another number y and then apply (PA4) to see that the outcome is the
successor of x+ y. This is called a recursive definition, with recursion on the structure of
y.

Below we will see how the recursion definition of addition will help us in constructing
inductive proofs of facts about the addition operation.

The final axiom takes the form of a scheme. Assume that ϕ(x) is a formula with x free.
Then the following is an axiom:

(ϕ(0) ∧ ∀x(ϕ(x)→ ϕ(sx)))→ ∀yϕ(y). (PA5–scheme)

This axiom scheme expresses mathematical induction on the natural numbers. If you
are unfamiliar with mathematical induction you might wish to consult section A.6 in the
Appendix.

The theory of arithmetic defined by (PA1) — (PA5-scheme) is known as Presburger arith-
metic, after Mojzesz Presburger, student of Alfred Tarki.

Mojzesz Presburger

In the language of Presburger arithmetic one cannot express properties like being a prime
number, or define the relation of divisibility. But one can express properties like being

4-48 CHAPTER 4. THE WORLD ACCORDING TO PREDICATE LOGIC

even, being odd, being a threefold, and so on. As an example, the following formula of
Presburger arithmetic expresses the property of being even:

∃y y + y = x. (x is even)

And the property of being odd:

∃y s(y + y) = x. (x is odd)

Exercise 4.39 Express the property of x of being a threefold in the language of Presburger arith-
metic.

Adding multiplication Presburger arithmetic is the restriction of the arithmetical the-
ory of addition and multiplication to just addition. If we extend the language with an
operator · for multiplication, the properties of multiplication can be captured by a recur-
sive definition, as follows:

∀x x · 0 = 0. (MA1)

∀x∀y x · sy = (x · y) + x. (MA2)

This defines x · y by recursion on the structure of y: MA1 gives the base case, MA2 the
recursion case. In still other words: MA1 gives the first row in the multiplication table
for x, and MA2 gives the recipe for computing the next row from wherever you are in the
table, as follows:

0
x
x+ x
x+ x+ x
...

As you may have realized in second grade, the multiplication tables are constructed by
means of addition.

Next, let IND be the induction axiom scheme for the language extended with multiplica-
tion. Thus, IND looks like PA5-scheme above, but for the extended language.

Giuseppe Peano Kurt Gödel

4.11. OUTLOOK — COMPUTATIONAL CONNECTION 4-49

The theory consisting of PA1 – PA4 plus MA1, MA2 and IND is called Peano arithmetic,
after Giuseppe Peano (1858–1932). Here the logical situation is dramatically different
from the case of Presburger arithmetic. One of the most famous results in logic is Kurt
Gödel’s incompleteness proof (1931) for this predicate logical version of arithmetic:

Any predicate logical theory T that is an extension of Peano arithmetic is
incomplete: it is possible to find formulas in T that make true statements
about addition and multiplication on the natural numbers, but that cannot be
proved in T .

Alonzo Church Alan Turing

Five years later Alonzo Church and Alan Turing proved (independently) that the predi-
cate logical language of arithmetic is undecidable, and more generally, that any predicate
logical language with at least one 2-place relation symbol is undecidable (see Chapter
10).

4.11 Outlook — Computational Connection

Domains of discourse in programming The domains of discourse of predicate logic
also play an important role in programming. In many programming languages, when a
programming variable is declared, the programmer has to specify what kind of thing the
variable is going to be used for.

In programming terms: variable declarations have to include a type declaration. A Java
declaration int i j max declares three variables of type int, and an int in Java is
a signed integer that can be stored in 32 bits: Java int variables range from −231 =
−2, 147, 483, 648 to 231 − 1 = 2, 147, 483, 647. What this means is that the type declara-
tions fix the domains of discourse for the programming variables.

In programming, types are important because once we know the type of a variable we
know how much storage space we have to reserve for it. More importantly, type infor-
mation can be used to find common programming errors resulting from instructions to

4-50 CHAPTER 4. THE WORLD ACCORDING TO PREDICATE LOGIC

perform operations that violate type constraints, such as an attempt to add a character to
an integer. Typing information for strongly typed languages such as Haskell is expressed
in (a fragment of) predicate logic.

Statement of pre- and postconditions Predicate logic can also be used to state pre- and
postconditions of computational procedures. Consider the following function (in Ruby)
for computing an integer output from an integer input, together with a precondition and a
postcondition:

precondition: n >= 0
def ld(n)
d = 2
while d**2 <= n
return d if n.remainder(d) == 0
d = d + 1

end
return n
end
postcondition:
ld(n) is the least positive integer that divides n

The precondition is a predicate logical formula without quantifiers:

n ≥ 0.

The postcondition can be translated into a predicate logical formula, using | for divides,
as follows (we assume that the domain of discourse is Z, the domain of integers):

ld(n)|n ∧ ∀m(0 < m < ld(n)→ ¬m|n).

The intended meaning is: if the input of the function satisfies the precondition then the
output of the function will satisfy the postcondition.

Pre- and postconditions can be used for proving computational procedures correct. Ex-
amples of such correctness reasoning will be discussed in section 6.10.

Explicit statement of pre- and postconditions is also the key ingredient of a programming
style called design by contract, the idea being that the precondition makes explicit what
a computational procedure may assume about its input, while the postcondition is a state-
ment about what the procedure is supposed to achieve, given the truth of the precondition.
Preconditions state rights, postconditions list duties.

Exercise 4.40 (You should only attempt this if you have some programming experience.) Suppose
the procedure for ld would have been stated like this:

4.12. OUTLOOK — PREDICATE LOGIC AND PHILOSOPHY 4-51

precondition: n >= 0
def ld(n)
d = 2
while d**2 < n
return d if n.remainder(d) == 0
d = d + 1

end
return n
end
postcondition:
ld(n) is the least positive integer that divides n

Why would this version of the program not satisfy the contract anymore? Try to find a simple
counterexample.

4.12 Outlook — Predicate Logic and Philosophy

Historically, the development of predicate logic has had considerable influence on phi-
losophy. The founding father of modern predicate logic, Gottlob Frege, was deeply con-
vinced that ordinary language is inadequate for rigorous scientific thinking. Here is his
famous comparison between ordinary language and his ‘ideography’ (what he means is:
the formal language he proposes, which is essentially the language of predicate logic):

I believe that I can best make the relation of my ideography to ordinary lan-
guage clear if I compare it to that which the microscope has to the eye. Be-
cause of the range of its possible uses and the versatility with which it can
adapt to the most diverse circumstances, the eye is far superior to the mi-
croscope. Considered as an optical instrument, to be sure, it exhibits many
imperfections, which ordinarily remain unnoticed only on account of its in-
timitate connection with our mental life. But, as soon as scientific goals de-
mand great sharpness of resolution, the eye proves to be insufficient. The
microscope, on the other hand, is perfectly suited to precisely such goals, but
that is just why it is useless for all others. [Fre76]

Frege believes that his proposal of a language of thought is important for philosophy
precisely because it exhibits the limitations of ordinary language:

If it is one of the tasks of philosophy to break the domination of the word
over the human spirit by laying bare the misconceptions that through the use
of language often almost unavoidably arise concerning the relations between
concepts and by freeing thought from that with which only the means of
expression of ordinary language, constituted as they are, saddle it, then my

4-52 CHAPTER 4. THE WORLD ACCORDING TO PREDICATE LOGIC

ideography, further developed for these purposes, can become a useful tool
for the philosopher. [Fre76]

This point of view has been enormously influential. Philosophers like Bertrand Russell
and Willard Quine concluded from the advances in logic that they had witnessed in their
days that an important task for philosophy is to point out and repair fallacies that are due
to the sway of natural language over the mind.

To focus on a light-hearted example, consider the following famous exchange:

‘I see nobody on the road,’ said Alice.
‘I only wish I had such eyes,’ the King remarked in a fretful tone. ‘To be able
to see Nobody! And at that distance too!’
Alice in Wonderland [Car65]

The natural language syntax for “Nobody is on the road” sees this as a subject “Nobody”
combined with a predicate “is on the road”. But this natural language syntax does not
correspond to the logical form, for the predicate logical translation of the sentence has no
constituent corresponding to the subject:

¬∃x(Person(x) ∧ OnTheRoad(x)).

Though Frege’s views fit in a long tradition of distinguishing between linguistic ‘surface
form’ and its underlying ‘logical form’, Russell, Quine and other famous philosophers
saw it as a battle call. They took this to mean that classical philosophy needed a total
overhaul, since many of its assertions (say metaphysical ones about what sort of abstract
objects exist in the world) were deeply infected with uncritically adopted natural lan-
guage. Whether this accusation was true, is of course another matter. In fact, right until
the present, there remains a difference in style between ‘formal language philosophers’
and ’natural language philosophers’.

Incidentally, in modern approaches to natural language analysis this problem is resolved
by giving the subject a more articulate treatment: “nobody” refers to the set of all proper-
ties that no person has:

{Y | ¬∃x(Person(x) ∧ Y (x)}. (4.30)

Since “being on the road” obviously refers to a property, we can view the syntactic op-
eration of combining a subject with a predicate as composition of a function with its
argument. This function checks whether the property of being on the road is among the
properties listed in (4.30). This being said, it remains the case that quantifier expressions
in natural language may behave differently from what you would expect after this train-
ing in predicate logic. A well-known peculiarity is that “a” may also be generic, with
universal force. This would be written in logic with a universal quantifier:

A dog has fleas ∀x(Dx→ ∃y(Fy ∧Hxy))
A banker is trusted by no-one ∀x(Bx→ ∀y¬Tyx).

4.12. OUTLOOK — PREDICATE LOGIC AND PHILOSOPHY 4-53

It is quite puzzling that such generic force may result from the context in which an indef-
inite appears. Here is a famous example:

If a farmer owns a donkey he beats it. ∀x∀y((Fx ∧Dy ∧Oxy)→ Bxy).

Moving beyond philosophical disputes, a whole discipline of formal analysis of natural
language has formed to attempt to solve such puzzles and create insight in how humans
use language to convey meaning.

Summary of Things You Have Learnt in This Chapter You have learnt a rich new
logical language, which you can use to analyze mathematical but also natural language,
as has been shown in many examples going from sentences to logical forms. You have
learnt precisely how such a language gets a recursive compositional semantics in mod-
els with objects and predicates that can often be pictured very concretely. This is useful
beyond this chapter, since this method has become a paradigm for formal semantics of
languages in general. You have also acquired a first sense of validity and what is valid
and invalid reasoning in this language. And finally, you have seen some glimpses of why
this system is computationally more complex than what you ad learnt so far, illustrat-
ing the balance between expressive power and computational complexity that is the art
underlying logic today.

Further Reading Modern logic begins with the proposal for a formal language of pure
thought by the German mathematician and philosopher Gottlob Frege. See [Fre67], in
[Hei67]. Or if you read German: [Fre79]. Frege does not yet make a clear distinc-
tion between first order logic and higher order logic. The German mathematician David
Hilbert seems to have been the first to stress this distinction. See the classic textbook
[DA28] (in German), or its English translation [DA50]. Many excellent treatments of
predicate logic exist, with emphasis on connections with philosophy [Hod01], with lin-
guistics [Gam91], with mathematics [CH07], or with computer science [Bur98, HR04].
A comic style account of the development of modern logic can be found in [DP09] (also
see www.logicomix.com).

4-54 CHAPTER 4. THE WORLD ACCORDING TO PREDICATE LOGIC

Knowledge, Action, Interaction

4-55

Introduction to Part II

In the first part of this course, you have learnt three basic logical systems that offer a
steadily richer view of what the world is like: propositional logic, the syllogistic, and
predicate logic. In presenting things this way, we have emphasized the role of logic in
describing truth and falsity, and the valid consequences that can be drawn about how
things are, or are not.

But a language is not just a medium for describing the world. Its primary function is as
a medium of communication, and other activities where language users are involved. As
we have seen in the Introduction to this course, we are then in the realm of conversation,
argumentation, and similar logical activities. When we take these seriously, several new
themes become important. Perhaps the most important change is this: in addition to lan-
guages, we need to talk about their users, so our logics must deal with what are nowadays
often called “agents”. It is their activities that need to be brought to the fore. And once
we do that, we find three fundamental topics. The first is that in addition to truth, there
is information, the real fuel that drives agents’ reasoning and action. Next, those actions
themselves are our second basic theme: agents act, thereby changing the world, as well
as what they know or believe about it. And the third theme tied up with this is social
interaction, the fact that most interesting forms of action and information flow involve
many agents responding to each other, and achieving goals through that interaction.

One of the surprising things about modern logic is that it is actually able to study all these
phenomena in the same precise manner that you have seen so far. And what makes this
course different from the usual ones is that we are going to teach you how. Again, there
will be three chapters, covering the three major aspects of “logic in action”. Chapter 5 is
about information and the knowledge that agents have on the basis of that, using a system
first invented by philosophers called epistemic logic. Chapter 6 is about action in general,
using a system first invented by computer scientists, called dynamic logic. And finally,
Chapter ?? looks at multi-agent social interaction in the form of games, giving you an
impression of the current contacts between logic and game theory.

Once you have grasped this second set of chapters, and in combination with the more
classical part that you have learnt before, you will have a true feeling for what logic can
do, and how it can be close to activities that you experience on a daily basis. In later parts
of this course, we will then put in place further techniques that help you deepen all this.

4-57

4-58

Chapter 5

Logic, Information and Knowledge

Overview The first part of this course has shown how logical systems describe the world
using objects, predicates, quantifiers and propositional combinations. This information
about the world is typically conveyed when we use language, and such information then
leads to knowledge among language users. This chapter deals with the logic of knowledge
as based on information, including changes in knowledge which result from observations
of facts, or communication between agents knowing different things. This area is called
epistemic logic, and its main difference with the earlier systems of Chapters 2, 3 and 4
is that we can also express facts about knowledge of one or more agents in the logical
language itself. This ‘social’ perspective occurs in many settings: knowing what oth-
ers do or do not know determines our actions. Another central theme of this chapter is
“change”: successive information processing steps change what agents know, and this,
too, is essential to understanding the logic of language use and other cognitive tasks.

5.1 Logic and Information Flow

From truth to informational actions by agents In this course, we have explained a
valid argument such as

from p→ q and ¬q to ¬p

as:

whenever p→ q is true and ¬q is true, ¬p is also true.

But, true for whom? If we think about how a logical system is used, there is usually a
knowing subject performing the inference, giving it a character more like this:

If I know p→ q and I know ¬q, then I also know ¬p.

5-1

5-2 CHAPTER 5. LOGIC, INFORMATION AND KNOWLEDGE

And there need not be just me. Suppose I know that p → q, while you do not know this,
but you do know that ¬q. Then we should be able to pool our knowledge to reach the
conclusion ¬p. What informational actions are involved here?

Recall what we explained in the introductory chapter of this book. Information can come
from different events. The three main sources that have long been recognized for this are

observation, inference and communication.

Agents may come to know directly that propositions are true by perception, they can infer
propositions from things they already know, and they can also learn things from others.

Example 5.1 Here is a story which ancient Chinese logicians used already some 2500
years ago to make this point:

Someone is standing next to a room and sees a white object outside. Now
another person tells her that there is an object inside the room of the same
colour as the one outside. After all this, the first person knows that there is a
white object inside the room. This is based on three actions: an observation,
then an act of communication, and finally an inference putting things together.

Being explicit about what agents know The logical systems that you have learnt in this
course can express the factual content of the information that we have just discussed. They
can even model information flow through the steps of inference or update in propositional
logic. But if we want to bring more of this information flow into a logical system, we need
to talk about agents. This is even more pressing since we often reason explicitly about
other agents’ knowledge. We ask questions to people when we think they may know the
answer, and we are also interested in what other people do not know, like when a teacher
is trying to tell the students something new.

All this may sound simple and familiar, but it also poses interesting challenges. I tell you:
“You don’t know it, but these days I live in Seville.” Having now told you this, you know
that I live in Seville! So, what I told you has become false precisely because I said it.
Is this not a paradox? One of the things you will see in this chapter is why this is not
paradoxical, but rather a typical point in the logic of communication.

This epistemic logic of this chapter starts from propositional logic, but now enriched with
logical operators 2iϕ (also written als Kiϕ) standing for the natural language expression
“agent i knows that ϕ”. Once we have this system in place, we will also use it for a
description of information flow by observation and communication.

The subjects whose knowledge we describe are called agents. These agents can be human
beings, but also measurement devices, or information processes running on a computer,
each with their own informational view of the total situation. A system modeling the
interaction of different agents is often called a multi-agent system . The agents of such

5.2. INFORMATION VERSUS UNCERTAINTY 5-3

a system can be a group of people having a conversation, but also the many computers
making up the Internet, or in more physical terms, the players of a soccer team with their
varying fields of vision and varying abilities to change their positions.

Exercise 5.2 Imagine players in a soccer match. What channels of information are available to
them? What factors restrict the information flow? (If you don’t like soccer, then you are invited to
replace this example with your own favourite game.)

5.2 Information versus Uncertainty

Before we give our logical system, let us first ask a preliminary question:

What is information?

Actually, this is not easy to say, and many disciplines in the university have things to
contribute. But here is a basic idea that occurs widely: we approach things in the converse
order, and model not information but uncertainty. And the idea for that is simple. To a
first approximation, this idea can be stated with the semantic valuations for propositional
logic that you have learnt. There is one actual world or actual situation, but we may not
yet know what it is, and hence we must consider a larger range of options:

Uncertainty is the set of current options for the actual world.

Information models: sets of possible situations What these options are depends on
the concrete scenario that we have in mind. Let us look at some examples.

Example 5.3 (Two options for one agent.) You are about to kick a ball. You may either
score a goal, or not. The two options ‘score’, ‘not-score’ are the two relevant situations,
which you can represent as the two valuations for an atomic statement p = ‘I score a goal’,
one with V (p) = 1 and one with V (p) = 0. The same pattern can of course happen in
many other scenarios: ‘Pass’ or ‘Fail’ for an exam that you have taken, ‘Head’ or ‘Tails’
for the outcomes of the next throw of a coin, ‘Left’ or ‘Right’ for the correct way to
the Rijksmuseum, and so on. It is often easiest to think of this in the form of a picture.
In what follows, the circles stand for the possibilities (for which we also use the term
worlds), the proposition letters indicate which atomic facts are true where, and the shaded
circle indicates the actual situation.

p p

5-4 CHAPTER 5. LOGIC, INFORMATION AND KNOWLEDGE

In this picture, p is true, but there is uncertainty about this: the actual situation cannot be
distinguished from a situation where p is false (indicated by p). Later on in this chapter,
we will be more precise about the definition of such pictures, and how they can be viewed
as information models.

So far, we have left something out that is often important to make explicit. We assume
that there always is an actual situation, the reality we live in. That means that one of the
possibilities in the model is the ‘actual’ or ‘real’ one. Of course, the agent herself need
not know which of the various possibilities this is: if she did, she would know more than
what we have pictured! One often indicates this actual world in some special way. Think
of it as a marking that is invisible to the agents inside the model. It may be put there by
an omniscient outside observer, or by you as the designer of the scenario. In our pictures,
the actual world is usually marked by shading it grey. In the above picture, therefore, the
actual world is the one to the left, and the truth of the matter is that p holds.

It seems that there was no information at all in the preceding model. But things soon get
more interesting.

Example 5.4 (Ignorance and knowledge.) Suppose that your current range of options
is the two valuations {V, V ′}, with V (p) = V (q) = 1 and V ′(p) = 0, V ′(q) = 1.

pq pq

Intuitively, you still know nothing about p, but you do know that q is the case, since it is
true in every possibility that you consider.

Or things could even be a bit more delicate. This time, your current range of options is
again two valuations {V, V ′}, but now with V (p) = V (q) = 1 and V ′(p) = V ′(q) = 0.

pq pq

Now you do not know whether p is true, or whether q is true, but you do know that one is
true if and only if the other is. In particular, if you can find out the truth value of p, say by
making an observation or asking some trusted person, you will automatically know the
truth value for q. This is indeed how information works: Suppose you know that Mary

5.2. INFORMATION VERSUS UNCERTAINTY 5-5

and John are a dancing couple, and that either both of them show up in the ballroom or
neither. If someone tells you that they saw Mary, you conclude that John was there as
well.

As a very special case, a model with just one option represents a situation of complete
information about what things are really like. In the following picture, the agent knows
what the actual world is, and in particular, that both p and q are true there:

pq

One set of possibilities, as we have considered so far, just describes what one particular
agent knows and does not know. Now let us look at a typical situation where more agents
are involved. Suppose that

I do not know if p is the case, but I know that you know whether p is the case
(i.e., if p is true, you know that, and if p is false, you know that, too).

This would be a good reason, for instance, for me to ask you a question, namely, “Is p the
case?”. How can we model this social scenario?

Example 5.5 (Two options and two agents.) There are two possibilities for whether p is
the case or not; let us call them p, p for short. But this time, there is a distinction between
how I see them and how you see them. For me, both options are possible, so they belong
to the same set {p, p}. To indicate that I cannot distinguish between these cases, we can
draw a connecting arrow marked ‘me’. But for you, the two possibilities do not belong to
the same set, since your knowledge actually allows you to distinguish them. That is, you
distinguish the two sets {p} and {p}. For you, there is no connecting arrow between the
two possibilities.

Now, a picture really helps to visualize what is going on. We draw the two relevant options
as points w, v with the truth or falsity of p indicated.

But this time there is a new feature. The line with the two arrowheads in the picture indi-
cates which situations agent ‘me’ cannot distinguish. More precisely, I see w connected
to v by a line marked with the ‘label’ me because both are options for me. But you have
no line there, since you are informed about the distinction between p and p.

5-6 CHAPTER 5. LOGIC, INFORMATION AND KNOWLEDGE

w : p v : p

you,me you,me
me

What about the loop arrows drawn for you and me? These indicate that we cannot distin-
guish an option from itself. That sounds obvious, but we will soon see what this means
for the logic of knowledge. (In the rest of this chapter, to avoid cluttering pictures, we
will often drop such loop arrows, taking them as tacitly understood.)

If we were to add a labeled arrow between the two worlds for the agent you to this picture,
the model would show that neither agent knows if p is the case:

w : p v : p

you,me you,me
you,me

Beyond these simple examples, more interesting scenarios arise in simple stories with
cards. Parlour games are a concrete “information lab” with agents knowing different
things.

Example 5.6 Consider the start of a very simple card game. Three cards red, white, blue
are given to three players: 1, 2, 3, one each. Each player sees her own card, but not that
of the others. The real distribution over the players 1, 2, 3 (the “deal”) is red, white, blue
(•◦•, or rwb). Here is a picture of the information model:

5.2. INFORMATION VERSUS UNCERTAINTY 5-7

◦•• •◦• •◦• ••◦

◦•• ••◦

To avoid cluttering the picture, self loops and arrow points are omitted (but assumed to be
there). The solid links are the links for player 1, the dashed links are the links for player
2, and the dotted links are the links for player 3. The 6 worlds are the 6 relevant options,
which are the 6 possible deals of the cards (3 cards over 3 people), with the appropriate
uncertainty links between deals, marked for players. For instance, the solid line between
•◦• (rwb) and ••◦ (rbw) indicates that player 1 cannot distinguish these two situations,
whereas 2 and 3 can: if 1 has the red card, she is uncertain about whether 2 and 3 have
white and blue or blue and white respectively; however, there is no such uncertainty for 2
and 3, because 2 and 3 both know which card they have themselves.

In words, the diagram says things like the following. In the actual world, agent 1 knows
that she has the red card, since this is the case in the only two options that she considers
possible. About the other agents, the only thing agent 1 knows is that they must have
either blue or white, but she does not know in which order. As for the status of the shaded
world •◦• (rwb): though the players are actually in •◦• (as an outside observer could see),
none of 1, 2, 3 knows this. So, if they are to find out more, further information will have
to come in. That is of course precisely the point of card games, and we will continue with
this example later on.

You may already have recognized the structures that we are drawing here. They are
undirected graphs in the sense of Chapter 4, consisting of points (the possibilities) and
uncertainty lines for agents. So far, these lines have no direction: two points being indis-
tinguishable is a symmetric relation. But in modeling other forms of information, it also
makes sense to have directed graphs with arrows, as we will see later.

These examples were simple, but they should give the main idea. For now we conclude
with a slightly more tricky example. We have suggested that possibilities are like propo-
sitional valuations. But this is not always completely true.

Example 5.7 (Knowledge about others.) Consider the following information model with
two kinds of links for different agents. The solid links are for agent 1 and the dashed links

5-8 CHAPTER 5. LOGIC, INFORMATION AND KNOWLEDGE

for agent 2.

w : p v : p

u : p

Here the two worlds w, v have the same valuation with p true. And yet they are not
identical. Why? Look at the actual world w. Agent 1 sees only the two worlds w, v there
(indicated by the solid line), and hence she knows that p. But she is uncertain about what
agent 2 knows. In world w, agent 2 does not know that p (he also considers the ¬p-world
u possible, as indicated by the dashed line), but in world v, agent 2, too, knows that p (he
has no uncertainty lines connecting world v to other worlds). Since w is the actual world,
the truth of the matter is that 1 knows that p, and 2 does not, but 1 is not sure about what
2 knows. In particular, 1 considers it possible that 2 knows that p, but 1 also considers it
possible that 2 does not know that p. How could such a situation come about? Well, for
instance, 1 knows that p because she heard the teacher say that p, but she was not sure if
the other student 2 was paying attention.

Many situations in real life are like this. Maybe you already know that this stove is hot,
maybe you do not, but I know that it is. For safety’s sake, I now tell you that it is hot, to
make sure you do not hurt yourself. We will soon see how to reason about such subtle
differences in information in a precise manner.

Exercise 5.8 Find a concrete practical situation where what matters to my actions is three repeti-
tions of knowledge about other agents: what I know about what you know about my knowledge.

Information and knowledge in natural language We have given pictures for infor-
mation of one or more agents. But of course we also use natural language to talk about
information, both about the facts and about others. This is just the point of expressions
like “John knows that Mary has taken his car”, or “John does not know that Mary knows
his pin code”. We can introduce a convenient shorthand notation for this as follows:

2iϕ for ‘agent i knows that ϕ’.

An alternative for this is to use Kiϕ for 2iϕ. The letter K stands for the k in the word
“knowledge”. In this book we will use 2i rather than Ki. The operator 2i comes with a
dual 3i (see below). (If there is just a single agent we use 2ϕ for “the agent knows that
ϕ”.)

5.2. INFORMATION VERSUS UNCERTAINTY 5-9

This new operator 2i can be freely combined with the logical languages that you have
already learnt to form many types of expression involving information. For example,
John (j) knows whether Mary has taken his car (p) if he knows which is which, so this
sentence corresponds to the formula

2jp ∨2j¬p.

And reading formulas back into language, the formula

2m(¬2jp ∧ ¬2j¬p)

says that Mary knows that John does not know if she has taken the car.

Example 5.9 (Knowledge and Negation) Note the difference between 2j¬p and ¬2jp.
The first expresses (under the above reading of p) that (Mary did not take the car and)
John knows that Mary did not take the car, the second that (even if Mary took the car)
John does not know that she took the car.

Example 5.10 (Knowledge and Disjunction) Knowing a disjunction is different from
either knowing one disjunct or knowing the other disjunct. 2(p ∨ q) is true in the actual
world of the following model:

w : pq v : pq

But 2p ∨2q is not true in the actual world of this model, for 2p and 2q are both false in
the actual world.

Natural language has a whole range of expressions for information. We know that certain
things are true, but we also know objects like telephone numbers, or methods for doing
something. And other than knowing facts, we can also just “believe” them (a weaker
informational notion), or we can merely consider them possible, doubt them, and so on.
And these expressions are associated with actions that have names, too. You come to
know facts by learning about them, an action that changes your information state, or as
a teacher, you can tell other people what you know, another dynamic action. We are all
experts in this informational repertoire, and it is hard to imagine life without it.

5-10 CHAPTER 5. LOGIC, INFORMATION AND KNOWLEDGE

5.3 Modeling Information Change

What has been in the background of our examples all the time is that our information is
not static, but that it typically keeps changing. How does this change happen? The basic
idea is very simple: more information means reduction of uncertainty. And this reduction
is achieved by means of shrinking the range of options, as we will see in the following
pictures.

Example 5.11 (Finding out) I am uncertain whether it is raining (p) or not. I go to the
window, look outside, and see that it in fact is raining. Here is what happens then to the
earlier model:

p p changes to p

In the new smaller model, I know that p. The step taking me from the first model to the
second is often called an update.

The same mechanism applies to acts of communication.

Example 5.12 (Answering a question.) Suppose that I do not know if p, but you do. I
ask you the question “Is p the case?”, and you answer truthfully. What happens when
your answer? This time, the earlier model

w : p v : p

you,me you,me
me

changes to

5.3. MODELING INFORMATION CHANGE 5-11

w : p

you,me

where we both know that p. Actually, intuitively, we also know that we both know that
p, since we are both in the very same situation. For more about this claim of information
about other people’s information, see below.

Our final example is the earlier simple card game, whose initial model was drawn above.
Now the information flow already gets a bit less straightforward.

Example 5.13 (Finding out about Cards; compare Example 5.6) Suppose that the fol-
lowing two conversational moves take place between players:

(1) 2 asks 1: “Do you have the blue card?”.

(2) 1 answers truthfully: “No”.

Who knows what then? Here is the effect in words:

Assuming the question is sincere, 2 indicates (just by asking it) that she does
not know the answer, and so she cannot have the blue card. This tells 1 at
once what the deal was. But 3 does not learn anything from 2’s question,
since he already knew that 2 does not have blue. When 1 says she does not
have blue, this now tells 2 the deal. However, 3 still does not know the deal
even then.

We now give the intuitive updates in the diagram, making the reasoning geometrically
transparent. Here is a concrete update video of the successive information states:

After 2’s question, the two situations where 2 has the blue card are removed, for the
question reveals to everybody that 2 does not have the blue card.

◦•• •◦• •◦• ••◦

5-12 CHAPTER 5. LOGIC, INFORMATION AND KNOWLEDGE

After 1’s answer “no”, the situations where 1 has the blue card get removed, and we get:

◦•• •◦•

We see at once in the final diagram that players 1, 2 know the initial deal now, as they
have no uncertainty lines left. But player 3 still does not know, but she does know that
1, 2 know, and 1 and 2 know that 3 knows that 1 and 2 know, and 3 knows that 1 and
2 know that 3 knows that 1 and 2 know, and so on. In fact, that 3 knows that 1 and 2
know is common knowledge between the three agents: see Example 5.18 below for more
information.

Note how the flow of information can be of different sorts: directly about the facts, or
about what others know. Agent 3 did not find out what the deal is, but he did learn
something that can also be of great interest, namely that the other players know the deal.

Exercise 5.14 (Misleading Questions.) In the preceding version of the scenario, we assumed that
the question was “honest”, and not misleading. That is why it gave everyone the reliable informa-
tion that 2 did not have the blue card. Give examples of scenarios where questions do not indicate
that the questioner does not know the answer. What if we drop this assumption in our game? What
information flows then in the above scenario? What is the final diagram, and what do players know
there?

Similar analyses of information flow exist for a wide variety of puzzles and games. Not
all update steps are always of the above simple kind, however. We will briefly discuss
more “private” forms of information flow in Outlook Section 5.10 to this chapter.

By now, we have raised a lot of issues about information and update in an informal man-
ner. It is time to present a logical system that can deal with all this.

5.4 The Language of Epistemic Logic

We will now present the system of epistemic logic. What is important for you to see is
that, even though the motivation given in this chapter may have sounded very different
from that for propositional and predicate logic, the system that follows actually has a very
similar technical structure. You will encounter all the topics that you have seen before:
formal language, semantics, validity, proof, and update. Indeed, we will even be a bit
shorter than in earlier chapters, since you can apply the techniques that you already know
from there.

We start with defining the above notation more precisely.

5.4. THE LANGUAGE OF EPISTEMIC LOGIC 5-13

Definition 5.15 (Basic epistemic language EL) Fix a set P of proposition letters, and a
set I of agents. The basic epistemic language EL extends the language of propositional
logic with modal operators 2iϕ (‘i knows that ϕ’), for each agent i ∈ I . The inductive
syntax rule is as follows, where p stands for any choice of proposition letters and i stands
for any agent.

ϕ ::= p | ¬ϕ | (ϕ ∧ ϕ) | (ϕ ∨ ϕ) | 2iϕ | 3iϕ.

Notice that this definition covers all operations from propositional logic. We do not ‘of-
ficially’ put→ and↔ into the language, but these can easily be defined. We know from
propositional logic that ϕ → ψ can be expressed equivalently as ¬(ϕ ∧ ¬ψ), and that
ϕ ↔ ψ can be defined as (ϕ → ψ) ∧ (ψ → ϕ). Henceforth we will use these abbrevia-
tions without further comment.

2i expresses knowledge for agent i, and 3i expresses ‘not knowing that not’. As the
truth definition (see 5.24 below) will make clear, 3iϕ is equivalent to ¬2i¬ϕ. This
says intuitively that ‘agent i considers ϕ possible’, or that ‘according to i, ϕ cannot be
ruled out’. The operator 3i is called the dual of the operator 2i, just like the existential
quantifier ∃ is the dual of the universal quantifier ∀.

Example 5.16 The following expression is a formula:

21(p ∧ ¬22q).

Here is a construction tree in the same style as the ones you have seen in Chapters 2 and
4, showing the construction of the formula by following the above syntax rules step by
step:

21(p ∧ ¬22q)

(p ∧ ¬22q)

p ¬22q

22q

q

The following expressions are not formulas: p2q, p21q, 2pq.

Exercise 5.17 How many different correct formulas can you make from the following sequence
of symbols by putting in brackets at appropriate places?

¬2ip→ q.

5-14 CHAPTER 5. LOGIC, INFORMATION AND KNOWLEDGE

Also write the corresponding analysis trees for these formulas. Can you also explain what these
different formulas say?

We have already shown informally how epistemic formulas match concrete natural lan-
guage expressions. Here is a more elaborate example showing how this works:

Example 5.18 (Questions and Answers) I approach you in Amsterdam, and ask “Is this
building the Rijksmuseum?”. As a helpful Dutch citizen, you answer truly: “Yes”. This
is the sort of thing we all do all the time. But subtle information flows. By asking the
question, I convey to you that I do not know the answer, and also, that I think it is possible
that you do know. This information flows before you have said anything at all. After that,
by answering, you do not just convey the topographical fact to me that this building is the
Rijksmuseum. You also make me know that you know, and that you know that I know you
know, etcetera. Even such a simple episode of a question followed by an answer mixes
factual information with social information about the information of others. The latter
type of information is not a mere “side-effect” of communication: it can steer further
concrete actions. If you know that I know this building is the Rijksmuseum, and you see
me running into that building waving a spray can, you may want to take some fast action.

Here is how our language can formulate some of the relevant assertions:

(i) ¬2Qϕ ∧ ¬2Q¬ϕ ‘questioner Q does not know whether ϕ’,

(ii) 3Q(2Aϕ ∨2A¬ϕ) ‘Q thinks it is possible that A knows the answer’.

After the whole two-step communication episode, ϕ is known to both agents:

(iii) 2Aϕ ∧2Qϕ,

while they also know this about each other:

(iv) 2Q2Aϕ ∧2A2Qϕ, 2A2Q2Aϕ ∧2Q2A2Qϕ, etcetera.

This mutual knowledge (knowledge about knowledge of the other) to every finite depth of
iteration is a property of the group {Q,A} of the two agents together. It is called common
knowledge.

We will return to group knowledge that arises from communication in the Outlook Section
5.11 at the end of this chapter.

Exercise 5.19 Give a concrete setting where questions have neither of the two forms of informa-
tion that we mentioned in the preceding example.

Just as you have learnt with predicate logic, moving back and forth between natural lan-
guage and formulas is something that you can practice.

Exercise 5.20 Write formulas that match the following sentences:

(1) John knows that it is not raining.

5.5. MODELS AND SEMANTICS FOR EPISTEMIC LOGIC 5-15

(2) John knows whether Mary knows that is is raining.

(3) John knows whether Mary knows if is is raining.

Exercise 5.21 Read the following formulas as sentences in natural language (pick a suitable key):

(1) 21(p→ ¬22q),

(2) 2122p→ 2221p.

5.5 Models and Semantics for Epistemic Logic

Information models Now we state the formal version of the intuitive idea of informa-
tion as range in our informal explanations. The following structures consist of a range
W of ‘worlds standing for all the options that we consider, while the earlier idea of lines
for uncertainty is now stated formally as the presence of so-called ‘accessibility relations’
marked for the agents. A relation w →i v (an arrow marked with agent i pointing from w
to v) holds between two worlds if,

from the viewpoint of world w, agent i considers v a possible alternative.

Moreover, for each world, we mark which atomic facts are true there using a ‘valuation’.

Definition 5.22 (Information Models) Models M for the epistemic language are triples

(W, {→i| i ∈ I}, V),

where W is a set of worlds, the→i are binary accessibility relations between worlds, and
V is a valuation assigning truth values to proposition letters at worlds. In what follows,
we mostly use pointed models (M, s) where s is the actual world representing the true
state of affairs.

Epistemic models may be viewed as collective information states for a group of agents.
For illustrations, just think of all the examples we have seen already.

Example 5.23 (A Diagram Viewed as a Model) Here is a diagram that might describe
the start of a question and answer episode (compare Example 5.4).

w : pq v : pq

you,me you,me
me

5-16 CHAPTER 5. LOGIC, INFORMATION AND KNOWLEDGE

This is the following model M = (W, {→me,→you}, V). The set W of worlds equals
{w, v}, the valuation V is given by V (w)(p) = 1, V (w)(q) = 1, V (v)(p) = 0, V (v)(q) =
0, the relation →me equals {(w,w), (w, v), (v, w), (v, v)}, and the relation →you equals
{(w,w), (v, v)}. As a pointed model, it has the shape (M,w), indicating that w is the
actual world.

One way of thinking about what is happening here is that a model is not just one valuation
for atomic facts, as in propositional logic, but a family of these. (This is not quite true,
as we have seen in an earlier example, where different worlds could still have the same
valuation for atomic facts. But often, the analogy is close enough.) Knowledge statements
then refer, not just to one valuation, but to a whole range of them, as many as the agents’
information requires. The case of just one world with its valuation then corresponds, as
you have seen earlier, to perfect information by everybody concerning the actual world.

In general, we allow every sort of binary accessibility relations on epistemic models.
Thus, any directed graph with a family of relations (indexed for the agents) could be
used. We will give such a general picture in a moment. However, in practice, we often
work with very special relations, of a sort already mentioned in Chapter 4 on predicate
logic. These are so-called equivalence relations, satisfying the following three conditions:

reflexivity For all w, Rww.

symmetry For all w, v: if Rwv, then Rvw.

transitivity For all w, v, u, if Rwv and Rvu, then Rwu.

One can think of such relations as partitioning the total set of worlds into a number of
disjoint maximal ‘zones’ of worlds connected by the relation. For instance, in the above
example, the partition for Me has just one zone: the whole set {w, v}, while that for You
has two zones: {w} and {v}. This is easy to visualize, and we will soon discuss what this
special structure of equivalence relations means for the logic of knowledge.

Information models arise in many settings. They are used in philosophy as a represen-
tation of what thinking human agents know. Independently, they have been proposed
in economics as a representation of what players know in the course of the game: the
different worlds are then different stages in a play of the game, or even different “strat-
egy profiles” describing precisely what each player is going to do throughout the game.
Chapter 7 wil have more details on connections between logic and games. But informa-
tion models have also been used for describing non-human agents in computer science,
say, in describing different processors in a message-passing system for communication.
There is a whole area called ‘Agency’ where epistemic logic plays a conspicuous role.

Semantics But first, we state how the epistemic language can be interpreted on our
models. The format for this is like the truth definition that you have seen for the language

5.5. MODELS AND SEMANTICS FOR EPISTEMIC LOGIC 5-17

of predicate logic. We start by explaining when an atomic formula is true at a world, and
then work our way up along all the constructions that build formulas:

Definition 5.24 (Truth Conditions for EL)

M, s |= p iff V makes p true at s
M, s |= ¬ϕ iff not M, s |= ϕ

M, s |= ϕ ∨ ψ iff M, s |= ϕ or M, s |= ψ

M, s |= ϕ ∧ ψ iff M, s |= ϕ and M, s |= ψ

M, s |= 2iϕ iff for all t with s→i t: M, t |= ϕ

M, s |= 3iϕ iff for some t with s→i t it holds that M, t |= ϕ.

Here the clauses for the Boolean operations are exactly like those for propositional logic.
The key clause is that for the knowledge operator 2iϕ, which is read - and many people
find this a helpful analogy - as a universal quantifier saying that ϕ is true in all accessible
worlds. The epistemic operator 3iϕ can then be read dually as an existential quantifier
saying that some accessible world exists satisfying ϕ. As was mentioned before, 3iϕ is
equivalent to ¬2i¬ϕ. We will write

3ϕ

for this as an epistemic operator on its own, in cases where there is just a single agent (an
intuitive reading would be that “ϕ is possible”).

How does this work? Let us look at some examples.

Example 5.25 (Question and Answer Once More) Recall the above model:

w : p v : p

you,me you,me
me

Intuitively, in the actual world (the shaded circle), I do not know whether p, but I know
that you are fully informed about it. Spelling out the the above truth definition, one can
check that this is right: in the actual world, ¬2mep ∧ 2me(2youp ∨ 2you¬p) is true. For,
you can see the following facts, listed in a table for convenience:

5-18 CHAPTER 5. LOGIC, INFORMATION AND KNOWLEDGE

Formula Worlds where true
p w
¬p v
2youp w
2mep none
¬2mep w, v
2you¬p v
2me¬p none
¬2me¬p w, v
¬2mep ∧ ¬2me¬p w, v
2youp ∨2you¬p w, v
2me(2youp ∨2you¬p) w, v.

You see the idea: evaluate simple formulas first, and find out in which worlds they are
true. Then work your way upward to more complex formulas. In principle, this works no
matter how large the model is, and how complex the formula you are evaluating.

Now let us also look at a much more abstract example, that does not admit an epistemic
interpretation. This will allow you to see how our mechanism of interpretation works in
the more general case.

Example 5.26 In the following graph, some worlds have a unique outgoing arrow to one
accessible world, others have several, while there is also a world without any outgoing
arrows at all: we will see in a moment what happens then.

v : pq

w : pq

u : pq

s : pq

The valuation is written into the diagram as before, marking worlds with proposition
letters. Here are a few facts that you can easily check:

p is true precisely in worlds w, s
2p is true precisely in worlds w, u, s
32p is true precisely in worlds v, w, u
q → p is true precisely in worlds v, w, s
2(q → p) is true precisely in worlds w, u, s

5.5. MODELS AND SEMANTICS FOR EPISTEMIC LOGIC 5-19

But we can also do something else. Each world in this model has something special, and
we can describe this uniquely in the above language:

world w is the only world satisfying p ∧3p
world v is the only world satisfying ¬p ∧ ¬q
world u is the only world satisfying q
world s is the only world satisfying ¬3p
world s is the only world satisfying 2⊥.

In fact we could give many other formulas defining these four worlds uniquely. Note that
2⊥ characterizes endpoints in the accessibility relation.

Example 5.27 (Interpreted Systems) An interpreted system is a process viewed as an
information model. A process is a system that can move through various states; you will
learn more about processes in Chapter 6. Our example consists of two sub-processes a
and b. Propositional variable p describes the state of process a. If p is true, the state of
a is 1, and if p is false the state of a is 0. Propositional variable q describes the state of
process b, in a similar way. Both processes only know their own state. This corresponds
to the following model.

s0 : pq s1 : pq

s2 : pq s3 : pq

a a

b

b

As usual, a link labelled with a or b means that the connected states are indistinguishable
for a or b, respectively. Call the model M . Now verify that M, s1 |= 2bq and that
M, s3 |= 2ap.

Exercise 5.28 Consider the process model from Example 5.27 again. We can describe that a
knows its own state p by means of

(p→ 2ap) ∧ (¬p→ 2a¬p).

Similarly, b knows its own state q is expressed by:

(q → 2bq) ∧ (¬q → 2b¬q).

Demonstrate that these two formulas hold in all states of the model.

5-20 CHAPTER 5. LOGIC, INFORMATION AND KNOWLEDGE

Exercise 5.29 Consider the process model from Example 5.27 once more. Check that for any ϕ
the following formula holds in all states of the model:

3a2bϕ→ 2b3aϕ.

Exercise 5.30 (Treasure Island) Consider the following model with 9 states, and an accessibility
relation allowing one step east or south (insofar as possible in the given picture) from each point.
World w9 satisfies the proposition letter t (the location of the ‘treasure’), while pirates are standing
at w3, w6, and w7, marked by the proposition letter p.

w1 : pt w2 : pt w3 : pt

w4 : pt w5 : pt w6 : pt

w7 : pt w8 : pt w9 : pt

In which worlds are the following epistemic formulas true?

(1) 3t,

(2) 32t,

(3) 3p,

(4) 23p.

Next, for each world, find an epistemic formula which is only true at that state.

Exercise 5.31 Let’s return to epistemic models in the proper sense, where the accessibility rela-
tions are all equivalences. Find epistemic formulas that uniquely define each world in the following
model. The solid lines are links for agent 1, the dashed line is a link for agent 2.

5.6. VALID CONSEQUENCE 5-21

w : p v : p

u : p s : p

Exercise 5.32 Consider the earlier models for the Three-cards scenario. Show in detail how the
final model verifies the statements in the text about which player knows what about the cards, and
the information of the other players.

In this picture gallery you see four people spanning the range of epistemic logic: David
Lewis (a philosopher), Jaakko Hintikka (a philosopher/logician), Robert Aumann (an
economist and Nobel prize winner), and Joe Halpern (a computer scientist).

5.6 Valid Consequence

We will now give definitions of valid formulas, and of valid consequence. First some
examples of valid principles. We start with single operators on top of propositional logic.

2(ϕ→ ψ)→ (2ϕ→ 2ψ).

This is a kind of ‘epistemic distribution’: if one knows an implication then it follows that if
one also knows the antecedent of the implication then one has to know the consequent too.
We will adopt epistemic distribution in what follows, but we have to bear in mind that what
it expresses is quite strong. It expresses the principle of so-called logical omniscience: our
epistemic agents are perfect reasoners: they can draw the logical consequences from what
they know.

3(ϕ ∨ ψ)↔ (3ϕ ∨3ψ).

Considering a disjunction possible is equivalent to holding at least one of the disjuncts for
possible.

5-22 CHAPTER 5. LOGIC, INFORMATION AND KNOWLEDGE

Next, there are the principles that express our abbreviation conventions:

3ϕ↔ ¬2¬ϕ,

2ϕ↔ ¬3¬ϕ.

A formula ϕ is called invalid if there is at least one model M with a world s where ϕ is
false. Like in earlier chapters, such a pointed model (M, s) is called a counter-example
for ϕ.

Example 5.33 (Counter-example for ‘3 over ∧’) In the actual worldw in the following
model M , 3p and 3q are true, but 3(p ∧ q) is not:

w : pq

v : pq

u : pq

Here, one thing leads to another. Like in propositional and predicate logic, there are strong
dualities between the two modalities and disjunction/conjunction, resulting in automatic
further laws for 3, 2, ∧, ∨. Thus, switching operators, the obvious valid counterpart to
the distribution law 3(ϕ ∨ ψ)↔ (3ϕ ∨3ψ) is the following principle:

2(ϕ ∧ ψ)↔ (2ϕ ∧2ψ).

On the same pattern of standing and falling together, typically invalid principles are:

3(ϕ ∧ ψ)↔ (3ϕ ∧3ψ),

2(ϕ ∨ ψ)↔ (2ϕ ∨2ψ).

To see that 2(ϕ ∨ ψ) → (2ϕ ∨ 2ψ) is invalid, look at the special case where ψ equals
¬ϕ. As a tautology, ϕ ∨ ¬ϕ has to be true in any situation. Then it also has to hold
that 2(ϕ ∨ ¬ϕ) is true anywhere, for all tautologies are known. But it does certainly not
follow that either 2ϕ or 2¬ϕ, for ϕ might well express some fact about which nothing is
known. A concrete counterexample is the model above, where 2(p∨¬p) is true in world
w, but both 2p and 2¬p are false in w.

5.6. VALID CONSEQUENCE 5-23

Correspondence between special relational properties and epistemic axioms Are
there also interesting laws that express epistemic intuitions? That depends. First, consider
one single agent. Here are three well-known axioms with prominent epistemic interpre-
tations:

Veridicality 2ϕ→ ϕ.

Positive Introspection 2ϕ→ 22ϕ.

Negative Introspection ¬2ϕ→ 2¬2ϕ.

The first of these seems uncontroversial: knowledge has to be ‘in sync’ with reality, or
it does not deserve to be called knowledge. If something you were firmly convinced of
turns out to be false, then you may have thought you knew it to be true, while in actual fact
you did not know it. But the other two have been much discussed. Positive introspection
says that agents know what they know, and negative introspection that agents know what
they do not know, and both principles seem rather strong. They seem debatable, for
they assume that our epistemic agents, in addition to their logical omniscience in terms
of powers of inference (encoded in the earlier distribution axiom), they now also have
capacities of unlimited introspection into their own epistemic states.

Formally, these axioms are not valid in the most general semantics that we have given.

Example 5.34 Consider the model we gave above.

w : pq

v : pq

u : pq

Notice that in the actual world p ∨ q does not hold, but 2(p ∨ q) does. Thus, in the actual
world of the model we have ¬(2(p ∨ q) → (p ∨ q)). In other words, veridicality does
not hold in the model, which shows that this is not an appropriate model for representing
knowledge.

Example 5.35 Consider the following model.

w : p v : p u : p

5-24 CHAPTER 5. LOGIC, INFORMATION AND KNOWLEDGE

Note that in the actual world of the model 2p and ¬22p are both true. Thus, positive
introspection does not hold in the model.

Exercise 5.36 Find a simple example of a model where ¬2p → 2¬2p is not true in the actual
world.

It is customary to study information models with certain restrictions on their accessibility
relations. Recall the “equivalence relations” that we have mentioned briefly before. If
we demand that our accessibility relations in information models are of this special kind,
then the above axioms become valid. In fact, the validity of each of the above axioms
there is some feature in the notion of an equivalence relation that is crucially involved.
The following table show this (using R for the epistemic accessibility relation):

Name EL formula relational principle PL formula
Veridicality 2ϕ→ ϕ reflexivity ∀xRxx
Pos Introsp 2ϕ→ 22ϕ transitivity ∀x∀y∀z((Rxy ∧Ryz)→ Rxz)
Neg Introsp ¬2ϕ→ 2¬2ϕ euclidicity ∀x∀y∀z((Rxy ∧Rxz)→ Ryz).

When equivalence relations were introduced on page 5-16, you saw symmetry instead of
euclidicity. The following two exercises explain the connection.

Exercise 5.37 Show that every transitive and symmetric relation R is euclidic.

Exercise 5.38 Show that every euclidic and reflexive relation R is symmetric.

It follows from these two exercises that every equivalence relation is euclidic, and that
every relation that is reflexive, transitive and euclidic is an equivalence relation.

To explain the connection between 2ϕ → ϕ and reflexivity, first note that if M, s |= 2ϕ
and it is given that the relation for 2 is reflexive, M, s |= ϕ has to hold as well, as s is
among the worlds that are accessible from s. But this means that 2ϕ → ϕ holds in all
reflexive models.

To connect positive introspection and transitivity, notice that the positive introspection
principle 2ϕ → 22ϕ is equivalent to 33ϕ → 3ϕ (use the definition of 3, and do
contraposition, replacing ϕ by ¬ϕ and cancelling double negations).

Suppose M, s |= 33ϕ, and assume that it is given that the accessibility relation of M
is transitive. Then by the truth definition there is a world t with Rst and M, t |= 3ϕ.
So, again by the truth definition, there is a world u with Rtu and M,u |= ϕ. Because R
is transitive it follows from Rst and Rtu that Rsu, and therefore by the truth definition,
M, s |= 3ϕ. Since s was arbitrary, it follows that 33ϕ→ 3ϕ is valid on M .

Exercise 5.39 Which one of the following two implications is valid on models with equivalence
relations? Draw a counter-example for the other:

5.7. PROOF 5-25

(1) 3122ϕ→ 3231ϕ.

(2) 3122ϕ→ 3221ϕ.

Exercise 5.40 Explain why the axiom ¬2ϕ → 2¬2ϕ is valid on every information model with
an accessibility relation that satisfies ∀x∀y∀z((Rxy ∧Rxz)→ Ryz).

What about iterating knowledge of different agents? Consider 2122ϕ. Saying that the
two knowledge operators commute would boil down to: “I know what you know if and
only if you know what I know.” That does not sound plausible at all. And indeed, even
when we impose the above special validities for single agents by using equivalence rela-
tions, our logical system will not validate laws that perform significant changes between
knowledge of different agents. There can be interesting informative patterns on what
agents know about what other agents know, to be sure, but such patterns always emerge
in specific communicative contexts, as effects of what goes on in the communication.
More on this below. The following example gives a counterexample to commutation of
knowledge of several agents:

Example 5.41 (Your knowledge and mine do not commute) The following model is a
counter-example to the putative implication

2122p→ 2221p.

Its antecedent is true in the actual world, but its consequent is false (assume the solid
line pictures the accessibility for agent 1, and the dashed line the accessibility for agent
2). Note that arrowheads and reflexive arrows are omitted from the example, since we
assume that the accessibility relations are equivalences.

w : p v : p u : p

Such implications only hold when agents stand in special informational relationships. For
example, 2122ϕ→ 2221ϕ would hold in case it is given that R2 ◦R1 ⊆ R1 ◦R2.

5.7 Proof

As we have done for propositional and predicate logic, in epistemic logic, too, we can
establish validity by means of proof. Here are a few basic principles of epistemic rea-
soning in this format. Our main point is to show how the earlier style of thinking applies
here too, even though our topic of information and knowledge seems quite different from
that of Chapters 2 and 4. One more reason for pursuing this is that much of the pure and
applied research on validity in epistemic logic, and the dynamic logic of action to follow

5-26 CHAPTER 5. LOGIC, INFORMATION AND KNOWLEDGE

in Chapter 6, has focused on axiomatic proof systems, so understanding them is your key
to the literature.

We will start out with a proof system for any logic with accessibilities (any so-called
modal logic), and we will then enrich the system with special axioms describing agents
with special powers for which one can derive more laws. Practically, this means that your
reasoning gets richer when you know that you are dealing with agents having, e.g., the
power of introspection.

The proof system we start out with is called the minimal modal logic, or the modal logic
K. The name K is a historical relict; it refers to the inventor of the ‘possible world’ se-
mantics for modal logic, Saul Kripke (b. 1940), and it has nothing to do with the ‘K’ of
‘Knowledge’.

Saul Kripke

Definition 5.42 (Proof system for the minimal modal logic K) The proof system for the
minimal modal logic K is given by:

(1) All propositional tautologies are theorems.

(2) All formulas of the form 2(ϕ → ψ) → (2ϕ → 2ψ) are theorems. This is called
the distribution axiom schema or the K axiom schema.

(3) If ϕ and ϕ → ψ are theorems, then ψ is a theorem. This is the familiar modus
ponens rule.

(4) If ϕ is a theorem, then 2ϕ is also a theorem. This rule is called the necessitation
rule.

This system is an extension of the proof system for propositional logic, and it is usual, in
working with this system, to perform any propositional reasoning steps without spelling
out details.

We will use ` ϕ for “ϕ is provable” or ”ϕ is a theorem”. E.g., ` 2p ∨ ¬2p, because
2p ∨ ¬2p has the form ϕ ∨ ¬ϕ of a propositional tautology.

Example 5.43 (Distribution rules, 1) If ` ϕ→ ψ, then ` 2ϕ→ 2ψ.

5.7. PROOF 5-27

(1) ` ϕ→ ψ assumption

(2) ` 2(ϕ→ ψ) necessitation rule on 1

(3) ` 2(ϕ→ ψ)→ (2ϕ→ 2ψ) distribution axiom

(4) ` 2ϕ→ 2ψ modus ponens on 2, 3

Example 5.44 (Distribution rules, 2) If ` ϕ→ ψ, then ` 3ϕ→ 3ψ.

(1) ` ϕ→ ψ assumption

(2) ` ¬ψ → ¬ϕ propositional logic, 1

(3) ` 2¬ψ → 2¬ϕ by subroutine of previous example

(4) ` ¬2¬ϕ→ ¬2¬ψ propositional logic, 3

(5) ` 3ϕ→ 3ψ definition of 3.

Example 5.45 Formal proof of ` 2(ϕ∧ψ)↔ (2ϕ∧2ψ). We will do this in two steps,
proving first the implication from left to right and then the implication from right to left.
Putting the two together is then just a matter of applying a propositional reasoning step.

(1) ` (ϕ ∧ ψ)→ ϕ propositional tautology

(2) ` 2(ϕ ∧ ψ)→ 2ϕ 2 distribution, example 5.43

(3) ` 2(ϕ ∧ ψ)→ 2ψ similarly, starting from (ϕ ∧ ψ)→ ψ

In propositional logic we can infer from ` ϕ→ ψ and ` ϕ→ χ that ` ϕ→ (ψ ∧ χ). In
the present system we can reason in the same way. So we get from the above:

(4) ` 2(ϕ ∧ ψ)→ (2ϕ ∧2ψ).

Now for the other direction:

(5) ` ϕ→ (ψ → (ϕ ∧ ψ)) propositional tautology

(6) ` 2(ϕ→ (ψ → (ϕ ∧ ψ))) necessitation, 5

(7) ` 2ϕ→ 2(ψ → (ϕ ∧ ψ)) distribution axiom, prop logic, 6

(8) ` 2ϕ→ (2ψ → 2(ϕ ∧ ψ)) distribution axiom, prop logic, 7

(9) ` (2ϕ ∧2ψ)→ 2(ϕ ∧ ψ) prop logic, 8

5-28 CHAPTER 5. LOGIC, INFORMATION AND KNOWLEDGE

Finally, we use propositional logic to put 5 and 9 together, and we get:

` 2(ϕ ∧ ψ)↔ (2ϕ ∧2ψ).

Exercise 5.46 Prove the following:

` (3ϕ ∧2(ϕ→ ψ))→ 3ψ.

Stronger modal logics increase deductive power by adding further axiom schemata to the
minimal logic K. Then the flavour of finding derivations may change, as you develop a
feeling for what the additional power gives you. Here are some well-known examples:

Definition 5.47 (T, S4, and S5) The modal logic T arises from K by adding the axiom
schema of Veridicality 2ϕ → ϕ. The logic S4 adds the schema 2ϕ → 22ϕ to T (we
have encountered this above as the principle of Positive Introspection). Finally, the logic
S5 adds the schema 3ϕ → 23ϕ to S4 (encountered above as the principle of Negative
Introspection).

Example 5.48 (Alternative definition of S5) This example shows that S5 also arises from
K by adding the axiom schemes of Veridicality 2ϕ→ ϕ and 3ϕ→ 23ϕ (the principle
of Negative Introspection). To show that, we derive the principle of Positive Introspection
from 2ϕ→ ϕ and 3ϕ→ 23ϕ.

(1) ` 3¬ϕ→ 23¬ϕ negative introspection axiom schema

(2) ` 32ϕ→ 2ϕ prop logic, 3 def, 1

(3) ` 2(32ϕ→ 2ϕ) necessitation, 2

(4) ` 232ϕ→ 22ϕ distribution, prop logic, 3

(5) ` 32ϕ→ 232ϕ instance of schema 3ϕ→ 23ϕ

(6) ` 32ϕ→ 22ϕ prop logic, 4, 5

(7) ` 23¬ϕ→ 3¬ϕ instance of T schema

(8) ` 2ϕ→ 32ϕ prop logic, 7

(9) ` 2ϕ→ 22ϕ prop logic, 8, 6.

Example 5.49 (Yet another definition of S5) The system that results by adding the schemes
for veridiality, positive introspection, plus the following principle of symmetry ϕ→ 23ϕ
to K is also S5. We prove that the principle of negative introspection follows from
ϕ→ 23ϕ and 2ϕ→ 22ϕ:

(1) ` 3ϕ→ 233ϕ instance of ϕ→ 23ϕ

5.7. PROOF 5-29

(2) ` 33ϕ→ 3ϕ prop logic, from 2¬ϕ→ 22¬ϕ

(3) ` 2(33ϕ→ 3ϕ) necessitation, 2

(4) ` 233ϕ→ 23ϕ distribution, prop logic, 3

(5) ` 3ϕ→ 23ϕ prop logic, 1, 4

And here is a derivation of ϕ → 23ϕ, using only the K schema, the T schema and the
schema of negative introspection:

(1) ` 2¬ϕ→ ¬ϕ instance of 2ϕ→ ϕ

(2) ` ϕ→ 3ϕ def of 3, prop logic, 1

(3) ` 3ϕ→ 23ϕ axiom

(4) ` ϕ→ 23ϕ prop logic, 2, 3

Example 5.50 (Reduction of Modalities for S5) We will now prove that S5 allows re-
duction of modalities, where a modality is a list of modal operators 2,3. First we show
that 3ϕ↔ 23ϕ is a theorem:

(1) ` 3ϕ→ 23ϕ axiom schema of Negative Introspection

(2) ` 23ϕ→ 3ϕ instance of T axiom schema

(3) ` 3ϕ↔ 23ϕ prop logic, 1, 2

By contraposition and the interdefinability of 2 and 3 we get from this that 2ϕ↔ 32ϕ
is also a theorem. It is easy to show that 2ϕ↔ 22ϕ is an S5 theorem:

(1) ` 22ϕ→ 2ϕ instance of T axiom schema

(2) ` 2ϕ→ 22ϕ positive introspection schema

(3) ` 2ϕ↔ 22ϕ prop logic, 1, 2

By contraposition and the interdefinability of 2 and 3 we get from this that ` 3ϕ ↔
33ϕ.

Thus we see, that in S5, it is always the innermost operator that counts: 32 and 22
reduce to 2, 23 and 33 reduce to 3.

But note that we are talking here about a system for reasoning about a single agent. In the
multi-agent logic of knowledge, 2i2jϕ does not reduce to a single modality.

5-30 CHAPTER 5. LOGIC, INFORMATION AND KNOWLEDGE

Exercise 5.51 Which of the following two implications is valid? Give an informal argument, and
also a formal proof in the minimal logic K:

(1) 2(p→ q)→ (3p→ 3q).

(2) (3p→ 3q)→ 2(p→ q).

As for the invalid formula, give a counterexample (draw the model).

Exercise 5.52 Prove the formula 2(p ∨ q)→ (3p ∨2q).

5.8 Information Update

In Section 5.3 we explained the intuitive notion of information update through successive
elimination of possibilities. We will now make this more precise, and explain how in-
formation sources like observation and communication through update can be dealt with
in a formal way, by describing the process by which information states are changed by
incoming information, to yield new information states (or: ‘updated’ information states).

This update process works over pointed information models (M, s) with s the actual
world. When new information arrives, we can think of this as a public announcement of
some true proposition ϕ, where “true” means that ϕ holds in the actual world: M, s |= ϕ.
‘Public announcement’ is a generic technical term for various things that could be going
on: it could a public broadcast, but it might just as well be some publicly observable
happening like the outbreak of a thunderstorm, or a sunset witnessed by all.

Definition 5.53 (Updating via definable submodels) For any epistemic modelM , world
s, and formula ϕ true at s, the model (M |ϕ, s) (M relativized to ϕ at s) is the sub-model
of M whose domain is the set {t ∈ WM | M, t |= ϕ} (where WM indicates the set of
worlds of M).

Drawn in a simple picture, such an update step goes

from

M

s
ϕ ¬ϕ to

M |ϕ

s

The fact that we eliminate means that the ¬ϕ-worlds are ruthlessly discarded: they are
gone forever. This is often called ‘hard information’, an act which changes the current

5.8. INFORMATION UPDATE 5-31

model irrevocably as a response to some totally trusted source. You can think of this as a
typical step of communication when something is said by a trusted authority, but another
good reading is as an act of public observation, whether or not stated in language.

Example 5.54 We return to the Three Cards example (Example 5.6), to see how this fits
this format. Here is the picture of the situation after the card deal again:

◦•• •◦• •◦• ••◦

◦•• ••◦

The question of agent 2 to agent 1 “Do you have the blue card”, if honest, implies the
statement “I know that I do not have the blue card”, or, formally, 22¬b2 (if we assume a
language with proposition letters b1, b2, b3 with the obvious meanings). From 22¬b2 it
follows that ¬b2; the worlds where ¬b2 is true are precisely the worlds ◦••, •◦•, •◦• and
••◦, so the model restricted to ¬b2 is indeed as we saw before:

◦•• •◦• •◦• ••◦

One word about the term “public”: we use this, because the above elimination operation
is the same for all the agents that live in the model. They all “see” the same structure
afterwards. In reality, of course, the world is full of differences in observation, and even
hiding of information. The information flow in scenarios with privacy is much more subtle
than what we discuss here: see Outlook Section 5.10 below for a few thoughts.

These diagrams of a jump from one model to another seem to be simple, but they are
trickier than you might think. Crucially, truth values of epistemic formulas at a world may
change in an update step as depicted here. For instance, when a public announcement !p is
made, only the p-worlds remain (we use !p for the public announcement of the fact p, and

5-32 CHAPTER 5. LOGIC, INFORMATION AND KNOWLEDGE

more generally, !ϕ for the public announcement of ϕ). But at p-worlds where formerly,
the agent did not know that p because of the presence of some accessible ¬p-world, the
agent knows p after the update, since there are only p-worlds around now.

Example 5.55 Recall the model of example 5.26, repeated here:

v : pq

w : pq

u : pq

s : pq

If this model is called M , what is M |p ∨ 3q? To calculate the model, just check where
p ∨ 3q is true, and we get the set {v, w, s} (for u is the only world where p ∨ 3q fails.
Therefore, M |p ∨3q looks like this:

v : pq

w : pq

s : pq

Now we can evaluate p∨3q once again. This time v fails the formula, because the world
that made 3q true before is no longer present. We get:

w : pq

s : pq

5.8. INFORMATION UPDATE 5-33

Finally, if we update with p ∨3q yet another time, nothing changes anymore.

Exercise 5.56 Find a simple example of a modelM with the property thatM ,M |3p, (M |3p)|3p,
and ((M |3p)|3p)|3p are all different.

This update mechanism, simple though it may seem, explains many knowledge puzzles,
one of which is an evergreen, as it packs many relevant topics into one simple story.1

Example 5.57 (Muddy Children) Three children play outside, and two of them get mud
on their foreheads. They can only see the other children’s foreheads, so they do not know
whether they themselves are muddy or not. (This is an inverse of our card games.) Now
their father says: “At least one of you is dirty”. He then asks: “Does anyone know if he
is dirty?” (with ‘knowing if you are dirty’ the father means ‘knowing that you are dirty if
you are and knowing that you are not dirty if you are not’). The children answer truthfully.
As questions and answers repeat, what happens? Assume that the children are all perfect
reasoners, and this is commonly known among them.

Nobody knows in the first round. But in the next round, each muddy child can reason like
this: “Suppose I were clean. Then the one dirty child I see would have seen only clean
children, and so she would have known that she was dirty at once. But she did not. So I
must be dirty, too!”

So what happens is this:

1 2 3
“At least one of you is dirty” ◦ • •
“Does anyone know if he is dirty?” “No” “No” “No”
“Does anyone know if he is dirty?” “No” “Yes” “Yes”
“Do you know if you are dirty?” “Yes”

In the initial model, eight possible worlds assign “dirty” or “clean” to each child. We
indicate this pictorially as ◦ • •, for “child 1 clean, children 2 and 3 dirty” and so on.
Suppose the actual situation is ◦ • •. In the language, we assume we have proposition
letters d1, d2, d3, for “child 1 is dirty”, “child 2 is dirty”, “child 3 is dirty”, respectively.
So the situation ◦ • • is described by ¬d1 ∧ d2 ∧ d3. We can represent the initial model
like this:

1The Muddy Children Puzzle has been doing the rounds for a long time. The currently earliest known
source is a long footnote in a German 1832 translation of the French novel sequence La vie de Gargantua
et de Pantagruel by Rabelais. This is a version with charcoal on noses, instead of mud on foreheads.

5-34 CHAPTER 5. LOGIC, INFORMATION AND KNOWLEDGE

◦ ◦ ◦

• ◦ ◦◦ • ◦◦ ◦ •

• • ◦◦ • •• ◦ •

• • •

Solid lines are links for child 1, dashed lines are links for child 2, dotted lines links for
child 3. There is a solid line between ◦ ◦ ◦ and • ◦ ◦, for the first child cannot distinguish
the situation where the are all clean from the situation where the other two are clean and
she is dirty, and so on. So the fact that the children all know about the others’ faces, and
not their own, is reflected in the accessibility links in the diagram.

Now let us see what happens when father makes his announcement. In a formula: d1 ∨
d2 ∨ d3. The effect of this is that the world with ◦ ◦ ◦ disappears:

• ◦ ◦◦ • ◦◦ ◦ •

• • ◦◦ • •• ◦ •

• • •

Now in response to father’s first question “Does any of you know whether you are dirty?”

5.8. INFORMATION UPDATE 5-35

the children all say “No”. These are three announcements:

¬21d1 ∧ ¬21¬d1,¬22d2 ∧ ¬22¬d2,¬23d3 ∧ ¬23¬d3.

The first of these is false in world • ◦ ◦, the second is false in world ◦ • ◦, and the third
is false in world ◦ ◦ •. (But note that these three formulas would all have been true
everywhere in the initial model, before father’s announcement.) So an update with these
announcements results in the following new model:

• • ◦◦ • •• ◦ •

• • •

Now father asks again, and the answers are:

¬21d1 ∧ ¬21¬d1,22d2 ∨22¬d2,23d3 ∨23¬d3.

These answers make • ◦ •, • • ◦ and • • • disappear, and the final update results in a
situation where only the actual world remains:

◦ • •

In this sequence of models, domains decrease in size stepwise: from 8 worlds to 7, then to
4, then down to 1. With k muddy children, k rounds of the simultaneous assertion “I do not
know my status” yield common knowledge of which children are dirty. A few additional
assertions by those who now know are then enough to establish common knowledge of
the complete distribution of the mud on the faces of the group.

Exercise 5.58 Suppose that in the Three-Card example, the question of Player 2 is not treated as
informative. What happens then? Draw the two updates.

Exercise 5.59 Suppose that in our Muddy Children scenario with 3 kids, the children speak in
turn, each time starting from the first child, then the second, and finally the third. What happens?
Draw the successive diagrams.

Exercise 5.60 Suppose in the Muddy Children scenario, with 3 children, the father says “At least
one of you is clean”, and then the same procedure is followed as before. Compute the update
sequence, and explain what happens.

5-36 CHAPTER 5. LOGIC, INFORMATION AND KNOWLEDGE

Exercise 5.61 Three men are standing on a ladder, each wearing a hat. Each can see the colours
of the hats of the people below him, but not his own or those higher up. It is common knowledge
that only the colours red and white occur, and that there are more white hats than red ones. The
actual order is white, red, white from top to bottom. Draw the information model. The top person
says: “I know the color of my hat”. Is that true? Draw the update. Who else knows his color now?
If that person announces that he knows his colour, what does the bottom person learn?

We end with some examples with a more philosophical flavour. One of the methods that
philosophers have developed to clear up conceptual muddles is the use of bits of formal
proofs to make their arguments precise. This is one more motivation for us to teach you
at least some basic skills in proof reading, and proof search.

Example 5.62 (Moore-type sentences) Public announcement of atomic facts p (or more
generally, purely propositional facts) makes them common knowledge. But not all events
!ϕ result in common knowledge of ϕ. A counter-example are so-called ‘Moore-type’
sentences. In a question-answer scenario, let the answerer A say truly

p ∧ ¬2Qp “p, but you don’t know it”

This removes Qs ignorance about p, and thus makes itself false: true sentences like this
lead to knowledge of their negation. This also occurred with the Muddy Children, where
the last assertion of ignorance led to knowledge.

Example 5.63 (Verificationism and the Fitch paradox) The general verificationist the-
sis (VT) says that what is true can be known – or formally:

ϕ→ 32ϕ. (VT)

A surprising argument by the philosopher Frederic Fitch (1908–1987) trivializes this prin-
ciple, taking the substitution instance

(ϕ ∧ ¬2ϕ)→ 32(ϕ ∧ ¬2ϕ).

Then we have the following chain of three conditionals (say, in the weak modal logic T):

(1) 32(ϕ ∧ ¬2ϕ)→ 3(2ϕ ∧2¬2ϕ)

(2) 3(2ϕ ∧2¬2ϕ)→ 3(2ϕ ∧ ¬2ϕ)

(3) 3(2ϕ ∧ ¬2ϕ)→ ⊥.

Here, ⊥ is shorthand for a formula that is always false, say p ∧ ¬p.

Thus, a contradiction has been derived from the assumption ϕ∧¬2ϕ, and we have shown
over-all that ϕ implies 2ϕ, making truth and knowledge equivalent. Here it seems plau-
sible to read the modality as an event of getting hard information, and then the point is
again that the Moore sentence ϕ∧¬2ϕ cannot be truly announced without making itself
false.

5.9. THE LOGIC OF PUBLIC ANNOUNCEMENT 5-37

5.9 The Logic of Public Announcement

In Chapters 3, 2, 4 we did not have to worry about the subtleties of information change,
since each model pictured just one single unchanging setting. Now we have added change,
and a logical system helps us be precise and consistent about reasoning in the presence of
change. To do so, we must bring the informational actions themselves explicitly into the
logic.

Language A suitable language for this is a combination of epistemic and dynamic logic.
Dynamic logic is a tool for studying action – much more about this in Chapter 6 – and
languages for dynamic logic include action expressions. We will focus here on the action
of making public announcements.

Definition 5.64 (Language and semantics of public announcement) The language of pub-
lic announcement logic PAL (without common knowledge) is the epistemic language with
added action expressions, as well as dynamic modalities for these, defined by the syntax
rules:

Formulas ϕ ::= p | ¬ϕ | (ϕ ∨ ϕ) | (ϕ ∧ ϕ) | 2iϕ | 3iϕ | [A]ϕ | 〈A〉ϕ
Action expressions A ::= !ϕ

In Outlook Section 5.11 we will extend this language with an operator for expressing
common knowledge.

Note the mutual recursion in this definition: action expressions contain formulas which
may contain action expressions which contain formulas, and so on. There is no harm in
this, for each embedded action is syntactically less complex than the expression it is a part
of, and the recursion comes to an end.

Semantics The epistemic language is interpreted as before in Section 5.5, while the
semantic clause for the new dynamic action modality is ‘forward-looking’ among models
as follows:

M, s |= [!ϕ]ψ iff M, s |= ϕ implies M |ϕ, s |= ψ

M, s |= 〈!ϕ〉ψ iff M, s |= ϕ and M |ϕ, s |= ψ.

This language can make typical assertions about knowledge change like [!ϕ]2iψ, which
states what an agent i will know after having received the hard information that ϕ.

Example 5.65 We return again to example 5.6 (and 5.54). We evaluate the following
formula in the model of the initial situation, just after the card deal:

[!¬b2][!¬b1]21(¬K3w1 ∧ ¬K3r1).

5-38 CHAPTER 5. LOGIC, INFORMATION AND KNOWLEDGE

What this says is: after the public announcement “2 does not have blue”, followed by the
public announcement update with “1 does not have blue”, player 1 knows that player 3
does not know 1’s card. To compute whether this is true, just perform the updates and
evaluate 21(¬K3w1 ∧ ¬K3r1) in the actual world of the resulting model:

◦•• •◦•

The formula is true in the actual world. So the original formula is true in the actual world
of the model we started out with.

Exploring updates Call a public announcement !ϕ factual if ϕ is a purely propositional
formula (no modality 2i or 3i occurs in ϕ). Suppose ϕ is true in the actual world.
Then an announcement of ϕ makes ϕ known to all agents. In fact, ϕ becomes common
knowledge as a result of its announcement. For epistemic formulas this need not be
the case. Indeed, we have seen some examples of that already: Moore-type formulas,
but also the public announcements of ignorance in the Muddy Children scenario, where
announcing ignorance may create knowledge. A formula like ¬2p may become known
after being announced, but it need not be. See the next exercise.

Exercise 5.66 Find a pointed model (M, s) where M |¬2p |= ¬2p, and a pointed model (N, t)
where N |¬2p |= 2p.

And we have seen that a Moore sentence like (p ∧ ¬2p) always makes itself false when
announced. Epistemic formulas that make themselves false when announced are not odd-
ities but can be very useful: see the ignorance assertions in Muddy Children above, that
led to knowledge.

Valid reasoning and proof Reasoning about information flow in public update satisfies
axioms, just as we saw before with reasoning about knowledge and information at some
fixed stage, i.e., some given information model. This reasoning revolves around the fol-
lowing dynamic ‘recursion equation’, which relates new knowledge to old knowledge the
agent had before:

Valid PAL equivalence, useful for axiomatizing announcements The following equiv-
alence is valid for PAL:

[!ϕ]2iψ ↔ (ϕ→ 2i(ϕ→ [!ϕ]ψ)).

To see why this is true, compare the two models (M, s) and (M |ϕ, s) before and after the
update.

5.9. THE LOGIC OF PUBLIC ANNOUNCEMENT 5-39

M

s

t

ϕ

¬ϕ

M |ϕ

s

t

The formula [!ϕ]2iψ says that, in M |ϕ, all worlds t that are i-accessible from s satisfy ψ.
The corresponding worlds t in M are those i-accessible from s which satisfy ϕ. As truth
values of formulas may change in an update step, the right description of these worlds in
M is not that they satisfy ψ (which they do inM |ϕ), but rather [!ϕ]ψ: they become ψ after
the update. Finally, !ϕ is a partial function (a function that is not everywhere defined), for
ϕ must be true for its announcement to be executable (and if the announcement is not
executable, the update result is undefined). Thus, we make our assertion on the right (the
assertion about the model after the update) conditional on !ϕ being executable, i.e., on ϕ
being true. Putting this together, [!ϕ]2iψ says the same as ϕ→ 2i(ϕ→ [!ϕ]ψ).

Here is how this functions in a complete calculus of public announcement (we state the
theorem without proof):

Theorem 5.67 PAL is axiomatized completely by the laws of epistemic logic over our
static model class plus the following recursion axioms:

[!ϕ]p ↔ ϕ→ p for atomic facts p
[!ϕ]¬ψ ↔ ϕ→ ¬[!ϕ]ψ

[!ϕ](ψ ∧ χ) ↔ [!ϕ]ψ ∧ [!ϕ]χ

[!ϕ]2iψ ↔ ϕ→ 2i(ϕ→ [!ϕ]ψ).

Note that these axioms are all equivalences. To reason with such equivalences we can use
the following principle:

Leibniz’ principle: If ` ϕ ↔ ψ and χ′ is the result of replacing a subformula ϕ in χ by
ψ, then ` χ↔ χ′.

This principle is used several times in the following example. One application is the
inference from ` [!q]q ↔ (q → q) to ` (q → 2(q → [!q]q))↔ (q → 2(q → (q → q))).

Example 5.68 (Announcing an atomic fact makes it known) Here is a typical calcula-
tion using the axioms (we use > for a formula that is always true, say p ∨ ¬p).

[!q]2q ↔ (q → 2(q → [!q]q))

↔ (q → 2(q → (q → q)))

↔ (q → 2>)

↔ (q → >)

↔ >.

5-40 CHAPTER 5. LOGIC, INFORMATION AND KNOWLEDGE

The second step uses the equivalence of [!q]q and q → (q → q), the third that of q →
(q → q) and >, the fourth that of 2> and >. To see that ` 2> ↔ >, notice that
` 2> → > is an instance of the T axiom schema, while from ` > we get ` 2> by
necessitation, and from ` 2> we get ` > → 2> by propositional logic.

Example 5.69 (Announcement of propositional facts is order-independent)

[!p][!q]ϕ ↔ [!p](q → ϕ)

↔ (p→ (q → ϕ))

↔ ((p ∧ q)→ ϕ).

Example 5.70 (Moore sentences again) Let us calculate the conditions under which Moore
announcements do make themselves true, using the axioms. First we do a separate calcu-
lation to compute [!(p ∧ ¬2p)]2p:

[!(p ∧ ¬2p)]2p ↔ (p ∧ ¬2p)→ 2((p ∧ ¬2p)→ [!(p ∧ ¬2p)]p)
↔ (p ∧ ¬2p)→ 2>
↔ (p ∧ ¬2p)→ >
↔ >.

Next, we are going to use this:

[!(p ∧ ¬2p)](p ∧ ¬2p) ↔ [!(p ∧ ¬2p)]p ∧ [!(p ∧ ¬2p)]¬2p
↔ ((p ∧ ¬2p)→ p) ∧ ((p ∧ ¬2p)→ ¬[!(p ∧ ¬2p)]2p)
↔ ((p ∧ ¬2p)→ ¬[!(p ∧ ¬2p)]2p)
↔ ((p ∧ ¬2p)→ ⊥
↔ ¬p ∨2p.

In the next-to-last line of this derivation we used the fact we proved before: that [!(p ∧
¬2p)]2p↔ > is a theorem, and therefore, that ¬[!(p ∧ ¬2p)]2p↔ ⊥ is a theorem too.

What this derivation says is that update with !(p ∧ ¬2p) results in p ∧ ¬2p in precisely
those cases where the update cannot be executed because what it expresses is false.

Example 5.71 (Conversation) PAL may be used as a logic of longer-term conversations,
or observation procedures, by iterating single update steps. Here is a relevant observation:

Fact 5.72 The formula [!ϕ][!ψ]χ↔ [!(ϕ ∧ [!ϕ]ψ)]χ is valid.

This formula describes how in sequences of two announcements the second announce-
ment is interpreted ‘relative’ to the update effect of the first.

5.9. THE LOGIC OF PUBLIC ANNOUNCEMENT 5-41

Optimal communication What can agents in a group achieve by maximal communica-
tion? Consider two epistemic agents that find themselves in some collective information
state M , at some actual situation s. They can tell each other things they know, thereby
cutting down the model to smaller sizes. Suppose they wish to be maximally cooperative.

Example 5.73 (The best agents can do by internal communication) What is the best
that can be achieved in the following model? Assume solid links are (symmetric) ac-
cessibilities for Q, and dashed links accessibilities for A. Note that in this example the
accessibilities are not reflexive.

w1w2 w3

w4

w5

Geometrical intuition suggests that this must be:

w1

w4

Indeed, a two-step conversation getting here is the following:

• Q sighs: “I don’t know”.

• Then A sighs: “I don’t know either”.

It does not matter if you forget details, because it also works in the opposite order.

5-42 CHAPTER 5. LOGIC, INFORMATION AND KNOWLEDGE

But maybe we have to assume the accessibilities in the example express belief rather than
knowledge, because, as we have seen, knowledge models always have reflexive accessi-
bilities. The accessibilities in the model are not reflexive. If we reinterpret the links in
the example model as links expressing belief, the following conversation has the desired
effect:

• Q, with indignation: “I don’t believe just anything, you know”.

• Then A, also indignant: “Well, neither do I”.

The first update is with the formula ¬2Q⊥, the second with ¬2A⊥.

Exercise 5.74 Give equivalent versions for the PAL axioms with existential modalities 〈!ϕ〉, where
〈!ϕ〉ψ is defined as ¬[!ϕ]¬ψ.

A remarkable feature of the axioms for PAL is that the principles about public announce-
ments in the axiomatisation are all equivalences. Also, on the left-hand sides the public
announcement operator is the principal operator, but on the righthand sides it is not. What
this means is that the axioms reveal that PAL is much more expressive than one might
think. It turns out that PAL can encode intricate dynamics of information, provided you
take the trouble of analyzing what goes on in information update, in the way we have
done.

The principles we have uncovered (in the form of axioms for information update) can be
used to ‘translate’ a formula of PAL to a formula of our standard epistemic language EL.
In other words: every statement about the effects of public announcement on individual
knowledge is equivalent to a statement about just individual knowledge.

It should be noted, however, that this reduction goes away when we look at temporal
processes, protocols and games, the next area one can go from here.

5.10 Outlook — Information, Knowledge, and Belief

From knowledge to belief While information and knowledge are important, our actions
are often driven by less demanding attitudes of belief. I ride my bicycle since I believe
that it will get me home, even though I can imagine worlds where an earthquake happens.
With this distinction in attitude comes one of dynamics. An event of hard information
changes irrevocably what I know. If I see the Ace of Spades played on the table, I come to
know that no one holds it any more. But there are also events of soft information, which
affect my current beliefs without affecting my knowledge in a card game. I see you smile.
This makes it more likely that you hold a trump card, but it does not rule out that you do
not. How to model all this?

5.10. OUTLOOK — INFORMATION, KNOWLEDGE, AND BELIEF 5-43

Belief and plausibility models An agent believes what is true, not in all epistemically
accessible worlds, but only in the most plausible ones. I believe my bicycle will get me
home early, even though I do not know that it will not disappear in an earthquake chasm.
But worlds where it stays on the road are more plausible than those where it drops down,
and among the former, those where it arrives on time are more plausible than those where
it does not.

Definition 5.75 (Epistemic-doxastic models) Epistemic-doxastic models are structures

M = (W, {∼i| i ∈ I}, {≤i| i ∈ I}, V)

where the relations ∼i stand for epistemic accessibility, and the ≤i are comparison rela-
tions for agents read as follows:

x ≤i y if agent i considers x at least as plausible as y.

One can impose several conditions on the plausibility relations, depending on their intu-
itive reading. An often-used minimum is reflexivity and transitivity, while a lusher version
adds

Connectedness For all worlds s, t, either s ≤ t or t ≤ s.

Definition 5.76 (Belief as truth in the most plausible worlds) In epistemic-doxastic mod-
els, knowledge is interpreted as usual, while we now say that

M, s |= Biϕ

iff M, t |= ϕ for all worlds t that are minimal in the ordering ≤i.

This can be further refined, as follows.

Definition 5.77 (Conditional Belief as Plausibility Conditionals) Extend the language
with conditional belief formulas Bψ

i ϕ, with the intuitive reading that, conditional on ψ,
the agent believes that ϕ. Formally:

M, s |= Bψ
i ϕ iff M, t |= ϕ for all worlds t which are minimal

for the ordering ≤i in the set {u |M,u |= ψ}.

Belief change under hard information The capacity for learning from new facts con-
tradicting our earlier beliefs seems typical of rational agency.

Fact 5.78 The formula
[!ϕ]Bψχ↔ (ϕ→ Bψ[!ϕ]χ)

is valid for beliefs after hard information.

5-44 CHAPTER 5. LOGIC, INFORMATION AND KNOWLEDGE

Example 5.79 (Misleading with the truth) Consider a model where an agent believes
that p, which is indeed true in the actual world to the far left, but for ‘the wrong reason’,
viz. she thinks the most plausible world is the one to the far right. For convenience,
assume that the final world also verifies a unique proposition letter q. The dashed links
are knowledge links, the solid arrows are plausibility arrows, for the same agent.

w0 : pq w1 : pq w2 : pq

Now giving the true information that we are not in the final world (¬q) updates to:

w0 : pq w1 : pq

in which the agent believes mistakenly that ¬p.

5.11 Outlook – Social Knowledge

Example 5.80 Imagine two generals who are planning a coordinated attack on a city. The
generals are on two hills on opposite sides of the city, each with their armies, and they
know they can only succeed in capturing the city if the two armies attack at the same time.
But the valley that separates the two hills is in enemy hands, and any messenger that is
sent from one army base to the other runs a severe risk of getting captured. The generals
have agreed on a joint attack, but they still have to settle the time.

So the generals start sending messengers. General 1 sends a soldier with the message
“We will attack tomorrow at dawn”. Call this message p. Suppose his messenger gets
across to general 2 at the other side of the valley. Then 22p holds, but general 1 does not
know this because he is uncertain about the transfer of his message. Now general 2 sends
a messenger back to assure 1 that he has received his message. Suppose this messenger
also gets across without being captured, then 2122p holds. But general 2 does not know
this, for he is uncertain about the success of transfer: ¬222122p. General 1 now sends
a second messenger. If this one also safely delivers his message we have 222122p. But
general 1 does not know this, and so on, and so on. In this way, they’ll continue sending
messages infinitely (and certainly not attack tomorrow at dawn).

Clearly, this procedure will never establish common knowledge between the two generals.
They share the knowledge of p but that is surely not enough for them to be convinced that

5.11. OUTLOOK – SOCIAL KNOWLEDGE 5-45

they will both attack at dawn. In case of real common knowledge every formula of the
infinite set

{21p,22p,2122p,2221p,212221p,222122p, . . .}

holds.

Here are pictures of how the situation as given in the previous example develops after
each messenger delivers his message. Initially, general 1 settles the time of the attack. He
knows that p but he also knows that general 2 does not know (with a dashed link for the
accessibility of general 2):

p p

After the first messenger from 1 to 2 gets safely across we have (with a solid link for the
accessibility relation of general 1):

p p p

After the message of 2 to 1 is safely delivered we get:

p p p p

Successful transfer of the second message from 1 to 2 results in:

p p p p p

Note that in the second world from the left it does not hold that 222122p, and therefore
¬21222122p is true in the actual world.

The example makes it seem that achieving common knowledge is an extremely compli-
cated or even impossible task. This conclusion is too negative, for common knowledge
can be established immediately by public announcement. Suppose the two generals take
a risk and get together for a meeting. Then general 1 simply says to general 2 “We will
attack tomorrow at dawn”, and immediately we get:

p

5-46 CHAPTER 5. LOGIC, INFORMATION AND KNOWLEDGE

Still, we cannot express common knowledge between 1 and 2 by means of a single for-
mula of our language. What we want to say is that the stacking of knowledge operators
goes on indefinitely, but we have no formula for this.

The way to handle this is by adding a modality of common knowledge. CGϕ expresses
that it is common knowledge among the members of group G that ϕ. Here is the truth
definition for it:

M, s |= CGϕ iff for all t that are reachable from s

by some finite sequence of→i steps (i ∈ G): M, t |= ϕ.

Theorem 5.81 The complete epistemic logic with common knowledge is axiomatized
by adding two axioms and a rule to the minimal epistemic logic. In the two axioms,
EG is used as an abbreviation for everybody in the group knows (defined as EGϕ ↔
2g1ϕ ∧ · · · ∧2gnϕ, for all g1, . . . , gn in G):

Fixed-Point Axiom CGϕ↔ (ϕ ∧ EGCGϕ).

Induction Axiom (ϕ ∧ CG(ϕ→ EGϕ))→ CGϕ.

C Necessitation Rule If ϕ is a theorem, then CGϕ is also a theorem.

The axioms are also of independent interest for what they say. The Fixed-Point Axiom
expresses an intuition of reflective equilibrium: common knowledge of ϕ is a proposition
X implying ϕ of which every group member knows that X is true. On top of this, the
Induction Axiom says that it is not just any equilibrium state of this kind, but the largest
one.

To axiomatize PAL with common knowledge we need more expressive power. One pos-
sible (and elegant) way to achieve this is by adding an operator for conditional common
knowledge, Cϕ

Gψ, with the following truth definition:

M, s |= Cϕ
Gψ iff for all t that are reachable from s

by some finite sequence of→i steps (i ∈ G)

through a series of states that all satisfy ϕ
it holds that M, t |= ψ.

This allows for a complete axiomatisation (again, we state the theorem without proof):

Theorem 5.82 PAL with conditional common knowledge is axiomatized completely by
adding the valid reduction law

[!ϕ]Cψ
Gχ↔ (ϕ→ C

ϕ∧[!ϕ]ψ
G [!ϕ]χ).

5.12. OUTLOOK – SECRECY AND SECURITY 5-47

Example 5.83 Many social rituals are designed to create common knowledge. A prime
example is cash withdrawal from a bank. You withdraw a large amount of money from
your bank account and have it paid out to you in cash by the cashier. Typically, what
happens is this. The cashier looks at you earnestly to make sure she has your full attention,
and then she slowly counts out the banknotes for you: one thousand (counting ten notes
while saying one, two, three, . . . , ten), two thousand (counting another ten notes), three
thousand (ten notes again), and four thousand (another ten notes). This ritual creates
common knowledge that forty banknotes of 100 euros were paid out to you.

To see that this is different from mere knowledge, consider the alternative where the
cashier counts out the money out of sight, puts it in an envelope, and hands it over to you.
At home you open the envelope and count the money. Then the cashier and you have
knowledge about the amount of money that is in the envelope. But the amount of money
is not common knowledge among you. In order to create common knowledge you will
have to insist on counting the money while the cashier is looking on, making sure that you
have her full attention. For suppose you fail to do that. On recounting the money at home
you discover there has been a mistake. One banknote is missing. Then the situation is as
follows: the cashier believed that she knew there were forty banknotes. You now know
there are only thirty-nine. How are you going to convince your bank that a mistake has
been made, and that it is their mistake?

5.12 Outlook – Secrecy and Security

In computer science, protocols are designed and studied that do not reveal secret informa-
tion to eavesdroppers. A strong property of such protocols is the following:

Even if all communication is overheard, the secret is not compromised.

One example of how this can be achieved is given by the so-called Dining Cryptographers
Protocol, designed by computer scientist David Chaum. The setting of this protocol is a
situation where three cryptographers are eating out. At the end of the dinner, they are
informed that the bill has been paid, either by one of them, or by NSA (the National
Security Agency). Respecting each others’ rights to privacy, they want to find out whether
NSA paid or not, in such a way that in case one of them has paid the bill, the identity of
the one who paid is not revealed to the two others.

They decide on the following protocol. Each cryptographer tosses a coin with his right-
hand neighbour, with the result of the toss remaining hidden from the third person. Each
cryptographer then has a choice between two public announcements: that the coins that
she has observed agree or that they disagree. If she has not paid the bill she will say that
they agree if the coins are the same and that they disagree otherwise; if she has paid the
bill she will say the opposite: she will say that they agree if in fact they are different and
she will say that they disagree if in fact they are the same. If everyone is speaking the

5-48 CHAPTER 5. LOGIC, INFORMATION AND KNOWLEDGE

truth, the number of ‘disagree’ announcements will be even. This reveals that NSA has
picked up the bill. If one person is ‘lying’, the number of ‘disagree’ announcements will
be odd, indicating that one among them has paid the bill.

One can analyse this with epistemic logic by starting out with a model where the diners
have common knowledge of the fact that either NSA or one of them has paid. Next, one
updates with the result of the coin tosses, and with communicative acts representing the
sharing of information between a cryptographer and his neighbour about these results.

Calling the cryptographers 1, 2 and 3, use p1, p2 and p3 to express that 1, 2 or 3 has paid.
The aim of the protocol is that everybody learns whether the formula p1 ∨ p2 ∨ p3 is true
or not, but if the formula is true, nobody (except the payer herself) should learn which
of the three propositions was true. It is left to you to figure out why the above protocol
achieves this goal.

Summary of Things You Have Learnt in This Chapter You have learnt to look at
information as uncertainty between various possible states of affairs, for cases of a single
agent, but also for multi-agent settings that involve knowledge about knowledge. You
know what information models are, and you are able to evaluate formulas from epistemic
logic in information models. You have some experience with constructing formal proofs
in epistemic logic. You are familiar with the concept of information update, and you can
understand simple protocols designed to update information states. You have grasped the
distinction between individual knowledge and common knowledge, and know in which
cases public announcements can be used to establish common knowledge.

Further Reading A classic on the logic of knowledge and belief is Jaakko Hintikka’s
[Hin62]. Epistemic logic for computer science is the subject of [MvdH95] and [FHMV95].
A textbook treatment of dynamic epistemic logic can be found in [DvdHK06]. A recent
book on information exchange and interaction is [vB11].

Chapter 6

Logic and Action

Overview An action is something that takes place in the world, and that makes a dif-
ference to what the world looks like. Thus, actions are maps from states of the world to
new states of the world. Actions can be of various kinds. The action of spilling coffee
changes the state of your trousers. The action of telling a lie to your friend changes your
friend’s state of mind (and maybe the state of your soul). The action of multiplying two
numbers changes the state of certain registers in your computer. Despite the differences
between these various kinds of actions, we will see that they can all be covered under the
same logical umbrella.

6.1 Actions in General

Sitting quietly, doing nothing,
Spring comes, and the grass grows by itself.

From: Zenrin kushu, compiled by Eicho (1429-1504)

Action is change in the world. Change can take place by itself (see the poem above), or it
can involve an agent who causes the change. You are an agent. Suppose you have a bad
habit and you want to give it up. Then typically, you will go through various stages. At
some point there is the action stage: you do what you have to do to effect a change.

Following instructions for how to combine certain elementary culinary actions (chopping
an onion, firing up a stove, stirring the contents of a saucer) may make you a success-
ful cook. Following instructions for how to combine communication steps may make
you a successful salesperson, or a successful barrister. Learning to combine elementary
computational actions in clever ways may make you a successful computer programmer.

Actions can often be characterized in terms of their results: “stir in heated butter and sauté
until soft”, “rinse until water is clear”. In this chapter you will learn how to use logic for

6-1

6-2 CHAPTER 6. LOGIC AND ACTION

analyzing the interplay of action and static descriptions of the world before and after the
action.

It turns out that structured actions can be viewed as compositions of basic actions, with
only a few basic composition recipes: conditional execution, choice, sequence, and repe-
tition. In some cases it is also possible to undo or reverse an action. This gives a further
recipe: if you are editing a file, you can undo the last ‘delete word’ action, but you cannot
undo the printing of your file.

Conditional or guarded execution (“remove from fire when cheese starts to melt”), se-
quence (“pour eggs in and swirl; cook for about three minutes; gently slide out of the
pan”), and repetition (“keep stirring until soft”) are ways in which a cook combines his
basic actions in preparing a meal. But these are also the strategies for a lawyer when plan-
ning her defence (“only discuss the character of the defendant if the prosecution forces
us”, “first convince the jury of the soundness of the alibi, next cast doubt on the reliability
of the witness for the prosecution”), or the basic layout strategies for a programmer in
designing his code. In this chapter we will look at the logic of these ways of combining
actions.

Action structure does not depend on the nature of the basic actions: it applies to actions
in the world, such as preparing breakfast, cleaning dishes, or spilling coffee over your
trousers. It also applies to communicative actions, such as reading an English sentence
and updating one’s state of knowledge accordingly, engaging in a conversation, sending an
email with cc’s, telling your partner a secret. These actions typically change the cognitive
states of the agents involved. Finally, it applies to computations, i.e., actions performed
by computers. Examples are computing the factorial function, computing square roots,
etc. Such actions typically involve changing the memory state of a machine. Of course
there are connections between these categories. A communicative action will usually
involve some computation involving memory, and the utterance of an imperative (‘Shut
the door!’) is a communicative action that is directed towards action in the world.

There is a very general way to model action and change, a way that we have in fact seen
already. The key is to view a changing world as a set of situations linked by labeled arcs.
In the context of epistemic logic we have looked at a special case of this, the case where
the arcs are epistemic accessibility relations: agent relations that are reflexive, symmetric,
and transitive. Here we drop this restriction.

Consider an action that can be performed in only one possible way. Toggling a switch for
switching off your alarm clock is an example. This can be pictured as a transition from
an initial situation to a new situation:

alarm on alarm off
toggle

Toggling the switch once more will put the alarm back on:

6.1. ACTIONS IN GENERAL 6-3

alarm on alarm off alarm on
toggle toggle

Some actions do not have determinate effects. Asking your boss for a promotion may get
you promoted, but it may also get you fired, so this action can be pictured like this:

employed

promoted

fired

ask for promotion

Another example: opening a window. This brings about a change in the world, as follows.

open window

The action of window-opening changes a state in which the window is closed into one in
which it is open. This is more subtle than toggling an alarm clock, for once the window is
open a different action is needed to close it again. Also, the action of opening a window
can only be applied to closed windows, not to open ones. We say: performing the action
has a precondition or presupposition.

In fact, the public announcements from the previous chapter can also be viewed as (com-
municative) actions covered by our general framework. A public announcement is an
action that effects a change in an information model.

0 : p 1 : pbc
abc abc

⇒!p⇒ 0 : p

abc

6-4 CHAPTER 6. LOGIC AND ACTION

On the left is an epistemic situation where p is in fact the case (indicated by the grey
shading), but b and c cannot distinguish between the two states of affairs, for they do not
know whether p. If in such a situation there is a public announcement that p is the case,
then the epistemic situation changes to what is pictured on the right. In the new situation,
everyone knows that p is the case, and everyone knows that everyone knows, and so on.
In other words: p has become common knowledge.

Here is computational example. The situation on the left in the picture below gives a
highly abstract view of part of the memory of a computer, with the contents of three
registers x, y and z. The effect of the assignment action x := y on this situation is that
the old contents of register x gets replaced by the contents of register y. The result of the
action is the picture on the right.

x 3
y 2
z 4

x 2
y 2
z 4

x := y

The command to put the value of register y in register x makes the contents of registers x
and y equal.

The next example models a traffic light that can turn from green to yellow to red and again
to green. The transitions indicate which light is turned on (the light that is currently on is
switched off). The state # is the state with the green light on, the state ? the state with the
yellow light on, and the state • the state with the red light on.

?

•

yellow

redgreen

These examples illustrate that it is possible to approach a wide variety of kinds of actions
from a unified perspective. In this chapter we will show that this is not only possible, but
also fruitful.

In fact, much of the reasoning we do in everyday life is reasoning about change. If you
reflect on an everyday life problem, one of the things you can do is run through various
scenarios in your mind, and see how you would (re)act if things turn out as you imagine.
Amusing samples are in the Dutch ‘Handboek voor de Moderne Vrouw’ (The Modern
Woman’s Handbook). See http://www.handboekvoordemodernevrouw.nl/.

Here is a sample question from ‘Handboek voor de Moderne Vrouw’: ‘I am longing for a
cosy Xmas party. What can I do to make our Xmas event happy and joyful?’ Here is the
recommendation for how to reflect on this:

6.1. ACTIONS IN GENERAL 6-5

START

your type?

become hostess?

pose as ideal guest

read tips appreciated?

invite kids ask participation make pizza

guest

not really

yes

hostess

only by husband

only passively

by no-one

Figure 6.1: Flow Diagram of ‘Happy Xmas Procedure’

6-6 CHAPTER 6. LOGIC AND ACTION

Are you the type of a ‘guest’ or the type of a ‘hostess’?
If the answer is ‘guest’: Would you like to become a hostess?

If the answer is ‘not really’ then
your best option is to profile as an ideal guest
and hope for a Xmas party invitation elsewhere.

If the answer is ‘yes’ then here are some tips on how to become a great hostess: . . .
If the answer is ‘hostess’, then ask yourself:

Are your efforts truly appreciated?
If the answer is ‘Yes, but only by my own husband’ then

probably your kids are bored to death.
Invite friends with kids of the same age as yours.

If the answer is ‘Yes, but nobody lifts a finger to help out’ then
Ask everyone to prepare one of the courses.

If the answer is ‘No, I only gets moans and sighs’ then
put a pizza in the microwave for your spouse and kids
and get yourself invited by friends.

Figure 6.1 gives a so-called flow diagram for the recommendations from this example.
Note that the questions are put in 3 boxes, that the answers are labels of outgoing arrows
of the 3 boxes, and that the actions are put in 2 boxes.

6.2 Sequence, Choice, Repetition, Test

In the logic of propositions, the natural operations are not, and and or. These operations
are used to map truth values into other truth values. When we want to talk about action,
the repertoire of operations gets extended. What are natural things to do with actions?

When we want to talk about action at a very general level, then we first have to look at
how actions can be structured. Let’s assume that we have a set of basic actions. Call these
basic actions a, b, c, and so on. Right now we are not interested in the internal structure
of basic actions. The actions a, b, c could be anything: actions in the world, basic acts of
communication, or basic changes in the memory state of a computer. Given such a set of
basic actions, we can look at natural ways to combine them.

Sequence In the first place we can perform one action after another: first eat breakfast,
then do the dishes. First execute action a, next execute action b. First toggle a switch.
Then toggle it again. Consider again the alarm clock toggle action.

alarm on alarm off alarm on
toggle toggle

Writing the sequence of two actions a and b as a; b, we get:

6.2. SEQUENCE, CHOICE, REPETITION, TEST 6-7

alarm on alarm on
toggle; toggle

Starting out from the situation where the alarm is off, we would get:

alarm off alarm off
toggle; toggle

Choice A complex action can also consist of a choice between simpler actions: either
drink tea or drink coffee. Either marry a beggar or marry a millionnaire.

unmarried, poor married, poor
×-beggar

unmarried, poor married, rich
×-millionnaire

unmarried, poor

married, poor

married, rich

×-beggar ∪ ×-millionnaire

Repetition Actions can be repeated. The phrase ‘lather, rinse, repeat’ is used as a joke
at people who take instructions too literally: the stop condition ‘until hair is clean’ is
omitted. There is also a joke about an advertising executive who increases the sales of
his client’s shampoo by adding the word ‘repeat’ to its instructions. If taken literally, the
compound action ‘lather, rinse, repeat’ would look like this:

lather ; rinse

Repeated actions usually have a stop condition: repeat the lather rinse sequence until your
hair is clean. This gives a more sensible interpretation of the repetition instruction:

6-8 CHAPTER 6. LOGIC AND ACTION

hair clean?
lather ; rinse

STOP
yes

no

Looking at the picture, we see that this procedure is ambiguous, for where do we start?
Here is one possibility:

START

hair clean?
lather ; rinse

STOP
yes

no

And here is another:

START hair clean?
lather ; rinse

STOP
yes

no

The difference between these two procedures is that the first one starts with a ‘hair clean?’
check: if the answer is ‘yes’, nothing happens. The second procedure starts with a ‘lather;
rinse’ sequence, no matter the initial state of your hair.

6.2. SEQUENCE, CHOICE, REPETITION, TEST 6-9

In many programming languages, this same distinction is made by means of a choice
between two different constructs for expressing ‘condition controlled loops’:

while not hair clean do { lather; rinse }
repeat { lather ; rinse } until hair clean

The first loop does not guarantee that the ‘lather ; rinse’ sequence gets performed at least
once; the second loop does.

Test The ‘condition’ in a condition-controlled loop (the condition ‘hair clean’, for ex-
ample) can itself be viewed as an action: a test whether a certain fact holds. A test to
see whether some condition holds can also be viewed as a basic action. Notation for the
action that tests condition ϕ is ?ϕ. The question mark turns a formula (something that can
be true or false) into an action (something that can succeed or fail).

If we express tests as ?ϕ, then we should specify the language from which ϕ is taken.
Depending on the context, this could be the language of propositional logic, the language
of predicate logic, the language of epistemic logic, and so on.

Since we are taking an abstract view, the basic actions can be anything. Still, there are a
few cases of basic action that are special. The action that always succeeds is called SKIP.
The action that always fails is called ABORT. If we have tests, then clearly SKIP can be
expressed as ?> (the test that always succeeds) and ABORT as ?⊥ (the test that always
fails).

Using test, sequence and choice we can express the familiar ‘if then else’ from many
programming languages.

if hair clean then skip else { lather ; rinse }
This becomes a choice between a test for clean hair (if this test succeeds then nothing
happens) and a sequence consisting of a test for not-clean-hair followed by a lather and a
rinse (if the hair is not clean then it is first lathered and then rinsed).

?hair clean ∪ { ?¬hair clean ; lather ; rinse }
The general recipe for expressing if ϕ then α1 else α2 is given by:

?ϕ;α1 ∪ ?¬ϕ;α2.

Since exactly one of the two tests ?ϕ and ?¬ϕ will succeed, exactly one of α1 or α2 will
get executed.

Using the operation for turning a formula into a test, we can first test for p and next test
for q by means of ?p; ?q. Clearly, the order of testing does not matter, so this is equivalent
to ?q; ?p. And since the tests do not change the current state, this can also be expressed as
a single test ?(p ∧ q).

Similarly, the choice between two tests ?p and ?q can be written as ?p∪?q. Again, this is
equivalent to ?q∪?p, and it can be turned into a single test ?(p ∨ q).

6-10 CHAPTER 6. LOGIC AND ACTION

Converse Some actions can be undone by reversing them: the reverse of opening a
window is closing it. Other actions are much harder to undo: if you smash a piece of
china then it is sometimes hard to mend it again. So here we have a choice: do we assume
that basic actions can be undone? If we do, we need an operation for this, for taking the
converse of an action. If, in some context, we assume that undoing an action is generally
impossible we should omit the converse operation in that context.

Exercise 6.1 Suppose ˇ is used for reversing basic actions. So ǎ is the converse of action a, and
b̌ is the converse of action b. Let a; b be the sequential composition of a and b, i.e., the action that
consists of first doing a and then doing b. What is the converse of a; b?

6.3 Viewing Actions as Relations

As an exercise in abstraction, we will now view actions as binary relations on a set S of
states. The intuition behind this is as follows. Suppose we are in some state s in S. Then
performing some action a will result in a new state that is a member of some set of new
states {s1, . . . , sn}.
If this set is empty, this means that the action a has aborted in state s. If the set has a
single element s′, this means that the action a is deterministic on state s, and if the set
has two or more elements, this means that action a is non-deterministic on state s. The
general picture is:

s

s1

s2

s3

sn

Clearly, when we extend this picture to the whole set S, what emerges is a binary relation
on S, with an arrow from s to s′ (or equivalently, a pair (s, s′) in the relation) just in case
performing action a in state s may have s′ as result. Thus, we can view binary relations
on S as the interpretations of basic action symbols a.

The set of all pairs taken from S is called S × S, or S2. A binary relation on S is simply
a set of pairs taken from S, i.e., a subset of S2.

Given this abstract interpretation of basic relations, it makes sense to ask what corresponds
to the operations on actions that we encountered in Section 6.2. Let’s consider them in
turn.

6.3. VIEWING ACTIONS AS RELATIONS 6-11

Sequence Given that action symbol a is interpreted as binary relation Ra on S, and that
action symbol b is interpreted as binary relationRb on S, what should be the interpretation
of the action sequence a; b? Intuitively, one can move from state s to state s′ just in case
there is some intermediate state s0 with the property that a gets you from s to s0 and b gets
you from s0 to s′. This is a well-known operation on binary relations, called relational
composition. If Ra and Rb are binary relations on the same set S, then Ra ◦ Rb is the
binary relation on S given by:

Ra ◦Rb = {(s, s′) | there is some s0 ∈ S : (s, s0) ∈ Raand (s0, s
′) ∈ Rb}.

If basic action symbol a is interpreted as relation Ra, and basic action symbol b is inter-
preted as relation Rb, then the sequence action a; b is interpreted as Ra ◦ Rb. Here is a
picture:

s

s1

s2

s3

sn

s11

s12

s13

s1m

If the solid arrows interpret action symbol a and the dashed arrows interpret action sym-
bol b, then the arrows consisting of a solid part followed by a dashed part interpret the
sequence a; b.

Choice Now suppose again that we are in state s, and that performing action a will get
us in one of the states in {s1, . . . , sn}. And supposse that in that same state s, performing
action b will get us in one of the states in {s′1, . . . , s′m}.

6-12 CHAPTER 6. LOGIC AND ACTION

s

s1

s2

s3

sn

s′1
s′2
s′3

s′m

Then performing action a ∪ b (the choice between a and b) in s will get you in one of the
states in {s1, . . . , sn} ∪ {s′1, . . . , s′m}. More generally, if action symbol a is interpreted as
the relation Ra, and action symbol b is interpreted as the relation Rb, then a ∪ b will be
interpreted as the relation Ra ∪Rb (the union of the two relations).

Test A notation that is often used for the equality relation (or: identity relation is I . The
binary relation I on S is by definition the set of pairs given by:

I = {(s, s) | s ∈ S}.

A test ?ϕ is interpreted as a subset of the identity relation, namely as the following set of
pairs:

R?ϕ = {(s, s) | s ∈ S, s |= ϕ}

From this we can see that a test does not change the state, but checks whether the state
satisfies a condition.

To see the result of combining a test with another action:

6.4. OPERATIONS ON RELATIONS 6-13

s

s1

s2

s3

sn

t

t1

t2

t3

tm

The solid arrow interprets a test ?ϕ that succeeds in state s but fails in state t. If the
dashed arrows interpret a basic action symbol a, then, for instance, (s, s1) will be in the
interpretation of ?ϕ; a, but (t, t1) will not.

Since > is true in any situation, we have that ?> will get interpreted as I (the identity
relation on S). Therefore, ?>; a will always receive the same interpretation as a.

Since ⊥ is false in any situation, we have that ?⊥ will get interpreted as ∅ (the empty
relation on S). Therefore, ?⊥; a will always receive the same interpretation as ?⊥.

Before we handle repetition, it is useful to switch to a more gereral perspective.

6.4 Operations on Relations

Relations were introduced in Chapter 4 on predicate logic. In this chapter we view actions
as binary relations on a set S of situations. Such a binary relation is a subset of S × S,
the set of all pairs (s, t) with s and t taken from S. It makes sense to develop the general
topic of operations on binary relations. Which operations suggest themselves, and what
are the corresponding operations on actions?

In the first place, there are the usual set-theoretic operations. Binary relations are sets of
pairs, so taking unions, intersections and complements makes sense (also see Appendix
A). We have already seen that taking unions corresponds to choice between actions.

Example 6.2 The union of the relations ‘mother’ and ‘father’ is the relation ‘parent’.

Example 6.3 The intersection of the relations ⊆ and ⊇ is the equality relation =.

6-14 CHAPTER 6. LOGIC AND ACTION

In Section 6.3 we encountered the notation I for the equality (or: identity) relation on a
set S. We have seen that tests get interpreted as subsets of I .

We also looked at composition of relations. R1 ◦ R2 is the relation that performing an
R1 step followed by an R2 step. To see that order of composition matters, consider the
following example.

Example 6.4 The relational composition of the relations ‘mother’ and ‘parent’ is the re-
lation ‘grandmother’, for ‘x is grandmother of y’ means that there is a z such that x is
mother of z, and z is parent of y.

The relational composition of the relations ‘parent’ and ‘mother’ is the relation ‘maternal
grandparent’, for ‘x is maternal grandparent of y’ means that there is a z such that x is
parent of z and z is mother of y.

Exercise 6.5 What is the relational composition of the relations ‘father’ and ‘mother’?

Another important operation is relational converse. The relational converse of a binary
relation R, notation R ,̌ is the relation given by:

Rˇ = {(y, x) ∈ S2 | (x, y) ∈ R}.

Example 6.6 The relational converse of the ‘parent’ relation is the ‘child’ relation.

Exercise 6.7 What is the relational converse of the ⊆ relation?

The following law describes the interplay between composition and converse:

Converse of composition (R1 ◦R2)̌ = R2̌ ◦R1̌ .

Exercise 6.8 Check from the definitions that (R1 ◦R2)̌ = R2̌ ◦R1̌ is valid.

There exists a long list of logical principles that hold for binary relations. To start with,
there are the usual Boolean principles that hold for all sets:

Commutativity R1 ∪R2 = R2 ∪R1, R1 ∩R2 = R2 ∩R1,

Idempotence R ∪R = R, R ∩R = R.

Laws of De Morgan R1 ∪R2 = R1 ∩R2, R1 ∩R2 = R1 ∪R2.

Specifically for relational composition we have:

Associativity R1 ◦ (R2 ◦R3) = (R1 ◦R2) ◦R3.

6.4. OPERATIONS ON RELATIONS 6-15

Distributivity

R1 ◦ (R2 ∪R3) = (R1 ◦R2) ∪ (R1 ◦R3)

(R1 ∪R2) ◦R3) = (R1 ◦R3) ∪ (R2 ◦R3).

There are also many principles that seem plausible but that are invalid. To see that a
putative principle is invalid one should look for a counterexample.

Example 6.9 R ◦ R = R is invalid, for if R is the ‘parent’ relation, then the principle
would state that ‘grandparent’ equals ‘parent’, which is false.

Exercise 6.10 Show by means of a counterexample thatR1∪ (R2 ◦R3) = (R1∪R2)◦ (R1∪R3)
is invalid.

Exercise 6.11 Check from the definitions that R1 ◦ (R2 ∪R3) = (R1 ◦R2)∪ (R1 ◦R3) is valid.

Exercise 6.12 Check from the definition that Řˇ = R is valid.

Exercise 6.13 Check from the definitions that (R1 ∪R2)̌ = R1̌ ∪R2̌ is valid.

Transitive Closure A relation R is transitive if it holds that if you can get from x to y
in two R-steps, then it is also possible to get from x to y in a single R-step (see page 4-20
above). This can be readily expressed in terms of relational composition.

R is transitive iff R ◦R ⊆ R.

The transitive closure of a relation R is defined as the smallest transitive relation S that
contains R. This means: S is the transitive closure of R if

(1) R ⊆ S,

(2) S ◦ S ⊆ S,

(3) if R ⊆ T and T ◦ T ⊆ T then S ⊆ T .

Requirement (1) expresses that R is contained in S, requirement (2) expresses that S
is transitive, and requirement (3) expresses that S is the smallest transitive relation that
contains R: any T that satisfies the same requirements must be at least as large as S.

The customary notation for the transitive closure of R is R+. Here is an example.

Example 6.14 The transitive closure of the ‘parent’ relation is the ‘ancestor’ relation. If
x is parent of y then x is ancestor of y, so the parent relation is contained in the ancestor
relation. If x is an ancestor of y and y is an ancestor of z then surely x is an ancestor of z,
so the ancestor relation is transitive. Finally, the ancestor relation is the smallest transitive
relation that contains the parent relation.

6-16 CHAPTER 6. LOGIC AND ACTION

You can think of a binary relation R as a recipe for taking R-steps. The recipe for taking
double R-steps is now given by R ◦ R. The recipe for taking triple R-steps is given by
R ◦R ◦R, and so on.

There is a formal reason why the order of composition does not matter: R1 ◦ (R2 ◦ R3)
denotes the same relation as (R1 ◦R2) ◦R3. because of the above-mentioned principle of
associativity.

The n-fold composition of a binary relation R on S with itself can be defined from R and
I (the identity relation on S), by recursion (see Appendix, Section A.6), as follows:

R0 = I

Rn = R ◦Rn−1 for n > 0.

Abbreviation for the n-fold composition of R is Rn. This allows us to talk about taking a
specific number of R-steps.

Notice that R ◦ I = R. Thus, we get that R1 = R ◦R0 = R ◦ I = R.

The transitive closure of a relation R can be computed by means of:

R+ = R ∪R2 ∪R3 ∪ · · ·

This can be expressed without the · · · , as follows:

R+ =
⋃

n∈N,n>0

Rn.

Thus,R+ denotes the relation of doing an arbitrary finite number ofR-steps (at least one).

Closely related to the transitive closure ofR is the reflexive transitive closure ofR. This is,
by definition, the smallest relation that contains R and that is both reflexive and transitive.
The reflexive transitive closure of R can be computed by:

R∗ = I ∪R ∪R2 ∪R3 ∪ · · ·

This can be expressed without the · · · , as follows:

R∗ =
⋃
n∈N

Rn.

Thus, R∗ denotes the relation of doing an arbitrary finite number of R-steps, including
zero steps.

Notice that the following holds:
R+ = R ◦R∗.

Exercise 6.15 The following identity between relations is not valid:

(R ∪ S)∗ = R∗ ◦ S∗.

Explain why not by giving a counter-example.

6.5. COMBINING PROPOSITIONAL LOGIC AND ACTIONS: PDL 6-17

Exercise 6.16 The following identity between relations is not valid:

(R ◦ S)∗ = R∗ ◦ S∗.

Explain why not by giving a counter-example.

For Loops In programming, repetition consisting of a specified number of steps is
called a for loop. Here is an example of a loop for printing ten lines, in the program-
ming language Ruby:

#!/usr/bin/ruby

for i in 0..10
puts "Value of local variable is #{i}"

end

If you have a system with Ruby installed, you can save this as a file and execute it.

While Loops, Repeat Loops If R is the interpretation of a (‘doing a once’), then R∗ is
the interpretation of ‘doing a an arbitrary finite number of times’, and R+ is the interpre-
tation of ‘doing a an arbitrary finite number of times but at least once’. These relations
can be used to define the interpretation of while loops and repeat loops (the so-called
condition controlled loops), as follows.

If a is interpreted as Ra, then the condition-controlled loop ‘while ϕ do a’ is interpreted
as:

(R?ϕ ◦Ra)
∗ ◦R?¬ϕ.

First do a number of steps consisting of a ?ϕ test followed by an a action, next check that
¬ϕ holds.

Exercise 6.17 Supposing that a gets interpreted as the relation Ra, ?ϕ as R?ϕ and ?¬ϕ as R?¬ϕ,
give a relational interpretation for the condition controlled loop ‘repeat a until ϕ’.

6.5 Combining Propositional Logic and Actions: PDL

The language of propositional logic over some set of basic propositions P is given by:

ϕ ::= > | p | ¬ϕ | ϕ ∨ ϕ | ϕ ∧ ϕ where p ranges over P .

If we assume that a set of basic action symbols A is given, then the language of actions
that we discussed in Sections 6.2 and 6.3 above can be formally defined as:

α ::= a |?ϕ | α;α | α ∪ α | α∗ where a ranges over A.

6-18 CHAPTER 6. LOGIC AND ACTION

Note that the test ?ϕ in this definition refers to the definition of ϕ in the language of
propositional logic. Thus, the language of propositional logic is embedded in the language
of actions.

Now here is a new idea, for also doing the converse: extend the language of propositional
logic with a construction that describes the results of executing an action α.

If α is interpreted as a binary relation then in a given state s there may be several states s′

for which (s, s′) is in the interpretation of α.

Interpret 〈α〉ϕ as follows:

〈α〉ϕ is true in a state s if for some s′ with (s, s′) in the interpretation of α it
holds that ϕ is true in s′.

For instance, if a is the action of asking for promotion, and p is the proposition expressing
that one is promoted, then 〈a〉p expresses that asking for promotion may result in actually
getting promoted.

Another useful expression is [α]ϕ, with the following interpretation:

[α]ϕ is true in a state s if for every s′ with (s, s′) in the interpretation of α it
holds that ϕ is true in s′.

For instance, if a again expresses asking for promotion, and p expresses that one is pro-
moted, then [a]p expresses that, in the current state, the action of asking for a promotion
always results in getting promoted.

Note that 〈a〉p and [a]p are not equivalent: think of a situation where asking for a pro-
motion may also result in getting fired. In that case 〈a〉p may still hold, but [a]p does not
hold.

If one combines propositional logic with actions in this way one gets a basic logic of
change called Propositional Dynamic Logic or PDL. Here is the formal definition of the
language of PDL:

Definition 6.18 (Language of PDL — propositional dynamic logic) Let p range over
the set of basic propositions P , and let a range over a set of basic actions A. Then the
formulas ϕ and action statements α of propositional dynamic logic are given by:

ϕ ::= > | p | ¬ϕ | ϕ1 ∨ ϕ2 | ϕ1 ∧ ϕ2 | 〈α〉ϕ | [α]ϕ

α ::= a | ?ϕ | α1;α2 | α1 ∪ α2 | α∗

The definition does not have→ or↔. But this does not matter, for we can introduce these
operators by means of abbreviations or shorthands.

> is the formula that is always true. From this, we can define ⊥, as shorthand for ¬>.

6.5. COMBINING PROPOSITIONAL LOGIC AND ACTIONS: PDL 6-19

Similarly, ϕ1 → ϕ2 is shorthand for ¬ϕ1 ∨ ϕ2, ϕ1 ↔ ϕ2 is shorthand for (ϕ1 → ϕ2) ∧
(ϕ2 → ϕ1).

Propositional dynamic logic abstracts over the set of basic actions, in the sense that basic
actions can be anything. In the language of PDL they are atoms. This means that the
range of applicability of PDL is vast. The only thing that matters about a basic action a is
that it is interpreted by some binary relation on a state set.

Propositional dynamic logic has two basic syntactic categories: formulas and action state-
ments. Formulas are used for talking about states, action statements are used for classi-
fying transitions between states. The same distinction between formulas and action state-
ments can be found in all imperative programming languages. The statements of C or Java
or Ruby are the action statements. Basic actions in C are assigning a value to a variable.
These are instructions to change the memory state of the machine. The so-called Boolean
expressions in C behave like formulas of propositional logic. They appear as conditions
or tests in conditional expressions. Consider the following C statement:

if (y < z)
x = y;

else
x = z;

This is a description of an action. But the ingredient (y<z) is not a statement (description
of an action) but a Boolean expression (description of a state) that expresses a test.

Propositional dynamic logic is an extension of propositional logic with action statements,
just like epistemic logic is an extension of propositional logic with epistemic modalities.
Let a set of basic propositions P be given. Then appropriate states will contain valuations
for these propositions. Let a set of basic actions A be given. Then every basic action
corresponds to a binary relation on the state set. Together this gives a labeled transition
system with valuations on states as subsets from P and labels on arcs between states taken
from A.

Exercise 6.19 Suppose we also want to introduce a shorthand αn, for a sequence of n copies of
action statement α. Show how this can be defined by induction. (Hint: use α0 := ?> as the base
case.)

Let’s get a feel for the kind of things we can express with PDL. For any action statement
α,

〈α〉>

expresses that the action α has at least one successful execution. Similarly,

[α]⊥

expresses that the action fails (cannot be executed in the current state).

6-20 CHAPTER 6. LOGIC AND ACTION

The basic actions can be anything, so let us focus on a basic action a that is interpreted as
the relation Ra. Suppose we want to say that some execution of a leads to a p state and
another execution of a leads to a non-p state. Then here is a PDL formula for that:

〈a〉p ∧ 〈a〉¬p.

If this formula is true in a state s, then this means that Ra forks in that state: there are
at least two Ra arrows starting from s, one of them to a state s1 satisfying p and one of
them to a state s1 that does not satisfy p. For the interpretation of P we need properties
of states, for p is like a one-place predicate in predicate logic.

If the basic actions are changes in the world, such as spilling milk S or cleaning C, then
[C;S]d expresses that cleaning up followed by spilling milk always results in a dirty state,
while [S;C]¬d expresses that the occurrence of these events in the reverse order always
results in a clean state.

6.6 Transition Systems

In Section 6.7 we will define the semantics of PDL relative to labelled transition systems,
or process graphs.

Definition 6.20 (Labelled transition system) Let P be a set of basic propositions and A
a set of labels for basic actions. Then a labelled transition system (or LTS) over atoms P
and agents A is a triple M = 〈S,R, V 〉 where S is a set of states, V : S → P(P) is a
valuation function, and R = { a→⊆ S × S | a ∈ A} is a set of labelled transitions, i.e., a
set of binary relations on S, one for each label a.

Another way to look at a labelled transition system is as a first order model predicate for
a language with unary and binary predicates.

LTSs with a designated node (called the root node) are called pointed LTSs or process
graphs.

The process of repeatedly doing a, followed by a choice between b and c can be viewed
as a process graph, as follows:

0

1

⇓

ab c

6.6. TRANSITION SYSTEMS 6-21

The root note 0 is indicated by ⇓. There are two states 0 and 1. The process start in state
0 with the execution of action a. This gets us to state 1, where there are two possible
actions b and c, both of which get us back to state 0, and there the process repeats. This is
an infinite process, just like an operating system of a computer. Unless there is a system
crash, the process goes on forever.

Jumping out of a process can be done by creating an action that moves to an end state.

0

1

2

⇓

ab c

d

√

We can think about
√

as a proposition letter, and then use PDL to talk about these process
graphs. In state 1 of the first model 〈d〉

√
is false, in state 1 of the second model 〈d〉

√
is

true. This formula expresses that a d transition to a
√

state is possible.

In both models it is the case in state 0 that after any number of sequences consisting of an
a step followed by either a b or a c step, a further a step is possible. This is expressed by
the following PDL formula: [(a; (b ∪ c))∗]〈a〉>.

Exercise 6.21 Which of the following formulas are true in state 0 of the two models given above:

(1) 〈a; d〉
√

.

(2) [a; d]
√

.

(3) [a](〈b〉> ∧ 〈c〉>).

(4) [a]〈d〉
√

.

The following two pictures illustrate an important distinction:

6-22 CHAPTER 6. LOGIC AND ACTION

⇓
0

1

2 3

a

b c

⇓
0

1 2

3 4

a a

b c

In the picture on the left, it is possible to take an a action from the root, and next to make
a choice between doing b or doing c. In the picture on the right, there are two ‘ways’ of
doing a, one of them ends in a state where b is the only possible move and the other one
ending in a state where c is the only possible move. This difference can be expressed in
a PDL formula, as follows. In the root state of the picture on the left, [a](〈b〉> ∧ 〈c〉>) is
true, in the root state of the picture on the right this formula is false.

Exercise 6.22 Find a PDL formula that can distinguish between the root states of the following
two process graphs:

0

1

⇓
a

b

√

0

1

2

⇓
a

a

a

b

√

The formula should be true in one graph, false in the other.

6.7. SEMANTICS OF PDL 6-23

Exercise 6.23 Now consider the following two pictures of process graphs:

0

1

⇓
a

b

√

0

1 3

2

⇓
a

a

a

b

√

b

√

Is it still possible to find a PDL formula that is true in the root of one of the graphs and false in the
root of the other? If your answer is ‘yes’, then give such a formula. If your answer is ‘no’, then
try to explain as clearly as you can why you think this is impossible.

6.7 Semantics of PDL

The formulas of PDL are interpreted in states of a labeled transition system (or: LTS,
or: process graph), and the actions a of PDL as binary relations on the domain S of the
LTS. We can think of an LTS as given by its set of states S, its valuation V , and its set of
labelled transitions R. We will give the interpretation of basic actions a as a→.

If an LTS M is given, we use SM to refer to its set of states, we use RM to indicate its set
of labelled transitions, and we use VM for its valuation.

Definition 6.24 (Semantics of PDL) Given is a labelled transition systemM = 〈S, V,R〉
for P and A.

M, s |= > always
M, s |= p ⇐⇒ p ∈ V (s)
M, s |= ¬ϕ ⇐⇒ M, s 6|= ϕ
M, s |= ϕ ∨ ψ ⇐⇒ M, s |= ϕ or M, s |= ψ
M, s |= ϕ ∧ ψ ⇐⇒ M, s |= ϕ and M, s |= ψ
M, s |= 〈α〉ϕ ⇐⇒ for some t, (s, t) ∈ [[α]]M and M, t |= ϕ
M, s |= [α]ϕ ⇐⇒ for all t with (s, t) ∈ [[α]]M it holds that M, t |= ϕ.

6-24 CHAPTER 6. LOGIC AND ACTION

where the binary relation [[α]]M interpreting the action α in the model M is defined as

[[a]]M =
a→M

[[?ϕ]]M = {(s, s) ∈ SM × SM |M, s |= ϕ}
[[α1;α2]]

M = [[α1]]
M ◦ [[α2]]

M

[[α1 ∪ α2]]
M = [[α1]]

M ∪ [[α2]]
M

[[α∗]]M = ([[α]]M)∗

Note that the clause for [[α∗]]M uses the definition of reflexive transitive closure that was
given on page 6-16.

These clauses specify how formulas of PDL can be used to make assertions about PDL
models.

Example 6.25 The formula 〈a〉>, when interpreted at some state in a PDL model, ex-
presses that that state has a successor in the a→ relation in that model.

A PDL formula ϕ is true in a model if it holds at every state in that model, i.e., if [[ϕ]]M =
SM .

Example 6.26 Truth of the formula 〈a〉> in a model expresses that a→ is serial in that
model. (A binary relation R is serial on a domain S if it holds for all s ∈ S that there is
some t ∈ S with sRt.)

A PDL formula ϕ is valid if it holds for all PDL models M that ϕ is true in that model,
i.e., that [[ϕ]]M = SM .

Exercise 6.27 Show that 〈a; b〉> ↔ 〈a〉〈b〉> is an example of a valid formula.

As was note before, ? is an operation for mapping formulas to action statements. Action
statements of the form ?ϕ are called tests; they are interpreted as the identity relation,
restricted to the states satisfying the formula.

Exercise 6.28 Let the following PDL model be given:

1 : pq 2 : pq

3 : pq 4 : pq

b

b

a a

6.7. SEMANTICS OF PDL 6-25

Give the interpretations of ?p, of ?(p ∨ q), of a; b and of b; a.

Exercise 6.29 Let the following PDL model be given:

1 : pq 2 : pq

3 : pq4 : pq

a

a

a

a

b

b

(1) List the states where the following formulas are true:

a. ¬p
b. 〈b〉q
c. [a](p→ 〈b〉q)

(2) Give a formula that is true only at state 4.

(3) Give all the elements of the relations defined by the following action expressions:

a. b; b

b. a ∪ b
c. a∗

(4) Give a PDL action expression that defines the relation {(1, 3)} in the graph. (Hint: use one
or more test actions.)

Converse Letˇ (converse) be an operator on PDL programs with the following interpre-
tation:

[[α̌]]M = {(s, t) | (t, s) ∈ [[α]]M}.

Exercise 6.30 Show that the following equalities hold:

(α;β)̌ = β ;̌ α̌

(α ∪ β)̌ = α̌ ∪ βˇ
(α∗)̌ = (α̌)∗

Exercise 6.31 Show how the equalities from the previous exercise, plus atomic converse ǎ , can
be used to define α̌ , for arbitrary α, by way of abbreviation.

6-26 CHAPTER 6. LOGIC AND ACTION

It follows from Exercises 6.30 and 6.31 that it is enough to add converse to the PDL
language for atomic actions only. To see that adding converse in this way increases ex-
pressive power, observe that in root state 0 in the following picture 〈ǎ 〉> is true, while in
root state 2 in the picture 〈ǎ 〉> is false. On the assumption that 0 and 2 have the same
valuation, no PDL formula without converse can distinguish the two states.

⇓
0

⇓
2

1

a

6.8 Axiomatisation

The logic of PDL is axiomatised as follows. Axioms are all propositional tautologies, plus
an axiom stating that α behaves as a standard modal operator, plus axioms describing the
effects of the program operators (we give box ([α])versions here, but every axiom has
an equivalent diamond (〈α〉) version), plus a propositional inference rule and a modal
inference rule.

The propositional inference rule is the familiar rule of Modus Ponens.

(modus ponens) From ` ϕ1 and ` ϕ1 → ϕ2, infer ` ϕ2.

The modal inference rule is the rule of modal generalization (or: necessitation):

(modal generalisation) From ` ϕ, infer ` [α]ϕ.

Modal generalization expresses that theorems of the system have to hold in every state.

Example 6.32 Take the formula (ϕ ∧ ψ)→ ϕ. Because this is a propositional tautology,
it is a theorem of the system, so we have ` (ϕ ∧ ψ)→ ϕ. And because it is a theorem, it
has to hold everywhere, so we have, for any α:

` [α]((ϕ ∧ ψ)→ ϕ).

Now let us turn to the axioms. The first axiom is the K axiom (familiar from Chapter 5)
that expresses that program modalities distribute over implications:

(K) ` [α](ϕ→ ψ)→ ([α]ϕ→ [α]ψ)

6.8. AXIOMATISATION 6-27

Example 6.33 As an example of how to play with this, we derive the equivalent 〈α〉
version. By the K axiom, the following is a theorem (just replace ψ by ¬ψ everywhere in
the axiom):

` [α](ϕ→ ¬ψ)→ ([α]ϕ→ [α]¬ψ).

From this, by the propositional reasoning principle of contraposition:

` ¬([α]ϕ→ [α]¬ψ)→ ¬[α](ϕ→ ¬ψ).

From this, by propositional reasoning:

` [α]ϕ ∧ ¬[α]¬ψ)→ ¬[α](ϕ→ ¬ψ).

Now replace all boxes by diamonds, using the abbreviation ¬〈α〉¬ϕ for [α]ϕ:

` ¬〈α〉¬ϕ ∧ ¬¬〈α〉¬¬ψ)→ ¬¬〈α〉¬(ϕ→ ¬ψ).

This can be simplified by propositional logic, and we get:

` (¬〈α〉¬ϕ ∧ 〈α〉ψ)→ 〈α〉(ϕ ∧ ψ).

Example 6.34 This example is similar to Example 5.45 from Chapter 5.

Above, we have seen that [α]((ϕ ∧ ψ) → ϕ) is a theorem. With the K axiom, we can
derive from this:

` [α](ϕ ∧ ψ)→ [α]ϕ.

In a similar way, we can derive:

` [α](ϕ ∧ ψ)→ [α]ψ.

From these by propositional reasoning:

` [α](ϕ ∧ ψ)→ ([α]ϕ ∧ [α]ψ). (*)

The implication in the other direction is also derivable, as follows:

` ϕ→ (ψ → (ϕ ∧ ψ)),

because ϕ → (ψ → (ϕ ∧ ψ)) is a propositional tautology. By modal generalization
(necessitation) from this:

` [α](ϕ→ (ψ → (ϕ ∧ ψ))).

By two applications of the K axiom and propositional reasoning from this:

` [α]ϕ→ ([α]ψ → [α](ϕ ∧ ψ)).

Since ϕ → (ψ → χ) is propositionally equivalent to (ϕ ∧ ψ) → χ, we get from this by
propositional reasoning:

` ([α]ϕ ∧ [α]ψ)→ [α](ϕ ∧ ψ). (**)

Putting the two principles (∗) and (∗∗) together we get:

` [α](ϕ ∧ ψ)↔ ([α]ϕ ∧ [α]ψ). (***)

6-28 CHAPTER 6. LOGIC AND ACTION

Let us turn to the next axiom, the axiom for test. This axiom says that [?ϕ1]ϕ2 expresses
an implication:

(test) ` [?ϕ1]ϕ2 ↔ (ϕ1 → ϕ2)

The axioms for sequence and for choice:

(sequence) ` [α1;α2]ϕ↔ [α1][α2]ϕ

(choice) ` [α1 ∪ α2]ϕ↔ [α1]ϕ ∧ [α2]ϕ

Example 6.35 As an example application, we derive

` [α; (β ∪ γ)]ϕ↔ [α][β]ϕ ∧ [α][γ]ϕ.

Here is the derivation:

[α; (β ∪ γ)]ϕ ↔ (sequence) [α][β ∪ γ]ϕ

↔ (choice) [α]([β]ϕ ∧ [γ]ϕ)

↔ (***) [α][β]ϕ ∧ [α][γ]ϕ.

These axioms together reduce PDL formulas without ∗ to formulas of multi-modal logic
(propositional logic extended with simple modalities [a] and 〈a〉).

Example 6.36 We show how this reduction works for the formula [(a; b) ∪ (?ϕ; c)]ψ:

[(a; b) ∪ (?ϕ; c)]ψ ↔ (choice) [a; b]ψ ∧ [?ϕ; c]ψ

↔ (sequence) [a][b]ψ ∧ [?ϕ][c]ψ

↔ (test) [a][b]ψ ∧ (ϕ→ [c]ψ).

For the ∗ operation there are two axioms:

(mix) ` [α∗]ϕ↔ ϕ ∧ [α][α∗]ϕ

(induction) ` (ϕ ∧ [α∗](ϕ→ [α]ϕ))→ [α∗]ϕ

The mix axiom expresses the fact that α∗ is a reflexive and transitive relation containing
α, and the axiom of induction captures the fact that α∗ is the least reflexive and transitive
relation containing α.

As was mentioned before, all axioms have dual forms in terms of 〈α〉, derivable by propo-
sitional reasoning. For example, the dual form of the test axiom reads

` 〈?ϕ1〉ϕ2 ↔ (ϕ1 ∧ ϕ2).

The dual form of the induction axiom reads

` 〈α∗〉ϕ→ ϕ ∨ 〈α∗〉(¬ϕ ∨ 〈α〉ϕ).

6.8. AXIOMATISATION 6-29

Exercise 6.37 Give the dual form of the mix axiom.

We will now show that in the presence of the other axioms, the induction axiom is equiv-
alent to the so-called loop invariance rule:

ϕ→ [α]ϕ

ϕ→ [α∗]ϕ

Here is the theorem:

Theorem 6.38 In PDL without the induction axiom, the induction axiom and the loop
invariance rule are interderivable.

Proof. For deriving the loop invariance rule from the induction axiom, assume the
induction axiom. Suppose

` ϕ→ [α]ϕ.

Then by modal generalisation:

` [α∗](ϕ→ [α]ϕ).

By propositional reasoning we get from this:

` ϕ→ (ϕ ∧ [α∗](ϕ→ [α]ϕ)).

From this by the induction axiom and propositional reasoning:

` ϕ→ [α∗]ϕ.

Now assume the loop invariance rule. We have to establish the induction axiom. By the
mix axiom and propositional reasoning:

` (ϕ ∧ [α∗](ϕ→ [α]ϕ))→ [α]ϕ.

Again from the mix axiom and propositional reasoning:

` (ϕ ∧ [α∗](ϕ→ [α]ϕ))→ [α][α∗](ϕ→ [α]ϕ).

From the two above, with propositional reasoning using (***):

` (ϕ ∧ [α∗](ϕ→ [α]ϕ))→ [α](ϕ ∧ [α∗](ϕ→ [α]ϕ)).

Applying the loop invariance rule to this yields:

` (ϕ ∧ [α∗](ϕ→ [α]ϕ))→ [α∗](ϕ ∧ [α∗](ϕ→ [α]ϕ)).

From this we get the induction axiom by propositional reasoning:

` (ϕ ∧ [α∗](ϕ→ [α]ϕ))→ [α∗]ϕ.

This ends the proof. 2

6-30 CHAPTER 6. LOGIC AND ACTION

Axioms for Converse Suitable axioms to enforce that ǎ behaves as the converse of a
are the following:

` ϕ → [a]〈ǎ 〉ϕ
` ϕ → [ǎ]〈a〉ϕ

Exercise 6.39 Show that the axioms for converse are sound, by showing that they hold in any
state in any LTS.

6.9 Expressive power: defining programming constructs

The language of PDL is powerful enough to express conditional statements, fixed loop
statements, and condition-controlled loop statements as PDL programs. More precisely,
the conditional statement

if ϕ then α1 else α2

can be viewed as an abbreviation of the following PDL program:

(?ϕ;α1) ∪ (?¬ϕ;α2).

The fixed loop statement
do n times α

can be viewed as an abbreviation of

α; · · · ;α︸ ︷︷ ︸
n times

The condition-controlled loop statement

while ϕ do α

can be viewed as an abbreviation of

(?ϕ;α)∗; ?¬ϕ.

This loop construction expressed in terms of reflexive transitive closure works for finite
repetitions only, for note that the interpretation of “ while > do α” in any model is the
empty relation. Successful execution of every program we are considering here involves
termination of the program.

The condition controlled loop statement

repeat α until ϕ

can be viewed as an abbreviation of

α; (?¬ϕ;α)∗; ?ϕ.

6.10. OUTLOOK — PROGRAMS AND COMPUTATION 6-31

Note how these definitions make the difference clear between the while and repeat state-
ments. A repeat statement always executes an action at least once, and next keeps on
performing the action until the stop condition holds. A while statement checks a continue
condition and keeps on performing an action until that condition does not hold anymore.
If while ϕ do α gets executed, it may be that the α action does not even get executed once.
This will happen if ϕ is false in the start state.

In imperative programming, we also have the skip program (the program that does noth-
ing) and the abort program (the program that always fails): skip can be defined as ?>
(this is a test that always succeeds) and abort as ⊥ (this is a test that always fails).

Taking stock, we see that with the PDL action operations we can define the whole reper-
toire of imperative programming constructs: inside of PDL there is a full fledged impera-
tive programming language.

Moreover, given a PDL program α, the program modalities 〈α〉ϕ and [α]ϕ can be used to
describe so-called postconditions of execution for program α. The first of these expresses
that α has a successful exection that ends in an ϕ state; the second one expresses that
every successful execution of α ends in a ϕ state. We will say more about the use of this
in Section 6.10 below.

6.10 Outlook — Programs and Computation

If one wishes to interpret PDL as a logic of computation, then a natural choice for inter-
preting the basic actions statements is as register assignment statements. If we do this,
then we effectively turn the action statement part of PDL into a very expressive program-
ming language.

Let v range over a set of registers or memory locations V . A V -memory is a set of storage
locations for integer numbers, each labelled by a member of V . Let V = {v1, . . . , vn}.
Then a V -memory can be pictured like this:

· ·
v1 v2 v3 v4 v5 v6 v7

A V -state s is a function V → Z. We can think of a V -state as a V -memory together with
its contents. In a picture:

2 −3 334 0 2 1 102 · · ·
v1 v2 v3 v4 v5 v6 v7

If s is a V -state, s(v) gives the contents of register v in that state. So if s is the state above,
then s(v2) = −3.

6-32 CHAPTER 6. LOGIC AND ACTION

Let i range over integer names, such as 0, −234 or 53635 and let v range over V . Then
the following defines arithmetical expressions:

a ::= i | v | a1 + a2 | a1 ∗ a2 | a1 − a2.

It is clear that we can find out the value [[a]]s of each arithmetical expression in a given
V -state s.

Exercise 6.40 Provide the formal details, by giving a recursive definition of [[a]]s.

Next, assume that basic propositions have the form a1 ≤ a2, and that basic action state-
ments have the form v := a. This gives us a programming language for computing with
integers as action statement language and a formula language that allows us to express
properties of programs.

Determinism To say that program α is deterministic is to say that if α executes suc-
cessfully, then the end state is uniquely determined by the initial state. In terms of PDL
formulas, the following has to hold for every ϕ:

〈α〉ϕ→ [α]ϕ.

Clearly, the basic programming actions v := a are deterministic.

Termination To say that program α terminates (or: halts) in a given initial state is to
say that there is a successful execution of α from the current state. To say that α always
terminates is to say that α has a successful execution from any initial state. Here is a PDL
version:

〈α〉>.

Clearly, the basic programming actions v := a always terminate.

Non-termination of programs comes in with loop constructs. Here is an example of a
program that never terminates:

while > do v := v + 1.

One step through the loop increments the value of register v by 1. Since the loop condition
will remain true, this will go on forever.

In fact, many more properties beside determinism and termination can be expressed, and
in a very systematic way. We will give some examples of the style of reasoning involved.

Hoare Correctness Reasoning Consider the following problem concerning the out-
come of a pebble drawing action.

6.10. OUTLOOK — PROGRAMS AND COMPUTATION 6-33

A vase contains 35 white pebbles and 35 black pebbles. Proceed as follows
to draw pebbles from the vase, as long as this is possible. Every round, draw
two pebbles from the vase. If they have the same colour, then put a black
pebble into the vase (you may assume that there are enough additional black
pebbles outside of the vase). If they have different colours, then put the white
pebble back. In every round one pebble is removed from the vase, so after 69
rounds there is a single pebble left. What is the colour of this pebble?

It may seem that the problem does not provide enough information for a definite answer,
but in fact it does. The key to the solution is to discover an appropriate loop invariant: a
property that is initially true, and that does not change during the procedure.

Exercise 6.41 Consider the property: ‘the number of white pebbles is odd’. Obviously, this is
initially true. Show that the property is a loop invariant of the pebble drawing procedure. What
follows about the colour of the last pebble?

It is possible to formalize this kind of reasoning about programs. This formalization is
called Hoare logic. One of the seminal papers in computer science is Hoare’s [Hoa69].
where the following notation is introduced for specifying what a computer program writ-
ten in an imperative language (like C or Java) does:

{P} C {Q}.

Here C is a program from a formally defined programming language for imperative pro-
gramming, and P and Q are conditions on the programming variables used in C.

Statement {P} C {Q} is true if whenever C is executed in a state satisfying P and if the
execution of C terminates, then the state in which execution of C terminates satisfies Q.
The ‘Hoare-triple’ {P} C {Q} is called a partial correctness specification; P is called
its precondition and Q its postcondition. Hoare logic, as the logic of reasoning with such
correctness specifications is called, is the precursor of all the dynamic logics known today.

Hoare correctness assertions are expressible in PDL, as follows. If ϕ, ψ are PDL formulas
and α is a PDL program, then

{ϕ} α {ψ}

translates into
ϕ→ [α]ψ.

Clearly, {ϕ} α {ψ} holds in a state in a model iff ϕ → [α]ψ is true in that state in that
model.

The Hoare inference rules can now be derived in PDL. As an example we derive the rule
for guarded iteration:

{ϕ ∧ ψ} α {ψ}
{ψ} while ϕ do α {¬ϕ ∧ ψ}

6-34 CHAPTER 6. LOGIC AND ACTION

First an explanation of the rule. The correctness of while statements is established by
finding a loop invariant. Consider the following C function:

int square (int n)
{

int x = 0;
int k = 0;
while (k < n) {

x = x + 2*k + 1;
k = k + 1;

}
return x;

}

How can we see that this program correctly computes squares? By establishing a loop
invariant:

{x = k2} x = x + 2*k + 1; k = k + 1; {x = k2}.

What this says is: if the state before execution of the program is such that x = k2 holds,
then in the new state, after execution of the program, with the new values of the registers
x and k, the relation x = k2 still holds. From this we get, with the Hoare rule for while:

{x = k2}
while (k < n) { x = x + 2*k + 1; k = k + 1; }
{x = k2 ∧ k = n}

Combining this with the initialisation:

{>}
int x = 0 ; int k = 0;
{x = k2}
while (k < n) { x = x + 2*k + 1; k = k + 1; }
{x = k2 ∧ k = n}

This establishes that the while loop correctly computes the square of n in x.

So how do we derive the Hoare rule for while in PDL? Let the premise {ϕ∧ψ} α {ψ} be
given, i.e., assume (6.1).

` (ϕ ∧ ψ)→ [α]ψ. (6.1)

We wish to derive the conclusion

` {ψ} while ϕ do α {¬ϕ ∧ ψ},

i.e., we wish to derive (6.2).

` ψ → [(?ϕ;α)∗; ?¬ϕ](¬ϕ ∧ ψ). (6.2)

6.11. OUTLOOK — EQUIVALENCE OF PROGRAMS AND BISIMULATION 6-35

From (6.1) by means of propositional reasoning:

` ψ → (ϕ→ [α]ψ).

From this, by means of the test and sequence axioms:

` ψ → [?ϕ;α]ψ.

Applying the loop invariance rule gives:

` ψ → [(?ϕ;α)∗]ψ.

Since ψ is propositionally equivalent with ¬ϕ→ (¬ϕ ∧ ψ), we get from this by proposi-
tional reasoning:

` ψ → [(?ϕ;α)∗](¬ϕ→ (¬ϕ ∧ ψ)).

The test axiom and the sequencing axiom yield the desired result (6.2).

6.11 Outlook — Equivalence of Programs and Bisimula-
tion

PDL is interpreted in labelled transition systems, and labelled transition systems represent
processes. But the correspondence between labelled transition systems and processes is
not one-to-one.

Example 6.42 The process that produces an infinite number of a transitions and nothing
else can be represented as a labelled transition system in lots of different ways. The
following representations are all equivalent, and all represent that process. We further
assume that some atomic proposition p is true in all states in all structures.

0 : p

⇓

a 1 : p

2 : p

⇓

a

a

3 : p

4 : p

5 : p

⇓

a

a

a

6-36 CHAPTER 6. LOGIC AND ACTION

Each of these three process graphs pictures what is intuitively the following process: that
of repeatedly doing a steps, while remaining in a state satisfying p, with no possibility
of escape. Think of the actions as ticks of clock, and the state as the state of being
imprisoned. The clock ticks on, and you remain in jail forever.

It does not make a difference for what we can observe directly (in the present case: that we
are in a p state) and for what we can do (in the present case: an a action, and nothing else)
whether we are in state 0, 1, 2, 3, 4 or 5. From a local observation and action perspective,
all of these states are equivalent. Below we will make this notion of equivalence precise.
For now, we indicate it with connecting lines, as follows:

0 : p

⇓

a 1 : p

2 : p

⇓

a

a

3 : p

4 : p

5 : p

⇓

a

a

a

To connect the example to PDL: in all states in each process graph the formulas 〈a∗〉p,
〈a; a∗〉p, 〈a; a; a∗〉p, and so on, are all true. Moreover, it will not be possible to find a PDL
formula that sees a difference between the root states of the three process graphs.

We will give a formal definition of this important relation of ‘being equivalent from a
local action perspective’. We call this relation bisimulation, and we say that states that
are in the relation are bisimilar. Common notation for this is the symbol↔. Thus, s↔ t
expresses that there is some relation C which is a bisimulation, such that sCt.

For the picture above we have: 0 ↔ 1, 0 ↔ 2, and also, between the middle and the
right graph: 1 ↔ 3, 1 ↔ 4, 1 ↔ 5, 2 ↔ 3, 2 ↔ 4, 2 ↔ 5. The composition of
two bisimulations is again a bisimulation, and we get from the above that we also have:
0↔ 3, 0↔ 4 and 0↔ 5.

We can also have bisimilarity within a single graph: 1 ↔ 2, and 3 ↔ 4, 3 ↔ 5, 4 ↔ 5.
Note that every node is bisimilar with itself.

Example 6.43 For another example, consider the following picture. Atom p is false in
states 0, 2, and 4, and true in states 1, 3 and 5.

6.11. OUTLOOK — EQUIVALENCE OF PROGRAMS AND BISIMULATION 6-37

0 : p

1 : p

⇓

a

b

2 : p

3 : p 4 : p

5 : p

⇓

b a

a

b

In the labelled transition structures of the picture, we have that 0 ↔ 2, and that 0 ↔ 4;
and 1↔ 3 and 1↔ 5. In a picture:

0 : p

1 : p

⇓

a

b

2 : p

3 : p 4 : p

5 : p

⇓

b a

a

b

The notion of bisimulation is intended to capture such process equivalences.

Definition 6.44 (Bisimulation) A bisimulation C between LTSs M and N is a relation
on SM × SN such that if sCt then the following hold:

Invariance VM(s) = VN(t) (the two states have the same valuation),

Zig if for some s′ ∈ SM s
a→ s′ ∈ RM then there is a t′ ∈ SN with t a→ t′ ∈ RN and

s′Ct′.

Zag same requirement in the other direction: if for some t′ ∈ SN t
a→ t′ ∈ RN then there

is an s′ ∈ SM with s a→ s′ ∈ RM and s′Ct′.

6-38 CHAPTER 6. LOGIC AND ACTION

The notation M, s ↔ N, t indicates that there is a bisimulation C that connects s and t.
In such a case one says that s and t are bisimilar.

LetM , N be a pair of models and let C ⊆ SM×SN . Here is an easy check to see whether
C is a bisimulation. For convenience we assume that each model has just a single binary
relation (indicated as RM and RN). Checking the invariance condition is obvious. To
check the zig condition, check whether

Cˇ◦RM ⊆ RN ◦ C .̌

To check the zag condition, check whether

C ◦RN ⊆ RM ◦ C.

Example 6.45 (Continued from Example 6.43) To see how this works, consider the two
models of Example 6.43. Let C be given by

{(0, 2), (0, 4), (1, 3), (1, 5)}.

Then the invariance condition holds, for any two states that are C-connected agree in the
valuation for p.

Furthermore, Cˇ◦ RM,a = {(0, 0)} and RN,a ◦ Cˇ = {(0, 0)}, so the zig condition holds
for the a labels. Cˇ◦RM,b = {(0, 1)}, and RN,b ◦Cˇ = {(0, 1)}, so the zig condition also
holds for the b labels.

Finally, C ◦ RN,a = {(2, 4), (4, 4)} and RM,a ◦ C = {(2, 4), (4, 4)}, so the zag condition
holds for the a labels. C ◦RN,b = {(0, 3), (0, 5)}, and RM,b ◦ C = {(0, 3), (0, 5)}, so the
zag condition also holds for the b labels.

This shows that C is a bisimulation.

Exercise 6.46 Have another look at Exercise 6.23. Explain why it is impossible to find a PDL
formula that is true at the root of one of the graphs and false at the root of the other graph.

Bisimulation is intimately connected to modal logic and to PDL. Modal logic is a sublogic
of PDL. It is given by restricting the set of programs to atomic programs.

ϕ ::= > | p | ¬ϕ | ϕ1 ∨ ϕ2 | 〈a〉ϕ

Modal formulas can be used to define global properties of LTSs, as follows. Any modal
formula ϕ can be viewed as a function that maps an LTS M to a subset of SM , namely the
set of those states where ϕ is true. Call this set ϕM . A global property ϕ is invariant for
bisimulation if whenever C is a bisimulation between M and N with sCt, then s ∈ ϕM
iff t ∈ ϕN .

The notion of invariance for bisimulation generalises the invariance condition of bisimu-
lations.

6.11. OUTLOOK — EQUIVALENCE OF PROGRAMS AND BISIMULATION 6-39

Exercise 6.47 Show that all modal formulas are invariant for bisimulation: Ifϕ is a modal formula
that is true of a state s, and s is bisimilar to t, then ϕ is true of t as well. (Hint: use induction on
the structure of ϕ.)

Bisimulations are also intimately connected to PDL. Any PDL program α can be viewed
as a global relation on LTSs, for α can be viewed as a function that maps an LTS M to a
subset of SM × SM , namely, the interpretation of α in M . Call this interpretation αM . A
global relation α is safe for bisimulation if whenever C is a bisimulation between M and
N with sCt, then:

Zig: if sαMs′ for some s′ ∈ SM then there is a t′ ∈ SN with tαN t′ and s′Ct′,

Zag: vice versa: if tαN t′ for some t′ ∈ SN then there is an s′ ∈ SM with sαMs′ and
s′Ct′.

The notion of safety for bisimulation generalises the zig and zag conditions of bisimula-
tions.

Exercise 6.48 A modal action is a PDL program (action statement) that does not contain ∗. Use
induction on the structure of α to show that all modal actions α are safe for bisimulation.

Summary of Things You Have Learnt in This Chapter You have learnt how to look
at action in a general way, and how to apply a general formal perspective to the analysis
of action. You know what labelled transition systems (or: process graphs) are, and you
are able to evaluate PDL formulas in states of LTSs. You understand how key program-
ming concepts such as test, composition, choice, repetition, converse are handled in PDL,
and how the familiar constructs ‘skip’,‘if-then-else’, ‘while-do’, and ‘repeat-until’ can be
expressed in terms of the PDL operations. You are able to check if a given program can
be executed on a simple labelled transition system. Finally, you have an intuitive grasp
of the notion of bisimulation, and you are able to check whether two states in a single
process graph or in different process graphs are bisimilar.

Further Reading An influential philosophy of action is sketched in [Dav67]. A clas-
sical logic of actions is PDL or propositional dynamic logic [Pra78, Pra80, KP81]. A
textbook treatment of dynamic logic is presented in [HKT00].

Precise descriptions of how to perform given tasks are called algorithms. The logic of
actions is closely connected to the theory of algorithm design. See [DH04]. Connections
between logic and (functional) programming are treated in [DvE04].

Social actions are the topic of [EV09].

6-40 CHAPTER 6. LOGIC AND ACTION

Chapter 7

Logic, Games and Interaction

Overview When we bring the logical systems for information and for action from the
preceding two chapters together, we get to a ubiquitous phenomenon that has a more “so-
cial character”: processes of interaction, where different agents respond to each other.
Some people think that logic is only about lonely thinkers on their own, but most ratio-
nal activities involve many agents: think of a case in court, or a process of inquiry in a
scientific research group.

This chapter will not present a new logical system, but will demonstrate the fruitfulness
of looking at logic from the viewpoint of interaction. We look at argumentation as a
game. We give an interactive account of evaluation of assertions in models. We will
explain a fundamental result about finite zero-sum two-player games, and we will show
you how to apply it. We introduce sabotage games and model comparison games, we
explain backward induction and the notion of strategic equilibrium. This brings us into
the realm of game theory proper, where we introduce and discuss the basic notions and
point out connections with logic.

7.1 Logic meets Games

In many human core activities: conversation, argumentation, but also games that we play
in general, social interaction is the heart of the matter, and people often follow rules for
their responses over time, called strategies. These processes are subtle. In particular, in
games, an activity we are all familiar with, strategies are chosen so as to best serve certain
goals that the players have, depending on their preferences between different outcomes of
the game. Cognitive scientists have argued that what makes us humans so special in the
biological world is in fact this social intelligence.

7-1

7-2 CHAPTER 7. LOGIC, GAMES AND INTERACTION

Games fit naturally with the logics developed in this course. Contacts between logic and
games go back to Antiquity, since logic arose in a context of argumentation, where valid
inferences correspond to successful moves that participants can safely make. We will
explain this connection a bit further in what follows, but just think of this. Argumentation
is a sort of game, where you have to respond to others following certain rules, where
timing of what you bring up matters, and where you can win or lose, depending on the
quality of your strategies (and the sensibility of your claims). And here is an attractive
idea that has recurred in the history of logic: players who stick to defending logically
valid claims have a “winning strategy”, a rule that guarantees success in winning debates.

Example 7.1 (Argumentation as a game) Here is an illustration making this a bit more
precise. Consider this useful inference that you have encountered many times in Chapter
2:

from premises ¬ϕ, ϕ ∨ ψ to conclusion ψ.

Here is how we can see this function in an argumentation game.

A Proponent (player P) defends claim ψ against an Opponent (O) who has committed to
the premises ¬ϕ, ϕ ∨ ψ. The procedure is one where each player speaks in turn. We
record some moves:

1 O starts by challenging P to produce a defense of ψ.

7.1. LOGIC MEETS GAMES 7-3

2 P now presses O on one of his commitments. ϕ ∨ ψ, demanding a choice.

3 O must respond to this, having nothing else to say. There are two options here, which
we list separately:

3’ O commits to ϕ.

4’ P now points at O’s commitment to ¬ϕ, and wins because of O’s self-contradiction.

3” O commits to ψ.

4” Now P uses this concession to make his own defense to 1. O has nothing further to
say, and loses.

You see clearly how logical steps become moves in an argumentation scenario.

But argumentation is only one example of logic meeting games. Nowadays, there are
many precise “logic games” for such tasks as evaluation of formulas in models, comparing
models for similarity, finding proofs, and many other things of interest. We will discuss a
few later, giving you an impression of what might be called the game of logic.

But there is more to the interface of logic and games. As we said already, interaction be-
tween many agents also involves their preferences, goals, and strategic behaviour where
these are as important as the pure information that they have, or obtain. Such richer
games have typically been studied, not in logic, but in the field of game theory which
studies games of any sort: from recreational games to economic behaviour and warfare.
Now, one striking recent development is the emergence of connections between logic and
game theory, where logics are used to analyze the structure of games, and the reasoning
performed by players as they try to do the best they can. The resulting logics of games
are a natural continuation of the epistemic and dynamic logics that you have seen in the
preceding chapters. We will also give you a brief glimpse of this modern link. Actually,
this new interface developing today is not just an affair with two partners. It also in-
volves computer science (the area of “agency” which studies complex computer systems
plus their users) and philosophy, especially epistemology (the theory of knowledge) and
philosophy of action. We will say something about these contacts in the Outlooks at the
end.

This chapter will not gang up on you with one more core system that you must learn to
work with, the way we have done in previous chapters. Its main aim is to give you an
impression of how many earlier logical themes meet naturally in the arena of games, as a
sort of combined finale. We start with a series of logical games, that should throw some
new light on the logical systems that you have already learnt in this course. Following
that, we discuss general games, and what logic has to say about them. All this is meant
as a first introduction only. If you want to learn more about these interfaces, some very
recent, you should go to a advanced course, or the specialized literature of today.

7-4 CHAPTER 7. LOGIC, GAMES AND INTERACTION

7.2 Evaluation of Assertions as a Logical Game

Our first example of a logical game is not argumentation, but something even simpler,
the semantic notion of truth and falsity for formulas in models, as we have seen it in all
our chapters, from propositional and predicate logic to epistemic and dynamic logic. Un-
derstanding complex logical expressions may itself be viewed as a game. A historical
example is a famous explanation by Leibniz of the basic universal/existential quantifier
combination that you have studied in Chapter 4. He did this in terms of two mathemati-
cians discussing a logical formula of the form ∀x∃yϕ(x, y). One of the mathematicians
says to the other: if you challenge me with an x I will take on your challenge by giving
you an y such that ϕ holds of x and y.

Here is a concrete example: the definition of continuity by Karl Weierstrass (1815–1897):

∀x∀ε > 0∃δ > 0∀y(|x− y| < δ → |f(x)− f(y)| < ε).

This formula says something rather complicated about a function f , namely that f is
continuous at every point x. The meaning can be unravelled by giving it the form of a
dialogue.

Leibniz thought of a mathematician playing the universal quantifier as issuing a “chal-
lenge”: any object for x. The other player, for the existential quantifier, then must come
with an appropriate response, choosing some object for y that makes the assertion ϕ(x, y)
true. The following game is a generalization of this idea.

Remark on naming Logical games often have two players with opposing roles. There
are many names for them: Players 1 and 2, Abelard and Eloise, Adam and Eve, ∀ and ∃,
Spoiler and Duplicator, Opponent and Proponent, Falsifier and Verifier. In this chapter,
we will use a selection from these, or we use the neutral I and II.

For a start, recall the basic semantic notion of predicate logic in Chapter 4, truth of a
formula ϕ in a modelM under an assignment s of objects to variables:

M, s |= ϕ

Now, stepwise evaluation of first-order assertions can be understood dynamically as a
game of evaluation for two players. Verifier V claims that ϕ is true in the settingM, s,
Falsifier F that it is false.

Definition 7.2 (Evaluation games) The natural moves of defense and attack in the first-
order evaluation game will be indicated henceforth as

game(ϕ,M, s)

The moves of evaluation games follow the inductive construction of formulas. They in-
volve some typical actions that occur in games, such as choice, switch, and continuation,
coming in dual pairs with both players V (Verifier) and F (Falsifier) allowed the initiative
once:

7.2. EVALUATION OF ASSERTIONS AS A LOGICAL GAME 7-5

Atoms Pd, Rde, . . .
V wins if the atom is true, F if it is false

Disjunction ϕ1 ∨ ϕ2:
V chooses which disjunct to play

Conjunction ϕ1 ∧ ϕ2:
F chooses which conjunct to play

Negation ¬ϕ:
Role switch between the players, play continues with respect to ϕ.

Next, the quantifiers make players look insideM’s domain of objects, and pick objects:

Existential quantifiers ∃xϕ(x):
V picks an object d, and then play continues with respect to ϕ(d).

Universal quantifiers ∀xϕ(x):
The same, but now for F.

The game ends at atomic formulas: Verifier wins if it is true, Falsifier wins if it is false.

The schedule of the game is determined by the form of the statement ϕ. To see this in a
very simple case, consider the following example.

Example 7.3 (Evaluation Game With Two Objects) Let M be a model with two ob-
jects:

s t

Here is the complete game for the first-order formula ∀x∃yx 6= y as a tree of moves, with
scheduling from top to bottom (note that x := s is shorthand for the action of picking
object s for x):

F

V V

lose V win V win V lose V

x := s x := t

y := s y := t y := s y := t

7-6 CHAPTER 7. LOGIC, GAMES AND INTERACTION

Falsifier starts, Verifier must respond. There are four possible plays, with two wins for
each player. But Verifier is the player with a winning strategy, in an obvious sense: she
has a rule for playing that will make her win no matter what Falsifier does: “choose the
other object”. We can indicate this by high-lighting her recommended moves in bold-face:

F

V V

lose V win V win V lose V

x := s x := t

y := s y := t y := s y := t

Evaluation games for complex formulas in richer models can be more challenging.Here
is an example going back to the graphs used in Chapters 3, 4 and 5.

Example 7.4 (Find non-communicators!) Consider the following communication net-
work with arrows for directed links, and with all reflexive ’self-loops’ present but sup-
pressed for convenience in the drawing:

1 2

3 4

In this setting, the predicate-logical formula

∀x∀y(Rxy ∨ ∃z(Rxz ∧Rzy))

claims that every two nodes in this network can communicate in at most two steps. Here
is a possible run of the corresponding evaluation game:

F picks 2, game continues for ∀y(R2y ∨ ∃z(R2z ∧Rzy))

F picks 1, game continues for (R21 ∨ ∃z(R2z ∧Rz1))

V chooses ∃z(R2z ∧Rz1)

V picks 4, game continues for (R24 ∧R41)

7.2. EVALUATION OF ASSERTIONS AS A LOGICAL GAME 7-7

F chooses R41.

test: V wins.

In this run, Falsifier started off with a threat by picking object 2, but then became generous
towards Verifier, picking object 1. Verifier accepted the present by choosing the true right
conjunct, but then tripped up by picking the wrong witness 4 instead of 3. But once
again, Falsifier did not exploit this, by choosing the true right-hand conjunct. Obviously,
however, Falsifier has a winning strategy in this game, exploiting the ‘counter-example’
of object 2, which cannot reach 1 in ≤ 2 steps. He even has more than one such strategy,
as x = 2, y = 4 would also serve as a rule that always makes him win.

Exercise 7.5 Every finite network in which distinct points always have at least one directed link
contains a ‘Great Communicator’: an object which can reach every other node in at most 2 steps.
Prove this, and describe the general winning strategy for Verifier.

Truth and Verifier’s winning strategies In our first example, participants were not
evenly matched. Player V can always win: after all, she is defending the truth of the
matter. More precisely, in the above terms, she has a winning strategy. As we said, such
a strategy is a map from V’s turns to her moves following which guarantees, against any
counterplay by F, that the game will end in outcomes that are won for V. By contrast, F
has no winning strategy, as this would contradict V’s having one. (Playing two winning
strategies against each other yields a contradiction.) Neither does have F the opposite
power of a ‘losing strategy’: he cannot force V to win. Thus, players’ powers of control-
ling outcomes may be quite different. Here is the fundamental connection between truth
and games for evaluation games:

Lemma 7.6 (Success Lemma) The following are equivalent for allM, s, and first-order
ϕ:

(1) M, s |= ϕ

(2) V has a winning strategy in game(ϕ,M, s).

A proof for this equivalence, while not hard at all, is beyond the horizon of this chapter.

Exercise 7.7 Prove the Success Lemma by induction on the construction of predicate-logical for-
mulas. Hint: you will find it helpful to show two things simultaneously: (a) If a formula ϕ is true
in (M, s), then Verifier has a winning strategy, (b) If a formula ϕ is false in (M, s), then Falsifier
has a winning strategy.

Exercise 7.8 The above definition of evaluation games can be rephrased as follows. There are
two kinds of atomic games: (a) testing atomic formulas for truth or falsity, but also an operation
of (b) picking some object as a value for a variable. Complex games are then constructed out

7-8 CHAPTER 7. LOGIC, GAMES AND INTERACTION

of these by means of the following operations: (i) choice between two games, (ii) role switch
between the players of the game, and (iii) “sequential composition”: first playing one game, and
then another. Show that all evaluation games for predicate logical formulas can be defined in this
manner. Conversely, can you give a game of this more abstract sort that does not correspond to a
predicate-logical formula?

7.3 Zermelo’s Theorem and Winning Strategies

Logic games involve broader game-theoretical features. Here is a striking one. Our eval-
uation games have a simple, but striking feature:

Either Verifier or Falsifier must have a winning strategy!

The reason is simply the logical law of Excluded Middle. In any semantic model, either
the given formula ϕ is true, or its negation is true. By the Truth Lemma then, either V
has a winning strategy in the game for ϕ, or V has a winning strategy in the game for
¬ϕ: i.e.,after a role switch, a winning strategy for F in the game for ϕ. Two-player games
in which some player has a winning strategy are called determined. The general game-
theoretic background of our observation is due to the German set theorist Ernst Zermelo,
though it was rediscovered independently by Max Euwe, the Dutch world-champion in
Chess (1935–1937).

Ernst Zermelo Max Euwe

We state it here for two-person “zero-sum” games whose players I, II can only win or
lose, and where there is a fixed finite bound on the length of all runs.

Theorem 7.9 All zero-sum two-player games of fixed finite depth are determined.

Proof. Here is a simple algorithm determining the player having the winning strategy
at any given node of a game tree of this finite sort. It works bottom-up through the game
tree. First, colour those end nodes black that are wins for player I, and colour the other
end nodes white, being the wins for II. Then extend this colouring stepwise as follows:

7.3. ZERMELO’S THEOREM AND WINNING STRATEGIES 7-9

If all children of node n have been coloured already, do one of the following:

(1) if player I is to move, and at least one child is black: colour n black; if
all children are white, colour n white;

(2) if player II is to move, and at least one child is white: colour n white; if
all children are black, colour n black.

This procedure eventually colours all nodes black where player I has a winning strategy,
making those where II has a winning strategy white. Here is the reason:

A player has a winning strategy at one of his turns iff he can make a move to
at least one daughter node where he has a winning strategy.

2

Here is the correct colouring for the simple game tree of our first example:

◦F

◦V ◦V

• ◦ ◦ •

x := s x := t

y := s y := t y := s y := t

Exercise 7.10 Give the right colouring for the following game, whose black end nodes are wins
for player I and white end nodes for player II:

II

I II

◦ • • I

• ◦

7-10 CHAPTER 7. LOGIC, GAMES AND INTERACTION

Note how the evaluation games that we defined above satisfy all conditions of Zermelo’s
Theorem: two players, zero-sum, and finite depth. But its range is much broader. Recur-
sive algorithms like this, in much more sophisticated optimized versions, are widely used
in solving real board games, and even general AI search problems.

Example 7.11 Here is part of the game tree for the common game of Noughts and
Crosses, indicating all possible moves from the configuration given at the top. It is easy
to see that the Nought-player O has a winning strategy there by the colouring algorithm:

o · x
o · x
· x o

o x x
o · x
· x o

o x x
o o x
· x o

win O

o x x
o · x
o x o

win O

o · x
o x x
· x o

o o x
o x x
· x o

o o x
o x x
x x o

win X

o · x
o x x
o x o

win O

o · x
o · x
x x o

o o x
o · x
x x o

o o x
o x x
x x o

win X

o · x
o o x
x x o

win O

Exercise 7.12 Compute all the appropriate colours for the players in this game tree according to
the Zermelo algorithm.

Zermelo was mainly concerned with games like chess, which also allow draws. Here the
above method implies that one of the two players has a non-losing strategy. The difference

7.4. SABOTAGE GAMES: FROM SIMPLE ACTIONS TO GAMES 7-11

between theory and practice is shown by the following. A century after the original result,
it is still unknown which player has a non-losing strategy! But for other highly non-trivial
board games, such as Checkers, the Zermelo solution has been found (2007).

Exercise 7.13 Actually, the very proof of Zermelo’s Theorem may be cast as a form of Excluded
Middle ϕ ∨ ¬ϕ. Consider a game with 3 moves, and show how the statement of Determinacy can
be derived using a suitable first-order formula about players and moves.

Not all two-player games of winning and losing are determined. Counter-examples are
games where players need not be able to observe every move made by their opponents, of
infinite games, where runs can go on forever.

Exercise 7.14 Consider an infinite game between two players, where histories may go on forever.
Using the same style of reasoning as for Zermelo’s Theorem, prove the following fact. If player
II has no winning strategy at some stage s of the game, then I has a strategy for achieving a set of
runs from s during all of which II never has a winning strategy for the remaining game from then
on. Explain why this statement is not the same as determinacy for such games.

We hope that we have shown sufficiently how games can be close to the logics that you
have learnt, and that thereby, familiar logical laws may acquire striking game-theoretic
import. There are many further examples of this interplay, but for that, you will have to
go to the literature. For now, we just note that many logical systems have corresponding
evaluation games, that are used both as a technical tool, and as a attractive “dynamic”
perspective on what logical tasks really are.

Exercise 7.15 Define an evaluation game for the epistemic language of Chapter 5. Hint: Positions
of the game will be pointed models (M, s), and the new idea is that modalities move the world s to
an accessible successor t. Now specify winning conditions for Verifier and Falsifier in such a way
that the Truth Lemma stated above holds for this game with respect to the epistemic language.

7.4 Sabotage Games: From Simple Actions to Games

This section is a digression. We give one more example of a logic-related game where
Zermelo’s Theorem plays a role. Our main purpose is to show you how game design is
still going on, and you yourself may want to try your hand at it.

7-12 CHAPTER 7. LOGIC, GAMES AND INTERACTION

The following “sabotage game” was designed, tongue-in-cheek, as a model for railway
travel in The Netherlands in periods of strikes and disruptions. Normally, traveling in-
volves solving a search problem “from A to B” along a sequence of links in some fixed
network. But what if things get out of hand?

Consider a network consisting of nodes representing cities and links representing ways
to travel between them. There are two players: ‘Runner’ and ‘Blocker’. Runner moves
from a given starting node A and tries to reach some specified goal node B along existing
connections. In each round of the game, Blocker first removes one link from the current
network, Runner then moves along one available connection where he is. The game ends
if Runner has reached the goal node (he wins then), or if Runner cannot move any more
(Blocker then wins).

Example 7.16 In the following railway network, each line is a possible connection for
Runner to take:

Haarlem Sloterdijk

Leiden Amsterdam

Runner starts in Haarlem, and wants to reach Amsterdam. Suppose that Blocker first re-
moves the link Haarlem-Sloterdijk. Then Runner can go to Leiden. Now Blocker must re-
move Leiden-Amsterdam, leaving Runner a link from Leiden to Sloterdijk. Now Blocker
is too late: whichever link he cuts between Sloterdijk and Amsterdam, Runner can then
use the remaining one to arrive. Does this mean that Runner has a winning strategy in this
game? The answer is “No”: Blocker has a winning strategy, but it goes as follows.

First cut a link between Sloterdijk and Amsterdam, Then see what Runner does. If he
goes to Sloterdijk, cut the second link, and whatever he does next, cut the link Leiden-
Amsterdam. If Runner goes to Leiden as his first step, cut the Leiden-Amsterdam link

7.5. MODEL COMPARISON AS A LOGIC GAME 7-13

first, then cut the second Sloterdijk-Amsterdam link. Now Amsterdam has become iso-
lated: Runner will never get there.

We have been talking as if the Sabotage Game is determined. And it is, since the condi-
tions of Zermelo’s Theorem apply. There are two players, there is just winning and losing
as outcomes, and moreover, the game cannot last longer than it takes to cut all links in the
given finite graph.

Actually, the Sabotage Game is even closely related to the evaluation games that you
have seen before. You can also see it as an evaluation game for a first-order formula on
the given graph, which is of the form “For every first move by Blocker, there is a move
by Runner in the accessibility relation minus Blockers move such that, for every second
move by Blocker . . . etc.” Thus, again, logic and games remain close.

Exercise 7.17 Suppose we change the preceding game as follows: Blocker want to force Runner
to go to Amsterdam, by making it impossible for him to stay anywhere else, assuming that Runner
has to move as long as he has open links where he is. By the way, this version has been used to
model situations of learning where Teachers are pushing unwilling Students to goal states where
they should be. Who has the winning strategy in this new scenario?

Exercise 7.18 Consider the sabotage game with the following initial configuration:

3 4

1 2

This time, the task for Runner is to start from position 1 and then visit all nodes of the network.
Blocker wins if she can somehow prevent this. Who has the winning strategy? How does it work?

You can view the Sabotage Game as a typical multi-agent game version of a standard
algorithm for graph search. This is just one instance where the computational perspective
of Chapter 6, too, meets with game-theoretic ideas.

7.5 Model Comparison as a Logic Game

Logic games can perform evaluation or argumentation. But they can also be used to
perform other basic tasks that you have not learnt about yet in this course. Let us look at
one of these, the issue of comparing models. One of the main functions of a language is
distinguishing between different situations, represented by models. And one vivid way of

7-14 CHAPTER 7. LOGIC, GAMES AND INTERACTION

measuring the expressive power of a language is through the following game of spotting
differences.

Playing the game Consider any two modelsM, N . Player D (Duplicator) claims that
M, N are similar, while S (Spoiler) maintains that they are different. Players agree on
some finite number k of rounds for the game, ’the severity of the probe’.

Definition 7.19 (Comparison games) A comparison game works as follows, packing
two moves into one round:

S chooses one of the models, and picks an object d in its domain.

D then chooses an object e in the other model, and the pair (d, e) is added to the current
list of matched objects.

At the end of the k rounds, the total object matching obtained is inspected. If this is a
‘partial isomorphism’, D wins; otherwise, S has won the game.

Here, a partial isomorphism is an injective partial function f between models M, N ,
which is an isomorphism between its own domain and range seen as submodels. This
sounds complicated but it is really very easy: a partial isomorphism links finite sets of
objects one-to-one in such a way that all their structure is preserved.

Example 7.20 Let R be the real numbers with the relation ‘less than’, and let Q be the
rational numbers (the set of all numbers that can be written as p/q, where p and q are
integer numbers, with q 6= 0). Both of these sets are ordered by ≤ (‘less than or equal’).
Note that 0 can be written as 0

1
, so 0 is a rational number.

For an injective function f between a finite set of reals and a finite set of rationals ‘to
preserve the structure’ in this case means: x ≤ y iff f(x) ≤ f(y).

The number
√

2 ∈ R is not a fraction. Consider the set of pairs {(0, 0), (
√

2, 1.4142)}.
This is a partial isomorphism, for it preserves the ≤ relation.

Here are some possible runs for models with relations only, as we have often used in
Chapter 4, illustrating players’ strategies. As before, the game character shows in that
players may play badly and lose, but it is their winning strategies that are most important
to us. We look at a first-order language with a binary relation symbol R only, mostly
disregarding identity atoms with = for the sake of illustration.

Example 7.21 (Playing between graphs: Pin versus Dot) We discuss one run and its
implications.

M • •
a b

•
c

N

7.5. MODEL COMPARISON AS A LOGIC GAME 7-15

In the first round, S chooses a inM, and D must choose c in N . If we stopped after one
round, D would win. There is no detectable difference between single objects in these
models. They are all irreflexive, and that’s it. But now take a second round. Let S choose
b inM. Then D must again choose c in N . Now S wins, as the map {(a, c), (b, c)} is not
a partial isomorphism. On the lefthand side, there is an R link between a and b, on the
righthand side there is none between c and c. Clearly, the structure does not match.

Example 7.22 (‘3-Cycle’ vs ‘4-Cycle’) Our next example is a match between a ‘3-Cycle’
and a ‘4-Cycle’:

M

1 2

3

N

i j

kl

We just display a little table of one possible ‘intelligent run’:

Round 1 S chooses 1 inM, D chooses i in N .

Round 2 S chooses 2 inM, D chooses j in N .

Round 3 S chooses 3 inM, D chooses k in N .

S wins, as {(1, i), (2, j), (3, k)} is not a partial isomorphism. But he can do even better:

S has a winning strategy in two rounds, first picking i in N , and then taking
k in the next round. No such pattern occurs inM, so D is bound to lose.

Exercise 7.23 Consider the following variation on the last example.

M

1 2

3

N

i j

kl

Which of the two players has a winning strategy in the partial isomorphism game?

Example 7.24 The final example match is ‘Integers’ Z versus ‘Rationals’ Q. These two
linear orders have obviously different first-order properties: the latter is dense, the former
discrete. Discreteness intuitively means that there are pairs of different numbers with

7-16 CHAPTER 7. LOGIC, GAMES AND INTERACTION

‘nothing in between’. Denseness intuitively means the negation of this: for every pair of
different numbers, there is always a number in between. Here is the formal version of
density:

∀x∀y(x < y → ∃z(x < z ∧ z < y)).

And the formal version of discreteness:

∃n∃m(n < m ∧ ¬∃k(n < k ∧ k < m)).

So this difference between Q and Z can be expressed by means of predicate logical for-
mulas. The only question is how soon this will surface in the game.

By choosing his objects well, D has a winning strategy here for the game over two rounds.
But S can always win the game in three rounds. Here is a typical play:

Round 1 S chooses 0 in Z, D chooses 0 in Q.

Z •
0
· ··· •

0
Q

Round 2 S chooses 1 in Z, D chooses 1
3

in Q.

Z •
0
•
1
··· • •

0 1
3

Q

Round 3 S chooses 1
5

in Q, any response for D is losing.

Z •
0
•
1
··· • •

0 1
3

Q

7.6 Different Formulas in Model Comparison Games

Example 7.24 suggests a connection between strategies in model comparison games and
formulas of predicate logic. In actual play of model comparison games, you will notice
this connection yourself. We discuss it here because it may give you a different perspec-
tive on the predicate logic that you have learnt in Chapter 4. In fact, model comparison
games throw a lot of new light on predicate logic, as we will explain now.

Winning strategies for S are correlated with specific first-order formulas ϕ that bring out
a difference between the models. And this correlation is tight. The quantifier syntax of ϕ
triggers the moves for S.

7.6. DIFFERENT FORMULAS IN MODEL COMPARISON GAMES 7-17

Example 7.25 (Continuation of Example 7.21) Exploiting definable differences: ‘Pin
versus Point’. An obvious difference between the two in first-order logic is

∃x∃yRxy
Two moves were used by S to exploit this, staying inside the model where it holds.

Example 7.26 (Continuation of Example 7.22, ‘3-Cycle versus 4-Cycle’) The first S-
play exploited the formula

∃x∃y∃z(Rxy ∧Ryz ∧Rxz)

which is true only in M, taking three rounds. The second play, which had only two
rounds, used the following first-order formula, which is true only in the model N :

∃x∃y(¬Rxy ∧ ¬Ryx ∧ x 6= y).

Example 7.27 (Continuation of Example 7.24, ‘Integers versus Rationals’) S might use
the definition of density for a binary order that was given above,

∀x∀y(x < y → ∃z(x < z ∧ z < y)),

to distinguishQ from Z. Let us spell this out, to show how the earlier spontaneous play for
this example has an almost algorithmic derivation from a first-order difference formula.
For convenience, we use density in a form with existential quantifiers only. The idea is
for S to maintain a difference between the two models, of stepwise decreasing syntactic
depth. S starts by observing that the negation of density, i.e., the property of discreteness,
is true in Z, but false in Q:

∃x∃y(x < y ∧ ¬∃z(x < z ∧ z < y)). (*)

He then chooses an integer witness d for x, making

∃y(d < y ∧ ¬∃z(d < z ∧ z < y))

true in Z. D can then take any object d′ she likes in Q:

∃y(d′ < y ∧ ¬∃z(d′ < z ∧ z < y))

will always be false for it, by the fact that (*) is false in Q. We have:

Z |= ∃y(d < y ∧ ¬∃z(d < z ∧ z < y)), Q 6|= ∃y(d′ < y ∧ ¬∃z(d′ < z ∧ z < y)).

In the second round, S continues with a witness e for the new outermost quantifier ∃y in
the true existential formula in Z: making (d < e∧¬∃z(d < z∧z < e)) true there. Again,
whatever object e′ D now picks in Q, the formula (d′ < e′ ∧ ¬∃z(d′ < z ∧ z < e′)) is
false there. In the third round, S analyzes the mismatch in truth value. If D kept d′ <′ e
true in Q, then, as ¬∃z(d < z ∧ z < e)) holds in Z, ∃z(d′ < z ∧ z < e′)) holds in Q. S
then switches to Q, chooses a witness for the existential formula, and wins.

Thus, even the model switches for S are encoded in the difference formulas. These are
mandatory whenever there is a switch in type from one outermost quantifier to a lower
one. Thus, you see how the game is tightly correlated with the structure of the logical
language.

7-18 CHAPTER 7. LOGIC, GAMES AND INTERACTION

Adequacy in terms of quantifier depth Our examples may have suggested the follow-
ing correlation to you:

‘winning strategy for S over n rounds’ versus ‘difference formula with n
quantifiers’.

But that is not quite the right measure, if you think of Spoiler’s reasoning in the above
examples. The correct syntactic correlation for the number of rounds needed to win is
syntactic quantifier depth, being the maximum length of a quantifier nesting in a formula.
Here is the result that ties it all together.

Let us write
WIN(D,M,N , k)

for: D has a winning strategy against S in the k-round comparison game
between the modelsM and N .

Comparison games can start from any given ‘handicap’, i.e., an initial matching of objects
in M and N . In particular, if models have distinguished objects named by individual
constants, then these must be matched automatically at the start of the game. In the
proofs to follow, for convenience, we will think of all ‘initial matches’ in the latter way.
Now here is the analogue of the Success Lemma for our earlier evaluation games:

Theorem 7.28 (Adequacy Theorem) For all models M, N , all k ∈ N, the following
two assertions are equivalent:

(1) WIN(D,M,N , k): D has a winning strategy in the k-round game.

(2) M, N agree on all first-order sentences up to quantifier depth k.

Again, a proof is not hard, but it goes beyond this course. If you go through such a proof
(there is of course no harm in trying, it works by induction on the number k), you will find
that the situation is even more interesting. There is an explicit correspondence between

(1) winning strategies for S in the k-round comparison game forM, N ,

(2) first-order sentences ϕ of quantifier depth k withM |= ϕ and N 6|= ϕ.

A similar match exists for Duplicator, whose winning strategies correspond to well-known
mathematical notions of similarity between models, in some cases: “isomorphism”.

7.7. BISIMULATION GAMES 7-19

Determinacy, and further theoretical issues As long as we fix a finite duration k,
Zermelo’s Theorem still applies to model comparison games: either Duplicator or Spoiler
must have a winning strategy. But actually, it is easy to imagine comparison games that
go on forever: in that case, we say that Duplicator wins if she loses at no finite stage of
such an infinite history. (This is a very natural feature game-theoretically, since infinitely
repeated games are central in in “evolutionary games” modeling what happens in large
communities of players over time.) It can be shown that infinite comparison games are
still determined, since their structure is still quite simple. This abstract similarity from a
game-theoretic perspective goes even further. It can be shown that comparison games are
evaluation games at a deeper level, for logical languages that define structural similarities.

7.7 Bisimulation Games

Comparison games do not just apply to predicate logic. They are also widely used for the
logics of information and action that you have seen in Chapters 5 and 6. Here is an im-
portant example, for the notion of bisimulation that was defined in Chapter 6 (Definition
6.44).

A straightforward modification of the above game is by restricted selection of objects,
say, to relational successors of objects already matched. This leads to comparison games
for epistemic and dynamic logic. The definition of bisimulation is repeated here, adapted
to the present context of modelsM, N for multi-modal logic.

Definition 7.29 (Bisimulation) A bisimulation is a binary relation C between states of
modelsM,N with binary transition relationsRa, such that, whenever xCy, then we have
‘atomic harmony’ or ‘invariance’ (x, y satisfy the same proposition letters), plus two-way
zigzag clauses for all relations a:

Invariance x and y verify the same proposition letters,

Zig If xRaz, then there exists u in N with yRau and zCu.

Zag vice versa.

The Zig condition in a picture:

M

z

x
a

N

u

y

a

C

C

7-20 CHAPTER 7. LOGIC, GAMES AND INTERACTION

This definition was already illustrated by some examples in Chapter 6. Here are some
more examples.

Example 7.30 (Bisimulation between process graphs) State 0 in M and state 4 in N
are connected by the bisimulation given by the dotted lines – but no bisimulation includes
a match between world 4 in N and world 6 in K:

M
0

1 2

3

N
4

5

K
6 7

8 9

We recall from Chapter 6 that modal formulas are invariant for bisimulation:

Proposition 7.31 (Invariance Lemma) If C is a bisimulation between two graphs M
and N , and mCn, thenM,m and N , n satisfy the same modal formulas.

The fine-structure of bisimulation suggests a game comparing epistemic or dynamic mod-
els between Duplicator and Spoiler, comparing successive pairs (m,n) in two modelsM,
N :

In each round Spoiler chooses a state x in one model which is a successor
of the current m or n, and Duplicator responds with a matching successor y
in the other model. If x, y differ in their atomic properties, Spoiler wins. If
Duplicator cannot find a matching successor: likewise.

Again one can show that this fits precisely:

(1) Spoiler’s winning strategies in a k-round game between (M, s), (N , t) match the
modal formulas of operator depth k on which s, t disagree.

(2) Duplicator’s winning strategies over an infinite round game between (M, s), (N , t)
match the bisimulations between them linking s to t.

Example 7.32 Spoiler can win the game between the following models from their roots.
He needs two rounds – and different strategies do the job. One stays on the left, exploiting
the difference formula 3a(3b> ∨ 3c>) of depth 2, with three existential modalities.
Another winning strategy switches models, but it needs a smaller formula 2a3b>.

7.8. PREFERENCE, EQUILIBRIUM, AND BACKWARD INDUCTION 7-21

0

1

2 3

a

b c

4

5 6

7 8

a a

b c

In the non-bisimulation pair N , K from above, repeated here, starting from a match be-
tween worlds 1 and 3, Spoiler needs three rounds to win.

N

1

2

K

3 4

5 6

Spoiler forces Duplicator in two rounds into a match where one world has no successor,
while the other does. One winning strategy for this exploits the modal difference formula
332⊥.

Exercise 7.33 Give a winning strategy for Spoiler in the game about the two process graphs in
Exercise 6.22 from Chapter 6.

7.8 Preference, Equilibrium, and Backward Induction

Now we turn to real game theory. The games that we considered so far are trees of
nodes (the stages of the game) and moves, that is, labeled transition relations. Moreover,
the endpoints of the game were marked for winning or losing by the relevant players.
Compare the trees for the game of Noughts and Crosses in Example 7.11. But this is not
enough for real games. What is typical there is that players may have finer preferences
between outcomes, that can lead to much better predictions of what rational players would
achieve.

Definition 7.34 (Extensive Games with Perfect Information) An extensive game with
perfect information consists of

7-22 CHAPTER 7. LOGIC, GAMES AND INTERACTION

(1) a set N of players,

(2) a set H of (finite) sequences of successive actions by players closed under taking
prefixes

(3) a function P mapping each non-terminal history (i.e., one having a proper extension
in H) to the player whose turn it is,

(4) for each player i ∈ N a preference relation ≥i on the set of terminal histories
(histories having no proper extension in H).

Without the preference relation, one has an extensive game form.

Example 7.35 (Donation, Extensive Game)

(1) There are two players I and II.

(2) There are two actions, giving a donation to the other player (d) and failing to do so
(n). Distinguishing between players, these become D, d, N , n (capital letters for
the first player).

The rules of the game are as follows. Each of the two players is given 10 euros.
Each player is informed that a donation of 5 euros to the other player will be dou-
bled. Next, the players are asked in turn whether they want to make the donation or
not.

Assuming I plays first, the terminal histories are Dd, Dn, Nn, Nd. The set H
consists of the terminal histories plus all proper prefixes:

{λ,D,N,Dd,Dn,Nn,Nd}

where λ is the empty list. The turn function P is given by P (λ) = I, P (D) =
II, P (N) = II.

(3) To see what the preferences for I are, note that receiving a donation without giving
one is better than receiving a donation and giving one, which is in turn better than
not receiving a donation and not giving one, while giving a donation while receiving
nothing is worst of all. So we get:

Nd >1 Dd >1 Nn >1 Dn

The preferences for II are:

Dn >2 Dd >2 Nn >2 Nd.

Definition 7.36 (Preferences and Payoff Functions) A payoff function (or: utility func-
tion) for a player i is a function ui from game outcomes (terminal histories) to inte-
gers. A payoff function ui represents the preference ordering ≤i of player i if p ≤i q
iff ui(p) ≤ ui(q), for all game outcomes p, q.

7.8. PREFERENCE, EQUILIBRIUM, AND BACKWARD INDUCTION 7-23

Example 7.37 For I’s preferences in the Donation game, we need a utility function u1
with

u1(Nd) > u1(Dd) > u1(Nn) > u1(Dn).

The most obvious candidate for this is the function that gives the payoff for I in euros:

u1(Nd) = 20, u1(Dd) = 15, u1(Nn) = 10, u1(Dn) = 5.

For II this gives:

u2(Dn) = 20, u2(Dd) = 15, u2(Nn) = 10, u2(Nd) = 5.

Combining these payoff functions, we get:

u(Nd) = (20, 5), u(Dd) = (15, 15), u(Nn) = (10, 10), u(Dn) = (5, 20).

But there are other possible candidates for this. Here is an example (one of many):

u1(Nd) = 3, u1(Dd) = 2, u1(Nn) = 1, u1(Dn) = 0.

Similarly, for u2, we can choose:

u2(Dn) = 3, u2(Dd) = 2, u2(Nn) = 1, u2(Nd) = 0.

Combining these payoff functions, we get:

u(Nd) = (3, 0), u(Dd) = (2, 2), u(Nn) = (1, 1), u(Dn) = (0, 3).

Such a combined payoff function can be used in the game tree for the Donation game, as
follows:

I

II II

(2, 2) (0, 3) (3, 0) (1, 1)

D N

d n d n

The definition of extensive games can easily be generalized to infinite games, where the
action histories need not be finite. If we allow H to contain countably infinite histories,
then we need to impose the extra condition of closure under countable limits. What this
means is that if an infinite sequence of histories h, h′, . . . is present in H where each
history hi extends the previous one, then the infinite history that has each hi as a prefix

7-24 CHAPTER 7. LOGIC, GAMES AND INTERACTION

is also in H . We can generalize still further to infinite games of higher cardinalities.
Mathematicians love to do this, not bothered at all by the fact that this breaks the link to
real-world-games that people can play.

Pictorially, extensive games are finite (or infinite) mathematical trees, whose branches are
the possible runs or histories of the game. You may already have recognized them as
a structure that you have learnt about in Chapter 6: extensive game trees are obviously
models for a dynamic logic with various sorts of labeled actions (the moves), and special
atomic predicates given by a valuation (say, the marking for preference values of players,
or indications whose players turn it is at some intermediate node). We will return to this
“process perspective” on games later, since it is the starting point for their general logical
analysis.

But for now, let us just look a bit closer at what preferences do. We start with a simple
case where preferences may make a Zermelo-style analysis more interesting.

Example 7.38 (Losing with a little twist) Recall our very first example, where we now
indicate players’ evaluation of the outcomes in pairs (I-value, II-value):

I

II II

(1, 0) (0, 1) (0, 1) (1, 0)

L R

l r l r

A Zermelo computation tells us that II has a winning strategy indicated by the black
arrows, and it does not matter what I does in equilibrium.

But now suppose that I has a slight preference between the two sites for his defeat, being
the end nodes with values (0, 1). Say, the one to the left takes place on a boring beach,
where the sea will wash out all traces by tomorrow. But the one to the right is a picturesque
mountain top, and bards might sings ballads about I’s last stand for centuries. The new
preferences might be indicated as follows:

7.8. PREFERENCE, EQUILIBRIUM, AND BACKWARD INDUCTION 7-25

I

II II

(1, 0) (0, 1) (ε, 1) (1, 0)

L R

l r l r

Intuitively, with these preferences, I goes ‘right’ at the start, and then II goes ‘left’.

With preferences present, however, examples can quickly get highly non-trivial:

Example 7.39 (Tiered Voting) Three political parties 1, 2, 3 have the following prefer-
ences concerning issues A, B, C, indicated in order from top to bottom:

1 2 3
A C B
C B A
B A C

Moreover, the following schedule of voting has been agreed upon. First, there will be
a majority vote between A and C, eliminating one of these. The winner will be paired
against B. The game tree for this is as follows, where players move simultaneously casting
a vote. We just record the outcomes, without their vote patterns:

A versus C

A versus B C versus B

A wins B wins C wins B wins

A wins C wins

Here is what will happen if everyone votes according to their true preferences. A will win
against C, after which A will lose against B. But now 1 might reason as follows. “If I
had voted for C against A in the first round (against my real preference), the last round
would have been between B and C, which would have been won by C – which I prefer to
outcome B.” But other players can reason in the same way.

7-26 CHAPTER 7. LOGIC, GAMES AND INTERACTION

What is a stable outcome, representing rational behaviour of people in such a situation?
Well, players cannot do better at pre-final nodes than state their true preferences. Any
deviation will harm their favourite outcome. So players know the outcomes at the middle
nodes of the procedure. Therefore, in the first round, players will vote according to their
true preferences between those outcomes.

Backward Induction This brings us to the key notion of this section: backward in-
duction is a general algorithm for computing a ‘most rational course of action’ by finding
values for each node in the game tree for each player, representing the best outcome value
she can guarantee through best possible further play (as far as within her power). Here is
a formal definition.

Definition 7.40 (Backward Induction Algorithm) Suppose II is to move, and all values
for daughter nodes are known. The II-value is the maximum of all the II-values on the
daughters, the I-value the minimum of the I-values at all II-best daughters. The dual case
for I’s turns is completely analogous.

Backward induction is a useful tool for decision making.

Example 7.41 (Decision Making by Backward Induction) Consider a lady who decides
that she is in need of a husband. She is a high flyer, with no time to spare for hanging
around in bars and discos. So she agrees that a dating agency presents her with three
candidates. She decides beforehand that she will marry one of these three, or no-one at
all. She distinguishes three categories: a guy can be (1) great, (2) halfway decent, or (3)
completely hopeless. She has confidence that the agency will be able to come up with
category (1) and (2) candidates, and she estimates that the two kinds are equally likely.
She puts the value of being married to a great guy at 10 per year, and the value of being
married to a halfway decent guy (snores, drinks too much, but still decent enough to put
the garbage out on Mondays) at 4 per year. The value of being single is 0. Taking a time
horizon of 3 years, and given that the beginning of every year has one candidate in store
for her, what should she do? Clearly, given her utilities, she should grab the first great guy
that comes along. But suppose the agency offers her only a halfway decent guy? Then
what? This decision problem can be pictured as follows:

30 12 20 8 10 4

0

a1 a2

r

a1 a2

r

a1 a2

r

7.8. PREFERENCE, EQUILIBRIUM, AND BACKWARD INDUCTION 7-27

Reasoning backward, she first asks herself what she should do with the third candidate,
supposing she has refused the earlier two. Clearly, given her utilities, she should accept
him no matter what. Accepting a so-so guy would give her 4, and refusing him will give
her 0. Now how about accepting a so-so guy as second candidate? Refusing him will give
on average a payoff of 7, and accepting him gives her twice 4, which is 8. This is better,
so it is rational for her to accept. But for the first candidate she can afford to be picky.
Accepting a so-so guy would give her 12, and refusing him will give her on average 14,
given that she accepts the second candidate no matter what, which she should, for the
reasons we we have just seen.

Example 7.42 (BI Solution to the Donation game) Let’s compute the ‘rational course
of action’ in the Donation game (Example 7.35) by Backward Induction (BI):

I

II II

(2, 2) (0, 3) (3, 0) (1, 1)

D N

d n d n

The II value for D is that of Dd, which is 2, the II value for N is that of Nn, which is 1.
The I value for D is the I value of Dd, which is 2. The I value for N is the I value of Nn,
which is 1. So BI dictates that I plays N , to which II will respond with n.

Backward Induction clearly generalizes the Zermelo algorithm that we have seen before.
Instead of propagating win/lose information up the tree, we now propagate payoffs: from

I

II II

(2, 2) (0, 3) (3, 0) (1, 1)

D N

d n d n

to

7-28 CHAPTER 7. LOGIC, GAMES AND INTERACTION

I

(0, 3) (1, 1)

(2, 2) (0, 3) (3, 0) (1, 1)

D N

d n d n

and next to

(1, 1)

(0, 3) (1, 1)

(2, 2) (0, 3) (3, 0) (1, 1)

D N

d n d n

One can see it as a maximin procedure: players maximize their minimal gain. Again, its
scope goes further than you might think. Algorithms computing numerical values like this
also occur in AI, under the name ‘αβ search’. In that case, the values at nodes indicate
heuristic potentials for finding some desired goal.

Exercise 7.43 Using Backward Induction, compute how the parties should vote in the scenario of
Example 7.39.

Strategies and equilibrium behaviour If you look at arrows moving from nodes to
subsequent nodes where the current player gets her maximum value, Backward Induction
computes a pair of strategies in our earlier sense, one for each player. Why do game
theorists think that Backward Induction computes a “best” or “rational” behaviour in this
manner? This has to do with the fact that these strategies are in equilibrium: no player
has an incentive to deviate. To define this precisely, first note that any strategies σ, τ for
two players determines a unique outcome [σ, τ] of the game, obtained by playing the two

7.8. PREFERENCE, EQUILIBRIUM, AND BACKWARD INDUCTION 7-29

strategies against each other.

John Nash

Definition 7.44 (Nash equilibrium) A pair of strategies σ, τ in a two-player game is a
Nash equilibrium if, for no σ′ 6= σ, [σ′, τ] ≥1 [σ, τ], and similarly for player II with
respect to τ : for no τ ′ 6= τ , [σ, τ ′] ≥2 [σ, τ]. Here [σ, τ] signifies the outcome of the game
when I plays σ and II plays τ . In other words, neither player can improve his outcome by
deviating from his strategy while it is given that the other player sticks to hers.

In our earlier logic games, any pair of a winning strategy plus any strategy for the other
player is a Nash equilibrium. This shows that equilibria of a game need not be unique,
and indeed, there can be one, more, or none at all. Backward Induction at least produces
equilibria of a very special kind: they are “subgame-perfect”. What this says is that the
computed best strategies at nodes remain best when restricted to lower nodes heading
subgames underneath. This property is not guaranteed by Nash equilibrium per se: think
again of my playing badly in a logic game against an opponent playing a winning strategy.
This is not perfect in subgames at lower nodes that are not reached, where I could have
won after all by playing better.

Criticism Despite its appealing features, Backward Induction has also been criticized
for being at odds with intuition in some cases. In the following simple game, Back-
ward Induction computes an equilibrium with outcome (1, 0), making both players hugely
worse off than the outcome (99, 99) that is also a possible outcome of the game:

I

(1, 0) II

(0, 100) (99, 99)

L R

l r

7-30 CHAPTER 7. LOGIC, GAMES AND INTERACTION

This has been a starting point for analyzing the reasoning underlying this “obvious” algo-
rithm in much more detail, and game theorists have found it useful to employ techniques
from logic for this purpose. We will return to this issue later on. The following example
is another case where Backward Induction yields an unintuitive result.

Example 7.45 (Centipede Games) A centipede game is a game where two players take
turns and where each player can decide to opt out or play on. Opting out gives a bet-
ter payoff than the opponent, but playing on raises the stakes: the sum of the payoffs
increases. Here is an example.

I

(1,0)

II

(0,2)

I

(3,1)

II

(2,4)

I

(5,3)

(4,4)R

D

r

d

R

D

r

d

R

D

Analyzing this, one sees that the players together would be best off by staying in the game
until the very end, for then they will each receive 4. But will player I play R in his last
move? Clearly not, for playing D will give a better payoff of 5 rather than 4. So player
II realizes that staying in the game at the pre-final stage, will yield payoff 3. So opting
out at this stage is better for her, so she plays d. Player I is aware of this, and to avoid
this outcome, will play D, with outcome (3, 1). So II realizes that this will be the result
of playing r. She will therefore play d, with result (0, 2). But this is bad for player I, who
will therefore play D on his very first move, and the game ends with outcome (1, 0).

Please note that we have now left the “game of logic” here, that is, the games of winning
and losing that we used for logical tasks. We will now take a look at “logic of games”:
what is there for a logically trained mind to see in them?

7.9. GAME LOGICS 7-31

7.9 Game logics

We have seen that not all is well in finding game ‘solutions’ by the usual methods. To
remedy that, we need to analyze the reasoning of the players more carefully. For that we
introduce game logics.

Logics of game structure and strategies For a start, extensive games are processes in
the same sense as Chapter 6. This means that everything you have learnt there applies at
once.

Describing moves What would a logic for describing moves look like?

Example 7.46 (An extensive game tree) . Consider a game tree for two players I, II
with four possible actions c, d, a, b, and some special property p holding at two of the
four possible end states:

I

II II

p p p p

c d

a b a b

Here is a typical dynamic formula which is true at the root of his model:

[c ∪ d]〈a ∪ b〉p.

Each of the actions c and d leads to a state where either a or b can be executed to get
to a final state where p holds. In our earlier terms, this says that player II has a strategy
ensuring that the outcome of the game satisfies p. Here, p might just be the property that
II wins, in which case the modal formula expresses that II has a winning strategy.

Describing strategies The preceding style of description does not yet define the strate-
gies themselves. But that, too, can be done with the techniques of Chapter 6, namely
programs viewed as defining sets of transitions. The total move relation of a game is
clearly a union of atomic transitions, and strategies are subrelations of the move relation,
namely, transition functions defined on players’ turns. (Arbitrary subrelations would be
more like more loosely specified “plans”.) Thus, on top of the ‘hard-wired’ moves in a

7-32 CHAPTER 7. LOGIC, GAMES AND INTERACTION

game, complex PDL-style relations can define strategies in terms of players options at a
current node (IF THEN ELSE), sequential composition, and even iteration (as in a rule
“always repeat the previous move by the other player until you have won”).

Example 7.47 (Broken Record) As an example, here is a PDL version of the well-known
‘broken record’ strategy: whatever player I says (does), player II keeps repeating her mes-
sage (action) b until I gives up:

(move1; b)∗; ?win2.

Example 7.48 (Match Removal Game) This is played between I and II. The player that
is next to move removes 1, 2 or 3 matches from a pile. The player that can take the last
match(es) has won. If the number of matches on the table is a four-fold, and I is next to
move, the following is a winning strategy for player II:

((one1; three2) ∪ (two1; two2) ∪ (three1; one2))∗; ?stack-empty.

Exercise 7.49 Consider a finite game tree. Using the language of propositional dynamic logic,
define the following assertion about players powers in the game:

σ is a strategy for player i forcing the game, against any play of the others, to pass
only through states satisfying ϕ.

Describing preferences Game trees are not only models for a dynamic logic of moves
and strategies, but also for players preferences. In this course, we have not told you how
to reason about preferences, even though this is an upcoming topic in studies of agency,
since our behaviour is clearly not just driven by pure information, but just as much by
what we want and prefer. Evidently, games involve information, action and preferences
all intertwined. Indeed, a solution procedure like the above Backward Induction really
depends on mixing these notions in a very specific way, that game theorists call “rational-
ity”: players only choose moves whose outcome they consider best for them, given what
they know and believe about the game and the other players.

It would take us too far in this course to analyze Backward Induction in full logical style,
but here is one typical fact about it. Let us add an operator

〈≤i〉ϕ

to our logical language with the following intended meaning:

There is some outcome of the game that player i finds at least as good as the
present stage where the formula ϕ is true.

Then the key fact about the Backward Induction strategy σ, viewed as a program in our
dynamic logic, can be stated as follows in logical terms:

7.10. GAMES WITH IMPERFECT INFORMATION 7-33

Fact 7.50 The backward induction solution of a finite game is the unique binary relation
bi on the game tree satisfying the following modal preference-action law:

[bi∗](end→ ϕ)→ [move]〈bi∗〉(end ∧ 〈≤i〉ϕ)

for all formulas ϕ.

This looks extremely intimidating. But you may find it a useful exercise in reading logical
formulas to see that it essentially says the following:

There is no alternative move to the BI-prescription at the current node all of
whose outcomes would be better than following the BI-solution.

7.10 Games with imperfect information

Logical analysis extends beyond the kinds of games that we have seen in this chapter so
far. For instance, the ideas of Chapter 5 come into play with the extended class of games
with imperfect information: that is, the players need not know exactly where they are in
a game tree. This happens in many settings, for instance, when playing at cards where
many things are not publicly known – and in this sense, our card examples of Chapter 5
were entirely appropriate.

Here we just show how logics of the sort you have studied apply to this broader setting.

Example 7.51 (An extensive game with imperfect information) Consider a game given
earlier, in Example 7.46. But now assume we want to add an extra touch: player II is un-
certain about the first move played by I. (Perhaps, I put it in an envelope, or perhaps this
is a version of the donation game where there is no communication between the partici-
pants). This models a combined dynamic-epistemic language using ideas that you have
seen in Chapters 5 and 6:

I

II II

p p p p

II

c d

a b a b

The modal formula [c ∪ d]〈a ∪ b〉p is still true at the root. But we can make more subtle
assertions now, using the dotted line as an accessibility relation for knowledge. At stage

7-34 CHAPTER 7. LOGIC, GAMES AND INTERACTION

s, a player knows those propositions true throughout the ‘information set’ to which s
belongs. Thus, after I plays move c in the root, in the left middle state, II knows that
playing either a or b will give her p – the disjunction 〈a〉p ∨ 〈b〉p is true at both middle
states:

22(〈a〉p ∨ 〈b〉p).

Nevertheless, there is no specific move of which II knows that it guarantees an outcome
satisfying p – which shows in the leftmost middle state the truth of the formula

¬22〈a〉p ∧ ¬22〈b〉p.

Think of a tragic person who knows the right partner is walking around right in this city,
but does not know of any particular person whether (s)he is that partner.

Information dynamics Our final example is the information dynamics of Chapter 5,
which again mixed information that agents have with changes in that information as events
happen. Games typically have this dynamic flavour. As you play on, you learn more
about what your opponent has done. But also, you can even change the whole game by
exchanging information, as shown in the following scenario.

Example 7.52 (Making a promise) One can sometimes break a bad Backward Induc-
tion solution by changing the game. In our earlier game, the Nash equilibrium (1, 0) can
be avoided by E’s promise that she will not go left. This may be seen as a public an-
nouncement that some histories will not occur (E actually gives up some of her freedom)
and the new equilibrium (99, 99) results, making both players better off:

I

(1, 0) II

(0, 100) (99, 99)

L R

l r

I

(1, 0) II

(99, 99)

L R

Another use of such dynamic actions is Backward Induction itself. We can view this pro-
cedure as a process of ‘internal deliberation’ via repeated announcements of ‘rationality’
that prunes the initial game tree:

Theorem 7.53 The Backward Induction solution for extensive games is obtained through
repeated announcement of the assertion “no player chooses a move all of whose further
histories end worse than all histories after some other available move”.

Instead of giving a proof, we show how the procedure works out for an example.

Example 7.54 (The Centipede Again) Consider the game from Example 7.45 again:

7.10. GAMES WITH IMPERFECT INFORMATION 7-35

I

(1,0)

II

(0,2)

I

(3,1)

II

(2,4)

I

(5,3)

(4,4)R

D

r

d

R

D

r

d

R

D

This has five turns, with I moving first and last. Stage 1 of the announcement procedure:
I announces that he will not play R at the end. This rules out the branch leading to (4, 4):

I

(1,0)

II

(0,2)

I

(3,1)

II

(2,4)

I

(5,3)

R

D

r

d

R

D

r

d D

Next, stage 2. II announces that she will not play r. This rules out the state with payoff
(5, 3).

Stage 3: I announces that he will not play R. This rules out the state with payoff (2, 4).

Stage 4: II announces that she will not play r. This rules out the state with payoff (3, 1).

Stage 5: I announces that he will not play R. This rules out the state with payoff (0, 2).

So I plays D and the game ends with payoff (1, 0).

This scenario, in terms of repeated events of public announcements to the effect “I will
act rationally, i.e., in my own best interest” removes nodes from the tree that are strictly
dominated by siblings as long as this can be done.

Definition 7.55 (Strict Domination) A node n in a game tree is strictly dominated by a
sibling node n′ if the player who is first to move (X in the picture) is better off by playing
n′ than playing n, no matter what the other players do.

X

n n′

Clearly, a rational player should never play a strictly dominated node. Technically, the
iterated announcement procedure for extensive games ends in largest sub-models in which
players have common knowledge of rationality in the above sense. This is one of the
central notions in the foundations of game theory.

7-36 CHAPTER 7. LOGIC, GAMES AND INTERACTION

Other ways of reasoning about games We end with one more issue where logic meets
the foundations of game theory today. Backward Induction is just one scenario for creat-
ing plausibility in a game. To see alternatives, consider what has been called a paradox in
its reasoning. Assuming the above analysis, we expect a player to follow the BI path. So,
if she does not, we must revise our beliefs about her reasoning. But then, why would we
assume at all that she will play BI later on? BI seems to bite itself in the tail. Consider a
concrete example:

Example 7.56 (‘Irrational Behaviour’ of Players) Backward Induction tells us that I
will play L at the start in the following game:

I

(1, 0) II

(0, 5) I

(6, 4) (5, 5)

L R

l r

L R

So, if I plays R instead, what should II conclude? There are many different options, such
as ‘it was just an error, and I will go back to being rational’, ‘I is trying to tell me that he
wants me to go right, and I will surely be rewarded for that’, ‘I is an automaton with a
general rightward tendency’, and so on.

Our logical analysis so far chooses for the interpretation that agents will always play
rationally from the current stage onward. But this can be doubted, and in that case, logical
analysis of games also needs an account of belief revision: the way in which we change
our earlier beliefs about the game, and about the other players, as we proceed.

7.11 Logic and Game Theory

Game theory emerged in the course of the 20th century as the formal study of interactive
decision making. Until recently, this field was perceived as rather far removed from logic.
Key figures in its early development were John von Neumann and Oskar Morgenstern,
who published their influential Theory of games and economic behavior in 1944, starting

7.11. LOGIC AND GAME THEORY 7-37

off a new scientific discipline.

John von Neumann Oskar Morgenstern

This section gives a brief introduction to the game theoretic way of thinking, in order to
identify the many points of connection with logic.

First, here is a key definition that presents a different perspective on the extensive games
we encountered before:

Definition 7.57 (Strategic Games) A strategic game consists of

(1) a finite set N of players,

(2) for each player i ∈ N a non-empty set Ai of actions available to the player,

(3) for each player i ∈ N a preference relation ≥i on A =
∏

j∈N Aj .

The members of A =
∏

j∈N Aj are tuples (a1, . . . , an), where a1 is an action of the first
player, a2 an action of the second player, and so on. In a strategic game, there is no notion
of temporal progression. The strategy of each player is viewed as condensed in a single
action. So in a strategic game we consider the moves of all players simultaneously. The
tuples in A are the possible global outcomes of the game, which can be evaluated by the
players. The preference relation may also be encoded in terms of numerical utilities for
players over outcomes, as explained before.

Many key notions and results in game theory work on strategic games, disregarding indi-
vidual moves. This is the habitat of the matrixes for two-player games which most people
probably associate with game theory.

Example 7.58 (Matching Pennies, Strategic Form) Players I and II both choose whether
to show the head or tail of a coin. If the sides match, I gets 1 euro from II, if the sides are
different, II gets 1 euro from I.

The matrix indicates all actions, possible outcomes, and their numerical utilities with that
of I stated first:

7-38 CHAPTER 7. LOGIC, GAMES AND INTERACTION

h t
H 1,−1 −1, 1
T −1, 1 1,−1

This game may be viewed as an analog of the one in 7.3. There, I (Falsifier) chose one
object out of two, and then II (Verifier) chose one, with equality of the objects chosen
being the criterion for winning or losing. In Matching Pennies, players choose simultane-
ously, or in ignorance of what the other did. This changes their powers considerably. E.g.,
unlike in 7.3, no one has a clear winning strategy here. The game has no Nash equilibrium
in Ht, Hh, Th, Tt. The strategy pair Hh is not Nash, for Ht is better for II. Ht is not
Nash, for Tt is better for I. Th is not Nash, for Hh is better for I, Tt is not Nash, for Th
is better for II.

Still, we can ask ourselves what is the best one can do if one is forced to play the game
of Matching Pennies repeatedly. Clearly, the answer to this is that randomly choosing
between showing heads or showing tails, with equal probability, ensures that neither of
the players will lose money. This motivates the following definition.

Definition 7.59 (Mixed Strategies) A mixed strategy for a player in a strategic game is
a probability distribution over the player’s possible actions.

Example 7.60 (Mixed Strategies for Matching Pennies) The mixed strategies (1
2
, 1
2
) for

both players in the Matching Pennies game form a Nash equilibrium: if one player plays
this strategy, then deviation from the probability distribution (1

2
, 1
2
) for II will make no

difference for the outcome. For let (p, 1 − p) be a probability distribution for II, and as-
sume 1

2
< p ≤ 1. Then the good outcome Th for II will occur with probability 1

2
p, and

the good outcome Ht with probability 1
2
(1 − p). The probability of a good outcome for

II is 1
2
p + 1

2
(1 − p) = 1

2
. In other words, as long as I plays (1

2
, 1
2
), it makes no difference

which mix II plays. This shows that (1
2
, 1
2
) versus (1

2
, 1
2
) is indeed a Nash equilibrium.

Exercise 7.61 Show that no other pair of mixed strategies is a Nash equilibrium for Matching
Pennies. In particular, if one player plays a particular action with probability p > 1

2 , then the other
player can exploit this by playing a pure strategy. But the resulting pair of strategies is not Nash.

Notice that the game of Matching Pennies is zero-sum: one player’s gain is the other
player’s loss. This is not the case in the Donation game, or in the famous Prisoner’s
Dilemma.

The Dilemma of the Prisoners is probably the most famous example of game theory. For
those who have never seen it, here is an informal description. Two players I and II are in
prison, both accused of a serious crime. The prison authorities try to lure each of them
into making a statement against the other. They are each promised a light sentence as a
reward for getting their partner in crime convicted. If the prisoners both keep silent, they
will get off with a light sentence because of lack of evidence. If one of them keeps silent
but the other starts talking, the one who keeps silent is going to serve a considerable time

7.11. LOGIC AND GAME THEORY 7-39

in prison and the other is set free. If both of them talk they will both get a medium term
sentence.

Example 7.62 (Prisoner’s Dilemma, Strategic Form) Here is the Prisoner’s Dilemma
in matrix form:

s b
S 2, 2 0, 3
B 3, 0 1, 1

Note that the payoff function is the same as in the Donation game (Example 7.35) The
difference is that the Prisoner’s Dilemma game is not played sequentially.

Why is this non-zero-sum game an evergreen of game theory? Because it is a top-level
description of the plight of two people, or countries, who can either act trustfully or not,
with the worst outcome that of being a sucker. For an armament race version, read the
two options as ‘arm’ or ‘disarm’.

The pair of strategiesBb is the only Nash equilibrium of the game: if the other one betrays
me, there is nothing better I can do than also betray. For all other strategy pairs, one of
the players is better off by changing his action.

In the Prisoner’s Dilemma, the players have no rational incentive to coordinate their ac-
tions, and they end up in a situation that is worse than what would have resulted from their
collaboration. This notion of being ‘worse of’ is made precise in the following definition.

Definition 7.63 (Pareto optimum) A Pareto optimum of a game is an outcome that can-
not be improved without hurting at least one player.

Example 7.64 (The Prisoner’s Dilemma Again)

s b
S 2, 2 0, 3
B 3, 0 1, 1

The Pareto optima are Ss, Sb, Bs. The Nash equilibrium Bb is not a Pareto optimum.

Example 7.65 (Tragedy of the Commons) This was made famous by Garrett Hardin in
his classic essay, still available on internet, and very much recommended:

www.garretthardinsociety.org/articles/art_tragedy_of_
the_commons.html

Essentially, the Tragedy of the Commons is a multi-agent version of the Prisoner’s Dilemma.

7-40 CHAPTER 7. LOGIC, GAMES AND INTERACTION

The tragedy of the commons develops in this way. Picture a pasture open to
all. It is to be expected that each herdsman will try to keep as many cattle
as possible on the commons. Such an arrangement may work reasonably
satisfactorily for centuries because tribal wars, poaching, and disease keep
the numbers of both man and beast well below the carrying capacity of the
land. Finally, however, comes the day of reckoning, that is, the day when
the long-desired goal of social stability becomes a reality. At this point, the
inherent logic of the commons remorselessly generates tragedy. [Har68]

Bringing more and more goats to the pasture will in the end destroy the commodity for
all. Still, from the perspective of an individual herdsman it is profitable until almost the
very end to bring an extra goat.

The following picture illustrates the dilemma:

value of grazing
an extra goat

Total number of goats.

Or view this as a game of an individual herdsman II against the collective I. Then the
matrix is:

m g
M 2, 2 0, 3
G 3, 0 −1,−1

Each player has a choice between g (adding goats) and m (being moderate). Assuming
that the collective is well-behaved, it pays off to be a free rider. But if everyone acts like
this, system breakdown will result.

Of course, the general import of the matrices of strategic games is not the particular story
per se, but rather their standing proxy for frequent types of social situation.

Example 7.66 (‘Tragedy of the Commons’ Scenario) The Tragedy of the Commons game
describes a general mechanism that is rational for the one and disastrous for the many.
Such mechanisms abound in the world around us:

7.11. LOGIC AND GAME THEORY 7-41

• Citizens of Amsterdam who want cheap parking in the inner city;

• prosperous families wanting to drive bigger and bigger SUVs;

• airport hubs wanting to attract ever more air traffic;

• fishermen roaming the oceans in ever bigger fishing trawlers;

• logging companies cutting down ever more tropical forest;

• developed countries exporting their industrial waste to developing countries;

• US citizens defending the Second Amendment right to keep and bear firearms
(“NRA: The largest civil-rights group ever”).

It should be noted that slight differences in payoff function result in strikingly different
scenarios.

Example 7.67 (Hawk versus Dove) Being aggressive against someone who is passive
is advantageous. Being passive against someone who is also passive is so-so. Being
aggressive against an aggressor can be disastrous. This gives the following matrix for the
‘Hawk’ versus ‘Dove’ game, where two players have the choice between aggressive and
meek behaviour:

h d
H 0, 0 1, 3
D 3, 1 2, 2

This example also occurs frequently in biology. What is the best behaviour for two people
or animals in a single encounter? And in the long run, what will be stable populations of
predators playing Hawk and prey playing Dove?

‘Hawk versus Dove’ has two Nash equilibria, viz. Hd and Dh. In neither situation can
anyone better himself by unilaterally switching strategies, while in the other two, both
players can.

Exercise 7.68 What are pure strategy Nash equilibria for Hawk versus Dove? (Note: ‘pure’
means that actions are either played with probability 1 or with probability 0.)

Example 7.69 (Vos Savant’s Library Game) The following story is from a column by
Marilyn Vos Savant, San Francisco Chronicle, March 2002.

A stranger walks up to you in the library and offers to play a game. You both
show heads or tails. If both show heads, she pays you 1 dollar, if both tails,
then she pays 3 dollars, while you must pay her 2 dollars in the two other
cases. Is this game fair?

7-42 CHAPTER 7. LOGIC, GAMES AND INTERACTION

Let’s put this in matrix form, with the stranger as the row player:

h t
H −1, 1 2,−2
T 2,−2 −3, 3

You may think it is fair, for you can reason that your expected value equals

1

4
· (+1) +

1

4
· (+3) +

1

2
· (−2) = 0.

Vos Savant said the game was unfair to you with repeated play. The stranger can then
play heads two-thirds of the time, which would give you an average pay-off of

2

3
(
1

2
· (+1) +

1

2
· (−2)) +

1

3
(
1

2
· (+3) +

1

2
· (−2)) = −1

6
.

But what if I play a different counter-strategy against this, viz. “Heads all the time”? Then
my expected value would be

2

3
· (+1) +

1

3
· (−2) = 0.

So, what is the fair value of this game – and should you engage in it? We will take this up
again in Example 7.73 below.

Example 7.70 (Making sense) Linguistic expressions may be ambiguous, referring to
more than one situation. This helps keep code short in communication, whereas unam-
biguous expressions tend to be elaborate and costly to process. Let A have two meanings:
it can refer to situation X or Y. B is unambiguous, referring only to X, and C only to
Y. The complexity of B, C is greater than that of A, in some intuitive sense. A speaker
strategy is a choice of expression for each of the situations X, Y, while a hearer strategy
decodes expressions into situations. Here are the possible strategies for both, in matrix
form:

Speaker:

X Y
S1 A C
S2 A A
S3 B A
S1 B C

Hearer:
A B C

H1 X X Y
H2 Y X Y

Let there be a known chance that situation X obtains versus Y: say 2
3
. First, Speaker

says something, then Hearer interprets it. As for players’ utilities, both prefer correct
decodings to incorrect ones, and given that, less complex expressions to more complex
ones. Linguistic behaviour amounts to pairs of strategies (Si, Hj). This setting is called
a signalling game. Is this enough to predict the observed behaviour of language users,

7.11. LOGIC AND GAME THEORY 7-43

which is that the ambiguous expression is used for the most frequent situation, whereas
the less frequent situation is referred to by its unambiguous code?

‘Making Sense’ has two Nash equilibria, viz. (S1, H1) and (S3, H2). The first of these
represents the intended outcome. The second describes a situation where the ambiguous
expression is used for the less frequent situation.

The notion of a Nash equilibrium remains the same in the larger strategy space where
mixed strategies are allowed. Of course, outcomes will now be computed as expected
values in the obvious sense. E.g., as we have seen, to do the best they can in Matching
Pennies, players should play each action ‘Heads’, ‘Tails’ with probability 0.5. This will
guarantee an optimal expected value 0 for both. Here is perhaps the most celebrated result
from game theory.

Theorem 7.71 (von Neuman, Nash) All finite strategic games have equilibria in mixed
strategies.

Rather than give a proof, we will illustrate this for the case of games with 2× 2 matrices.
For a strategy pair σ, τ in equilibrium yielding value [σ, τ], we call ε a best response for
I to τ if [ε, τ] = [σ, τ]. In other words, playing ε rather than σ against τ does not change
the payoff. Now here is a useful fact.

Fact 7.72 If the strategy pair σ, τ is in equilibrium, then each pure strategy occurring in
the mixed strategy σ is also a best response for player I to τ .

Proof. If some component pure strategy S gave a lower outcome against τ then we
could improve the outcome of σ itself by decreasing its probability of playing S. 2

We can use this to analyze Vos Savant’s library game.

Example 7.73 (Library Game, Continued from Example 7.69) In equilibrium, suppose
the stranger plays Heads with probability p and Tails with 1 − p. You play heads with
probability q and Tails with probability 1 − q. By Fact 7.72, your expected outcome
against the p-strategy should be the same whether you play Heads all the time, or Tails all
the time. Therefore, the following equality should hold:

p · 1 + (1− p) · (−2) = p · (−2) + (1− p) · 3.

Working this out yields: p = 5
8
. By a similar computation, q equals 5

8
as well. The

expected value for you is

5

8
· 5

8
· 1 +

5

8
· 3

8
· (−2) +

5

8
· 3

8
· (−2) +

3

8
· 3

8
· (3) = −1

8
.

Thus, the game is indeed unfavourable to you – though not for exactly the reason given
by Vos Savant.

7-44 CHAPTER 7. LOGIC, GAMES AND INTERACTION

Note that probabilistic solutions, for games like Matching Pennies or the Library Game,
make most sense when we think of repeated games where you can switch between Heads
and Tails.

But there are also other interpretations of what it means to play a mixed strategy. For
instance, by a similar computation, besides its two equilibria in pure strategies, the Hawk
versus Dove game has an equilibrium with each player choosing Hawk and Dove 50% of
the time. This can be interpreted biologically in terms of stable populations having this
mixture of types of individual.

Conclusion As we said at the beginning of this chapter, our aim has not been to develop
one more standard logical system. Instead, we have shown how logic and games are
a natural meeting ground, where the themes of earlier chapters all return. We showed
how predicate logic can be analyzed using special “logic games” of evaluation and model
comparison. But we also showed how our logics of information and action apply to games
in the general sense of game theory. These two directions are related: logics can be used
to analyze games, but conversely games can also be used to analyze logics. This intriguing
duality is far from being completely understood – but at least, you now know what it is
about.

7.12 Outlook — Iterated Game Playing

Infinite games One striking trend in modern game theory is the evolutionary theory
of infinitely repeated games. One source for this is the Prisoner’s Dilemma game. This
has only one Nash equilibrium, in which both players choose ‘betray’, even though both
keeping silent would make both players better-off. Many amendments have been pro-
posed since the problem was first proposed in the 1950s. In particular, it has become clear
that one needs to look at repetitions of games like this, allowing for reactions to observed
behaviour in the past. For then, we can punish or reward our opponents’ previous be-
haviour. Now, fixed finite repetitions of games like Prisoner’s Dilemma are of no help. A
backward induction argument shows that, working back from the final play where retal-
iation is impossible, the ‘bad’ equilibrium Bb comes out best after all. But with infinite
repetitions, and some natural ‘discounting’ of utilities of games further in the future, new
equilibria emerge. An example made famous by Axelrod [Axe84] is:

Tit-for-Tat: Copy one’s opponents last choice, thereby giving immediate,
and rancour-free, rewards and punishments.

Here is a process picture of this strategy (for player II, against player I):

7.12. OUTLOOK — ITERATED GAME PLAYING 7-45

Tit-for-Tat ⇒ s b

S B

B

S

As long as I sticks to S, respond with s, as soon as I playsB, respond with b, keep playing
b as long as I plays B, and as soon as I plays S again, be forgiving and switch back to s.

It can be shown that (Tit-for-Tat,Tit-for-Tat) is a Nash equilibrium in the infinite Prisoner’s
Dilemma. Hence, cooperation is at least a stable option in the long run. The backdrop
for this result are the ‘folk theorems’ of game theory showing that repeated versions of
a game have a huge strategy space with many new equilibria. There is also a flourishing
literature on showing when such a cooperative equilibrium will emerge in a population.
One relevant line of research here is the learning theory of infinite games, where certain
equilibria are learnt under plausible assumptions.

A complete analysis of infinite games in this sense requires the mathematics of dynamical
systems with special leads from biology for setting up plausible systems equations. Such
considerations over time are very rare in logic, at least so far. Sometimes, though, these
considerations can be pushed back to simple scenarios that also make sense in logical
analysis. Here is a nice illustration that makes sense when thinking about the stability of
rules, say of some logical or linguistic practice.

Example 7.74 (Mutant Invasion) Consider a population playing some strategy S in an
infinitely repeated game of encounters between 2 agents, with (S, S) a Nash equilibrium.
E.g., S could be some logico-linguistic convention, like ‘speaking the truth’. Now sup-
pose that a small group of mutants enters, playing strategy F in every encounter. Let the
probability that a mutant encounters another mutant be ε, typically a small number. Then
the expected utility of any encounter for a mutant can be computed as follows:

ε · utilityM(F, F) + (1− ε) · utilityM(F, S) (mutant value)

For members of the original population, the expectation lies symmetrically:

ε · utilityP (S, F) + (1− ε) · utilityP (S, S) (normal value)

Here is an attractive notion of biology describing stability of a situation. A population is
‘evolutionarily stable’ if mutant invasions fizzle out. That is,

for every strategy F 6= S,mutant value < normal value.

By a simple calculation, this condition can be simplified, at least for ‘symmetric’ games
where

utilityM(F, S) = utilityP (S, F).

It then becomes this qualitative notion.

7-46 CHAPTER 7. LOGIC, GAMES AND INTERACTION

Definition 7.75 A strategy S in a game is evolutionarily stable if we have both

(1) (S, S) is a Nash equilibrium, and

(2) for every different best response S ′ to S, utility(S ′, S ′) < utility(S, S ′).

This notion has additional bite. E.g., Tit-for-Tat, though a Nash equilibrium against itself,
is not evolutionarily stable in the repeated Prisoner’s Dilemma. Of course, other scenarios
are possible. E.g., if mutants stick together, increasing their chances of mutual encounters,
the above computations fail, and invasion may be possible after all.

7.13 Outlook — Knowledge Games

Information exchange in the sense of Chapter 5 can also be viewed as a game. We give a
brief sketch. Players I and II both have a secret: I secretly knows about p and II secretly
knows about q. Here is a picture of the situation (solid lines for I accessibilities, dashed
lines for II accessibilities):

pq pq

pq pq

Both players would like to learn the other’s secret, but are reluctant to tell their own. They
don’t want to tell their own secret without learning the secret of the other. They both have
a choice: telling their own secret or not. The choice for I is that between ±p (telling
whether p is the case) and > (uttering a triviality). II can choose between ±q and >. The
preferences for I are:

>± q >1 ±p± q >1 >> >1 ±p>.

The preferences for II are:

±p> >2 ±p± q >2 >> >2 >± q.

This situation is represented by the following strategic game:

±q >
±p 2, 2 0, 3
> 3, 0 1, 1

7.14. OUTLOOK — GAMES AND FOUNDATIONS 7-47

This game has one pure Nash equilibrium, >>.

Now consider a variation of this, where both players know that p∨q. The model becomes:

pq pq

pq

Now more complex strategies make sense. Consider the following I-strategy: “If I knows
that p then I keeps silent, otherwise I reveals ¬p”. Formally:

(?21p; !>) ∪ (?¬21p; !¬p).

Exercise 7.76 Show that playing this strategy against > is an equilibrium.

7.14 Outlook — Games and Foundations

As we have seen, a game in which one of the two players has a winning strategy is called
determined. Now, are all games determined? With this simple question, we are right
in the foundations of set theory. Examples have been found of infinite non-determined
games, but their construction turned out to depend strongly on the mathematical axioms
one assumes for sets, in particular, the famous ‘Axiom of Choice’. Therefore, in 1962
it has been proposed (by Jan Mycielski and Hugo Steinhaus) to turn the tables, and just
postulate that all games are determined. This ‘Axiom of Determinacy’ states that all two-
player games of length ω with perfect information are determined.

Since the Axiom of Choice allows the construction of non-determined two-player games
of length ω, the two axioms are incompatible. From a logical point of view, the Axiom of
Determinacy has a certain appeal. We have in finitary logic

∀x1∃x2∀x3∃x4ϕ(x1, x2, x3, x4) ∨ ∃x1∀x2∃x3∀x4¬ϕ(x1, x2, x3, x4),

and so on, for longer ∀∃ alternations of quantifiers. The infinitary version of this runs:

∀G ⊆ S∞ :

∀x1 ∈ S∃x2 ∈ S∀y1 ∈ S∃y2 ∈ S∀z1 ∈ S∃z2 ∈ S . . . : (x1, x2, y1, y2, z1, z2, . . .) ∈ G

iff

∃x1 ∈ S∀x2 ∈ S∃y1 ∈ S∀y2 ∈ S∃z1 ∈ S∀z2 ∈ S . . . : (x1, x2, y1, y2, z1, z2, . . .) /∈ G.

7-48 CHAPTER 7. LOGIC, GAMES AND INTERACTION

But this is a formulation of the Axiom of Determinacy. Indeed, the Axiom of Determi-
nacy might be viewed as ‘Excluded Middle run wild’, but then a gallop with beautiful
mathematical consequences. There is a broad consensus today that set theory needs new
axioms, but much less: which ones, and Determinacy is just one option. In any case, it
may be said that games are an important source of intuitions here.

7.15 Outlook — Games, Logic and Cognition

The arena of game theory has many intriguing examples where there is a mismatch be-
tween what game theoretical considerations would predict and what actually happens if
the games are played. Here is one much-discussed example:

Example 7.77 (The Ultimatum Game) Player I is shown a substantial amount of money,
say 1000 euros. He is asked to propose a split of the money between himself and player II.
If player II accepts the deal, they may both keep their shares, otherwise they both receive
nothing. If this game is played once, a split (999, 1) should be acceptable for II. After all,
receiving 1 euro is better than receiving nothing. But this is not what we observe when
this game is played. What we see is that II rejects the deal, often with great indignation.

Considerations about repeated play, reputation mechanisms, psychological factors, have
been called to the rescue to explain what happens.

Other examples where what we observe in reality seems at odds with game theoretical
rationality are the centipede games, discussed above in Examples 7.45 and 7.54. Instead
of the first player immediately opting out of the game, players often show partial cooper-
ation. Maybe they reason that it is better to cooperate for a while, and then defect later,
when there is a better reward for the evil deed? It has also been suggested that this has
something to do with limitations in our cognitive processing. We all can do ‘first order
theory of mind’: imagine how other people think about reality. Some of us do ‘second
order theory of mind’: imagine how other people think about how we think about reality.
Very few people take the trouble to move to higher orders. But in a backward induction
argument for a centipede game this is what seems to be going on, and on and on . . .

Summary of Things You Have Learnt in This Chapter You have become aware of
the natural fit between games and logic, in a number of areas. You have learnt to see
reasoning about logical consequence (argumentation) as a game. You know how to play
an evaluation game. You know the concept of a winning strategy, and you understand
Zermelo’s theorem and the algorithm behind it. You have learnt how to apply Zermelo’s
procedure to find winning strategies for finite zero-sum two-player games such as Sabo-
tage. You know how to play model comparison games, and you know what a difference
formula is. You are able to find winning strategies in bisimulation games. You understand

7.15. OUTLOOK — GAMES, LOGIC AND COGNITION 7-49

the concept of a Nash equilibrium, and you are able to solve games by backward induc-
tion. Finally, you understand the basic game-theoretic notions of a strategic game and of
a mixed strategy solution, and you understand how well-known strategic games like the
Prisoner’s Dilemma and Hawk versus Dove stand proxy for social situations.

Further Reading A recent textbook that explores and explains the connections between
games and logic is [V1̈1]. An illuminating paper on the importance of the game-theoretic
perspective in logic is [Fag97].

The book that started game theory, [NM44], was already mentioned above. There are
many excellent textbooks on game theory: [Str93] and [Osb04] are among our favourites.
A more light-hearted introduction is [Bin92].

The use of game theory to investigate the games we play when conversing with each other
in natural language is demonstrated in [Cla12].

7-50 CHAPTER 7. LOGIC, GAMES AND INTERACTION

Methods

7-51

Chapter 8

Validity Testing

In the first three chapters various methods have been introduced to decide the validity
of different sorts of inferences. We have discussed truth-tables and the update method
for propositional logic, and also a method using Venn-diagrams for syllogistic reasoning.
In this chapter we will introduce a uniform method to decide validity for the logics of
the first part of this book. This method has been introduced for propositional logic and
predicate logic by the Dutch philosopher and logician Evert Willem Beth (1908-1964) in
the fifties of the previous century.

The basic idea behind this method comes down to the following principle which we have
stressed at earlier occasions. ref

An inference is valid if and only if there exists no counter-examples, i.e.,
there is no situation in which the premises hold and the conclusion is false.

The method consists of a rule-based construction of a counter-example for a given infer-
ence. Each step of the construction is given account of in a tree-like structure which is
called a tableau. During this construction it may be that, due to conflicting information,
the system detects that no counter-examples can be constructed. We speak of a closed
tableau in such a case, and it implies that no counter-examples exist. We may then safely
conclude that the inference which we are analyzing must be valid.

8-1

8-2 CHAPTER 8. VALIDITY TESTING

Evert Willem Beth (left). TABLEAUX is a large bian-
nual conference where computer scientists and logicians
meet to present and discuss the latest developments on
tableau methods and their application in automated rea-
soning systems.

The tableau method is a very powerful method. It is complete for propositional and predi-
cate logical reasoning. This means that in case of a valid inference the validity can always
be proved by means of a closed tableau, that is, the exclusion of counter-examples. More-
over, the tableau method can be implemented quite easily within computer programs, and
is therefore used extensively in the development of automated reasoning systems.ref

In the case of propositional logic the tableau method we will discuss here can generate all
counter-models for invalid inferences. In this respect, the situation in predicate logic is
quite different. If an inference is invalid a counter-model must exist, but it may be that it
can not be constructed by means of the rules of the tableau system. In this chapter we will
introduce two tableau systems for predicate logic of which one is better (but a bit more
difficult) than the other in finding counter-models for invalid inferences, but still this more
advanced system is not able to specify infinite counter-models, which means that invalid
inferences with only infinite counter-models — we will see one example in the section
on predicate logic — their invalidity can not be demonstrated by this system. In fact, a
perfect tableau system does not exist for predicate logic. Since the thirties of the previous
century, due to the work of Alonzo Church and Alan Turing, we know that there exists
no decision method in general which detects invalidity for all invalid predicate logical
inferences.ref

8.1 Tableaus for propositional logic

But let us first start with the propositional logical case. For checking the validity of a
propositional logical inference we can use the method of truth-tables (Chapter 2). If we
have an inference ϕ1, ..., ϕn/ψ then we need to set up truth-tables for all the formulas
ϕ1, ..., ϕn, ψ and then see whether there is one row, at which the formulas ϕ1, ..., ϕn are

8.1. TABLEAUS FOR PROPOSITIONAL LOGIC 8-3

all true (1) and ψ is false (0). If this is the case we have detected a counter-model, and
then the inference must be invalid. If such a row can not be found then the inference must
be valid since it does not have counter-models in this case.

The tables are built up step by step, assigning truth-values to the proposition letters, who
represent some atomic bit of propositional information, and then assigning truth-values
to all the formulas following the grammatical structures of the formulas. It is therefore
called a bottom up method.

The tableau method works exactly in the opposite direction: top-down. It starts with the
original inference and then tries to break it down into smaller pieces. If it arrives at the
smallest parts, the proposition letters, and has not run into contradictions then this atomic
information can be used to specify a counter-model and invalidity for the given inference
has then been proved. If it does not succeed to do so then the tableau is a proof that no
counter-model exists, and in this case, the inference must be valid.

Let us get more specific and take a simple valid inference:

p ∧ (q ∨ r) |= (p ∧ q) ∨ r (8.1)

We start with a simplistic representation of a candidate counter-example. It depicts a
world with two hemispheres of which the true information is contained in the upper half,
and the false information in the lower part.

p ∧ (q ∨ r)
(p ∧ q) ∨ r

(8.2)

The truth-conditions of the propositions, as defined by the connectives they contain, de-
termine whether this potential counter-example can be realized. As the only true formula
is a conjunction, we know that the two conjuncts must be true. The only false proposition
is a disjunction, and therefore both these disjuncts must also be false. This leads to the
following further specification of our potential counter-example:

p q ∨ r
p ∧ q r

(8.3)

We know now that our candidate counter-example must at least support p and falsify r.
The exclusion of six other valuations has already taken place by this simple derivation.
Still it is not sure whether the picture in (8.3) captures a real counter-example since q ∨ r
must be true and p ∧ q must be false. The first formula is a disjunction and because it is
true, the formula itself does not give us accurate information about the truth-values of the

8-4 CHAPTER 8. VALIDITY TESTING

the arguments q and r. The only thing we know is that at least one of them must be true.
This makes our search more complicated. The following two candidates are then both
potential counter-examples.

p q

p ∧ q r
p r

p ∧ q r

The world on the right hand can not be a counter-example because it requires r to be
both true and false. This can never be the case in one single world, and therefore this
possibility has to be canceled as a counter-model. The candidate on the left contains a
false conjunction, p ∧ q. Again, this gives us no precise information, since the falsity of
a conjunction only claims the falsity of at least one of the conjuncts. As a consequence,
this world must be separated into the following two possibilities.

p q

p r

p q

q r
(8.4)

The first of these two possibilities can not represent a real world because p is both true
and false there. The second can not be realized either since q is both true and false in this
case. Real counter-examples for this inference do not exist! The inevitable conclusion is
that (p ∧ q) ∨ r must be true whenever p ∧ (q ∨ r) is true.

For sake of notation, we will not continue to use the encircled representations as in this
first example. We will use a little circle ◦ instead and write the true formulas on its left
side, and the false formulas on the right side of this circle. Doing so, we can summarize
our search for a counter-example for the inference p ∧ (q ∨ r)/(p ∧ q) ∨ r as a tree in the
following way.

p ∧ (q ∨ r) ◦ (p ∧ q) ∨ r

p, q ∨ r ◦ (p ∧ q) ∨ r

p, q ∨ r ◦ p ∧ q, r

p, q ◦ p ∧ q, r

p, q ◦ p, r p, q ◦ q, r

p, r ◦ p ∧ q, r

(8.5)

Each node in the tree is called a sequent. A tree of sequents is called a tableau. A branch
of such a tableau is closed if its end node contains a sequent with a formula which appears

8.1. TABLEAUS FOR PROPOSITIONAL LOGIC 8-5

both on the left (true) and on the right (false) part of the sequent. It means that this branch
does not give a counter-example for the sequent as given at the top of the tableau. If
all branches are closed then the tableau is also closed, and it says, just as in the earlier
example, that the top-sequent represents in fact a valid inference. A branch of a tableau is
called open if its final node is not closed and contains no logical symbols. In this case we
have found a counter-example since there are only propositional letters left. A valuation
which assigns the value 1 to all the proposition letters on the left part of such a sequent
in this end node and 0 to those on the right side will be a counter-model for the inference
with which you started the tableau. To illustrate this we can take the earlier example and
interchange premise and conclusion. The inference (p ∧ q) ∨ r/p ∧ (q ∨ r) is an invalid
inference, and by using the tableau method we should be able to find a counter-model.

(p ∧ q) ∨ r ◦ p ∧ (q ∨ r)

p ∧ q ◦ p ∧ (q ∨ r) r ◦ p ∧ (q ∨ r)

r ◦ p r ◦ q ∨ r (8.6)

In the first step we have removed the disjunction on the left which led to two possibilities.
Then in the second resulting sequent we have removed the conjunction on the right part
of the sequent, which led to two new possibilities. The final node with the sequent r ◦ p
represents a real counter-example. This branch is open. A valuation V with V (p) = 0
and V (r) = 1 is a counter-model indeed: V ((p ∧ q) ∨ r) = 1 and V (p ∧ (q ∨ r)) = 0. In
fact, this open branch represents two counter-examples since the truth-value of q does not
matter in this case. The situations pqr and pqr are both counter-examples.

The reader may check for himself that the other branches do not give other counter-
models. They all close eventually. This means that there are only two counter-models.
The tableau as given in (8.6) suffices as a proof of invalidity here. As soon as an open
branch has been constructed it is not needed to inspect the other branches.

8.1.1 Reduction rules

A proper tableau needs to be set up according precise reduction rules. A reduction rule is
specified by the logical symbol that is to be removed, and the truth-value of the formula as
indicated by the sequent (left or right of the truth-falsity separation symbol ◦). Such a rule
is defined by the truth-conditions for the logical symbols. The following schema depicts
the rules for conjunction and disjunction, which we already have used in the previous

8-6 CHAPTER 8. VALIDITY TESTING

p ∧ (q ∨ r) ◦ (p ∧ q) ∨ r

∧L

p, q ∨ r ◦ (p ∧ q) ∨ r

∨R

p, q ∨ r ◦ p ∧ q, r

∨L

p, q ◦ p ∧ q, r

∧R

p, q • p, r p, q • q, r

p, r • p ∧ q, r

(p ∧ q) ∨ r ◦ p ∧ (q ∨ r)

∨L

p ∧ q ◦ p ∧ (q ∨ r) r ◦ p ∧ (q ∨ r)

∧R

r � p r ◦ q ∨ r

Figure 8.1: Complete tableaus for the earlier examples.

examples.

∧L ϕ ∧ ψ ◦

ϕ, ψ ◦

∧R ◦ ϕ ∧ ψ

◦ ϕ ◦ ψ

∨L ϕ ∨ ψ ◦

ϕ ◦ ψ ◦

∨R ◦ ϕ ∨ ψ

◦ ϕ, ψ
(8.7)

The rules ∧L and ∨L tell us what to do with a conjunction and disjunction, respectively,
when it appears on the left side of a sequent. We use a green background here to make it
explicit that when we apply such a rule, we are working on a formula which is claimed to
be true. The R-rules are rules which deal with false conjunctions and disjunctions. The
background color red is used to stress that we are reducing a formula which is claimed to
be false.

In figure 8.1 the earlier examples are given once more, but extended with specifications
of the rules we use in each step. As to distinguish open and closed branches we replace
the truth-falsity separation symbol ◦ by� and • respectively. We will continue to use this
way of indication in the sequel of this chapter.

For the other connectives rules can be given quite straightforwardly by using the truth-
conditions which have been defined in the introductory chapter on propositional logic.

8.1. TABLEAUS FOR PROPOSITIONAL LOGIC 8-7

¬p ∧ ¬q ◦ ¬(p ∧ q)

∧L

¬p,¬q ◦ ¬(p ∧ q)

¬L

¬R

¬q, p ∧ q ◦ p

∧L

¬q, p, q • p

¬(p ∧ q) ◦ ¬p ∧ ¬q

¬L

◦ p ∧ q,¬p ∧ ¬q

∧R

◦ p,¬p ∧ ¬q ◦ q,¬p ∧ ¬q

∧R

◦ q,¬p

¬R

p� q

◦ q,¬q

Figure 8.2: Two tableaus with negations. The left tableau shows that ¬p ∧ ¬q |= ¬(p ∧ q). The right
tableau shows that the converse of this inference is not valid ¬(p∧q) 6|= ¬p∧¬q. The counter-model which
has been found in the open branch is the valuation which assigns 1 to p and 0 to q. This suffices to show the
invalidity of the inference. If we would have worked out the left branch as well we would have found the
other counter-example pq.

The negation rules are the most simple ones. A negation switches truth-values, so the
proper way to remove a negation is to transfer its argument from one side of the sequent
to the other.

¬L ¬ϕ ◦

◦ ϕ

¬R ◦ ¬ϕ

ϕ ◦
(8.8)

In Figure 8.2 two simple tableaus are given with occurrences of negations. The rules for
implication and equivalence are the following:

→L ϕ→ ψ ◦

◦ ϕ ψ ◦

→R ◦ ϕ→ ψ

ϕ ◦ ψ

↔L ϕ↔ ψ ◦

ϕ, ψ ◦ ◦ ϕ, ψ

↔R ◦ ϕ↔ ψ

ϕ ◦ ψ ψ ◦ ϕ
(8.9)

The rules for equivalence are quite easy to understand. An equivalence is true if the
truth-values of the two arguments are the same. In terms of reductions this means that

8-8 CHAPTER 8. VALIDITY TESTING

if the equivalence appear on the left hand side of the sequent the two arguments remain
on the left hand side (both true) or they switch both to the right hand side (both false). If
an equivalence is false the two truth-values of the arguments differ, which gives the two
possibilities as captured by↔R-rule as shown in the schema (8.9).

The R-rule for implication captures the only possibility for an implication to be false. The
antecedent should be true (moves to the left) and the consequent should be false (stays on
the right). The L-rule captures the other possibilities: ϕ is false (moves to the right) or ψ
is true (stays on the left).

Exercise 8.1 Define appropriate reduction rules for the exclusive disjunction t. Remember that
ϕ t ψ is true if and only if exactly one of the arguments ϕ or ψ is true.

Exercise 8.2 Show that ¬(ϕ t ψ) is logically equivalent with ¬ϕ t ψ using the rules that you
have defined for t in the previous exercise. You will need two tableaus here, one for proving that
¬(ϕ t ψ) |= ¬ϕ t ψ and one for proving that ¬ϕ t ψ |= ¬(ϕ t ψ).

Below in (8.10) two tableaus are given of which the first shows that p ↔ (q → r) |=
(p↔ q)→ r. The second demonstrates that the converse is invalid.

p↔ (q → r) ◦ (p↔ q)→ r

→R

p↔ q ◦ r

↔L

p, q ◦

↔L

p, q → r ◦

→L

• q r •

• p, q → r

◦ p, q

↔L

p, q → r • ◦ p, q → r

→R

q • r

(p↔ q)→ r ◦ p↔ (q → r)

→L

◦ p↔ q r ◦
↔R

p ◦ q → r q → r ◦ p

→L

� q r �

(8.10)
For sake of shorter notation we have left out the repetition of formulas, and only kept track
of new formulas. This makes it bit harder to read the tableau, but it may be worth the effort
to get used to this shorter notation since tableaus, especially in the case of predicate logic
as we will see in the next section, tend to get very large.

In order to conclude closure of a branch we need to scan it for contradiction in backward
direction. This also is the case for defining a counter-model for an open branch. For
example, the counter-examples as given in the right-most branch in the second tableau
of (8.10) are those who falsify p and verify r. About the proposition letter q no information
is given in this open branch.

8.2. TABLEAUS FOR PREDICATE LOGIC 8-9

Exercise 8.3 Use tableaus to test the validity of the following inferences.

(1) p ∨ (q ∧ r)/(p ∨ q) ∧ (p ∨ r)

(2) p→ q, q → r/¬r → ¬p

Exercise 8.4 Use the tableau method to find out whether the following sets of formulas are con-
sistent (satisfiable), i.e., check whether there is a valuation which makes all the formulas in the
given set true.

(1) {p↔ (q ∨ r),¬q → ¬r,¬(q ∧ p),¬p}

(2) {p ∨ q,¬(p→ q), (p ∧ q)↔ p}

Exercise 8.5 Check, using the tableau method, whether the following formulas are tautologies or
not.

(1) (p→ q) ∨ (q → p)

(2) ¬(p↔ q)↔ (¬p↔ ¬q)

8.2 Tableaus for predicate logic

A tableau system consists of the rules for the connectives as given in the previous section
and four rules for the quantifiers, two rules for each of the two quantifiers ∀ and ∃.1 These
rules are a bit more complicated because the quantifiers range over the individual objects
in the domain of the models. Beforehand, however, we do not know how many of those
individuals are needed to provide real counter-models. The domain has to be constructed
step by step. This makes it harder to process universal information adequately because it
needs to be applied to all the objects, and it may be that it will not be clear at that stage
what the required set of objects is to provide a counter-example. In simple cases this can
be avoided by dealing with the existential information first. Let us have a look at such an
easy going example:

∀x (Px ∨Qx)/∀xPx ∨ ∀xQx (8.11)

It may be clear that this an invalid inference. Every integer is even or odd (P ∨ Q) but it
is surely not the case that all integers are even (P) or that all integers are odd (Q). Let us
see what happens if we want to demonstrate this with a tableau. At first we can apply the
∨R-rule as we have defined in the previous section:

∀x (Px ∨Qx) ◦ ∀xPx ∨ ∀xQx

∨R

∀x (Px ∨Qx) ◦ ∀xPx,∀xQx (8.12)
1For sake of keeping things simple, we will not deal with the equality sign = and function symbols here.

Moreover, we assume that all formulas contain no free variables.

8-10 CHAPTER 8. VALIDITY TESTING

For the potential counter-model this means the following. All individuals are P ∨ Q-s
but not all of them are P -s and not all of them are Q-s, since ∀xPx and ∀xQx must
be falsified. They occur on the right side of the last sequent. A universally quantified
formula ∀xϕ on the right hand side of a sequent conveys an existential claim, we need at
least one non-ϕ-er within the candidate counter-model. As we said earlier, it is better to
deal with this existential information first. Removal of the formula ∀xPx can be done by
replacing it by Pd1 where d1 is some additional name for the object which does not have
the property P . We do not know who or what this non-P -object is, and therefore we need
a neutral name to denote it. So our next step is:

∀x (Px ∨Qx) ◦ ∀xPx,∀xQx

∀R

∀x (Px ∨Qx) ◦ Pd1,∀xQx (8.13)

Elimination of the last universal quantifier on the right hand side requires a non-Q-object.
This object may be different from d1 and therefore we choose a new neutral name d2.2

∀x (Px ∨Qx) ◦ Pd1, ∀xQx

∀R

∀x (Px ∨Qx) ◦ Pd1, Qd2 (8.14)

At this stage we have to eliminate the universal quantifier on the left hand side of the
sequent. We need to apply the property Px ∨ Qx to all the objects in the domain. This
far we only have objects called d1 and d2 and therefore we only apply it to those objects,
which brings two new formulas on the stage Pd1 ∨ Qd1 and Pd2 ∨ Qd2. In this case we
are sure that no other objects may be needed because all the existential information has
been dealt with in the two steps before.

∀x (Px ∨Qx) ◦ Pd1, Qd2

∀L

Pd1 ∨Qd1, Pd2 ∨Qd2 ◦ Pd1, Qd2 (8.15)

2Note that we do not exclude the possibility that d1 and d2 are equal here. In predicate logic it is possible
that one object carries two names.

8.2. TABLEAUS FOR PREDICATE LOGIC 8-11

∀x (Px ∨Qx) ◦ ∀xPx ∨ ∀xQx

∨R

∀x (Px ∨Qx) ◦ ∀xPx,∀xQx

∀R

∀x (Px ∨Qx) ◦ ∀xPx,Qd1

∀R

∀x (Px ∨Qx) ◦ Pd2, Qd1

∀L

Pd1 ∨Qd1, Pd2 ∨Qd2 ◦ Pd2, Qd1

∨L

Pd1, Pd2 ∨Qd2 • Pd1, Qd2 Qd1, Pd2 ∨Qd2 ◦ Pd1, Qd2

∨L

Qd1, Pd2 � Pd1, Qd2 Qd1, Qd2 • Pd1, Qd2

Figure 8.3: The full tableau demonstrating that ∀x (Px ∨Qx) 6|= ∀xPx ∨ ∀xQx. The counter-example
contains a P who is not Q and a Q who is not P .

The last two steps deal with the two disjunctions.

Pd1 ∨Qd1, Pd2 ∨Qd2 ◦ Pd1, Qd2

∨L

Pd1, Pd2 ∨Qd2 • Pd1, Qd2 Qd1, Pd2 ∨Qd2 ◦ Pd1, Qd2

∨L

Qd1, Pd2 � Pd1, Qd2 Qd1, Qd2 • Pd1, Qd2 (8.16)

Finally, we have found a counter-model. The open branch tells us that we need a model
with two objects. The first one needs to be a Q-object which does not have the property
P , and the second has to be a P -object which does not have the propertyQ. This is indeed
a counter-model for the original inference as given in (8.11). In Figure 8.3 the full tableau
is given.

8-12 CHAPTER 8. VALIDITY TESTING

Exercise 8.6 Show with a tableau that ∃x (Px ∧Qx) |= ∃xPx ∧ ∃xQx.

Exercise 8.7 Show with a tableau that ∃xPx ∧ ∃xQx 6|= ∃x (Px ∧Qx).

Exercise 8.8 Show with a tableau that ∀x (Px ∨Qx) |= ∀xPx ∨ ∃xQx.

In the last example we dealt with existential information before we used the universal
information. This is not always possible. Here is a short but more complicated case.

∃x (Px→ ∀y Py) (8.17)

The formula says that there exists an object such that if this object has the property P
then every object has the property P . We do not know which object is meant here so let
us give it a neutral name. The formula then reduces to Pd1 → ∀y Py. Such an object
can then always be chosen. If all objects have the property P then it does not matter
which object you choose, since the consequent is true in this case. If, on the other hand,
not all objects have the property P then you can pick one of the non-P -objects for d1.
The antecedent is then false and therefore the implication Pd1 → ∀y Py holds. In other
words, ∃x (Px→ ∀y Py) is valid.

In order to prove that (8.17) is valid by means of a tableau we have to show that it never
can be false. Putting it on the right side of the top-sequent, we then should be able to
construct a closed tableau. Here is a first try in three steps.

◦ ∃x (Px→ ∀y Py)

∃R

◦ Pd1 → ∀y Py

→R

Pd1 ◦ ∀y Py

∀R

Pd1 ◦ Pd2 (8.18)

Foremost, we need to explain the first step. An existential quantified formula on the right
yields a universal claim. If ∃xϕ is false it means that there exists no ϕ-er: ϕ is false
for all individuals in the domain. Since there are no objects introduced so far the reader
may think that this leads to an empty sequent. But in predicate logic we have a minimal
convention that every model has at least one object.This means that if we want to fulfillref
a universal claim, that is, a true formula of the form ∀xϕ or a false formula of the form
∃xϕ, and there are no objects introduced so far then we introduce one. This is what has
been done in the first step in (8.18).

8.2. TABLEAUS FOR PREDICATE LOGIC 8-13

The second and the third step are as before. Now, it may seem as if we have an open
branch here since there is no contradictory information and there are no logical symbols
left. But we made a logistic mistake here. We removed the false formula ∀y Py here
by introducing a new non-P -object called d2. The universal claim by the false formula
∃x (Px→ ∀y Py) however has been applied to d1 only, whereas Px→ ∀y Py has to be
false for all objects, and therefore, also for d2! In tableau-systems for predicate logic this
means that whenever a new name is to be introduced the formulas which have universal
strength which have been removed at an earlier stage in the tableau will become active
again, and then need to be dealt with at a later stage. So the last step of (8.18) need to be
extended in the following way:

Pd1 ◦ ∀yPy

∀R

Pd1 ◦ Pd2,∃x (Px→ ∀y Py) (8.19)

The formula ∃x (Px→ ∀y Py) is supposed to be falsified in the end, and becomes active
again when the new object called d2 is introduced. The next step then is to deny the
property Px → ∀y Py for all objects. Since it has been already denied for d1 in the first
step in (8.18), the only new information is that Pd2 → ∀y Py must be false.

Pd1 ◦ Pd2,∃x (Px→ ∀y Py)

∃R

Pd1 ◦ Pd2, Pd2 → ∀y Py (8.20)

One may think, at first sight, that this leads to an infinite procedure. In this case, things
work out nicely, since the tableau closes in the next step. The implication will be removed,
and then we run into a conflict: Pd2 must be true and false at the same time.

Pd1 ◦ Pd2, Pd2 → ∀y Py

→R

Pd1, Pd2 • Pd2,∀y Py (8.21)

This means that there are no models which falsify ∃x (Px→ ∀y Py). This formula must
be valid.

8.2.1 Rules for quantifiers

In the two examples above we have indicated how we should deal with quantified predi-
cate logical formulas in a tableau. Here we want to give a formal status to the reduction

8-14 CHAPTER 8. VALIDITY TESTING

rules for the quantifiers. Let us start with the universal quantifier.

∀L0 ∀xϕ ◦

ϕ [d/x]
+◦

∀L ∀xϕ ◦

ϕ [d1/x] . . . ϕ [dn/x] ◦

∀R ◦ ∀xϕ

+◦ ϕ [d/x]

(8.22)
There are two left rules for the universal quantifier when it appears on the left part of a
sequent.

∀L0 : The first rule (0) is meant to deal with the exceptional case when no names are
present in the sequent, that is, there are no names to apply the property ϕ to. In this
case we introduce a new name d and replace all free occurrences of x in ϕ by d. We
write this as ϕ [d/x]. In addition, the truth-falsity separation symbol ◦ is designated
with a + on top to indicate that a new name has been added within the branch of
the tableau.ref

∀L: If names are present in the input sequent then ∀xϕ can be removed from the left part
of the sequent by applying ϕ to the names d1, ..., dn, all occurring in the sequent
and which ϕ has not been applied to yet.

∀R: A false formula ∀xϕ is removed by applying ϕ to a new name d. This denotes
the object we need as an example of a non-ϕ-er in the counter-model which we
are constructing. In order to show that this name is new we use the additional
+-indication.

In the end we need to distinguish ◦ from
+◦-sequents in which new name are introduced.

+◦: If a new name is introduced then all formulas of the form ∀xϕ appearing on the
left part and those of the form ∃xϕ on the right part of preceding sequents in this
branch re-appear in the output sequent.

The rules for the existential quantifiers are defined analogously to the rules for the univer-
sal quantifier:

∃L ∃xϕ ◦

ϕ [d/x]
+◦

∃R0 ◦ ∃xϕ

+◦ ϕ [d/x]

∃R ◦ ∃xϕ

◦ ϕ [d1/x] . . . ϕ [dn/x]

(8.23)

8.2. TABLEAUS FOR PREDICATE LOGIC 8-15

The following example, which shows that ∃y∀xRxy |= ∀x∃y Rxy, make use of all the
general rules.

∃y∀xRxy ◦ ∀x ∃y Rxy

∃L

∀xRxd1
+◦ ∀x ∃y Rxy

∀R

∀xRxd1
+◦ ∃y Rd2y

∀L

Rd1d1, Rd2d1 ◦ ∃y Rd2y

∃R

Rd1d1, Rd2d1 •Rd2d1, Rd2d2 (8.24)

In this example the quantifiers were in optimal position. We could fulfill the existential
claims (∃L and ∀R) before we dealt with the universal requirements (∀L and ∃R) for the
potential counter-model. As a result of this no reintroduction of universal information
was needed.

In (8.18) we already have seen that this reintroduction can not always be avoided. Fortu-
nately, this did not lead to an infinite procedure, because the tableau could be closed. But
in other cases we may run into real trouble due to continuing introduction of new names,
and consequently, unstoppable re-appearance of universal information. Below such an
example is given. Let us first look at the first two steps.

∀x ∃y Rxy ◦ ∃y∀xRxy

∀L0

∃y Rd1y
+◦ ∃y∀xRxy

∃L

∀x∃y Rxy,Rd1d2
+◦ ∃y∀xRxy (8.25)

The two formulas in the top-sequent have universal status. The left formula is true and
says that every object is R-related to some object. In a domain of persons, taking the
relation Rxy to represent the relation ‘x loves y’, ∀x∃y Rxy means “Everybody loves

8-16 CHAPTER 8. VALIDITY TESTING

somebody”. The formula ∃y∀xRxy on the right hand should be falsified, and therefore
the claim is that is not the case that there exists an object such that all objects areR-related
to it. In the context mentioned here above, this means that there is no person who is loved
by everybody. So, there is no other option than to apply one of the exceptional universal
rules ∀L0 or ∃R0 . We have chosen to take the former.

In the second step we took the new existential formula on the left since we prefer to
deal with existential information first. Here we introduced a new name, and therefore, the
universal formula which has been removed in the first step pops up again. Repetition of the
same procedure would introduce a third object and a second re-appearance of ∀x∃y Rxy.
If, instead, we would choose to remove the formula ∃y∀xRxy on the right we would then
get the following two successive steps:

∀x ∃y Rxy,Rd1d2 ◦ ∃y∀xRxy

∃R

∀x ∃y Rxy,Rd1d2 ◦ ∀xRxd1,∀xRxd2

∀R

∀x ∃y Rxy,Rd1d2
+◦ Rd3d1,∀xRxd1,∃y∀xRxy (8.26)

In the last step a third object is introduced, and then ∃x∀y Rxy re-appears on the right
part of the sequent. The sequent in the last node contains the same formulas as in the top
node with two additional atomic formulas who do not contradict each other. Moreover,
we know that this tableau will never close since the top sequent represents an invalid in-
ference. This branch will never end with the desired final sequent free of logical symbols.

Without applying the rules it is not hard to find a simple counter-example. Take the situ-
ation of two persons who love themselves but not each other. In such a case, ∀x∃y Rxy
is true and ∃y∀xRxy is false, since there is no person who is loved by everybody. Ap-
parently, our tableau system is not able to find such a simple counter-model. In fact the
rules guide us towards an infinite counter-example which can never be constructed since
in each step at most one additional object is introduced.

Despite this inability of the system, the rules make up a complete validity testing method.
If an inference ϕ1, ...ϕn/ψ is valid, ϕ1, ..., ϕn |= ψ, then there exists a closed tableau with
ϕ1, ..., ϕn ◦ ψ as the top sequent. We will not prove this completeness result here, but
instead, get into more detail at a later stage.ref

Exercise 8.9 Test the validity of the following syllogisms with tableaus:

(1) ∀x (Ax→ Bx), ∃x (Ax ∧ Cx)/∃x (Cx ∧Bx)

(2) ∀x (Ax→ Bx),∃x (Ax ∧ ¬Cx)/∃x (Cx ∧ ¬Bx)

8.2. TABLEAUS FOR PREDICATE LOGIC 8-17

(3) ¬∃x (Ax ∧Bx),∀x (Bx→ Cx)/¬∃x (Cx ∧Ax)

Exercise 8.10 Prove the validity of the following inference with tableaus:

(1) ∀x (Ax→ Bx) ∨ ∀y (By → Ay) |= ∀x ∀y ((Ax ∧By)→ (Bx ∨Ay))

(2) ∀x ∀y ((Ax ∧By)→ (Bx ∨Ay)) |= ∀x (Ax→ Bx) ∨ ∀y (By → Ay)

8.2.2 Alternative rules for finding finite counter-models

In (8.25) and (8.26) we have seen an example of an invalid inference with quite simple
finite counter-models which can not be found by means of the rules for the quantifiers.
In order to find such finite counter-models with a tableau system we need to extend the
rules for the quantifiers a bit. The problem with the earlier rules was the introduction of
new names which caused repetitive reintroduction of formulas. This can be avoided by
facilitating the ‘old’ objects to support existential information. These extended versions
of the ‘existential’ rules ∃L and ∀R have the following general format, where the name d
is some name which occurs in the input node and d′ does not.

∃L+d ∃xϕ ◦

ϕ [d/x] ◦ ϕ [d′/x]
+◦

∀R+d ◦ ∀xϕ

◦ ϕ [d/x] +◦ ϕ [d′/x]

(8.27)
The truth-falsity separation sign ◦ only has a +-sign in the right branch. In the left branch
we have used an old object called d which does not provoke reintroduction of universal
information. We indicate these special try-out branches with a dashed line.

Let us try these extended rules to find a simple finite counter-model for the example we
started with in (8.25). Here are the first two steps.

∀x∃y Rxy ◦ ∃y∀xRxy

∀L0

∃y Rd1y
+◦ ∃y∀xRxy

∃L+d1

Rd1d1 ◦ ∃y∀xRxy ∀x∃y Rxy,Rd1d2
+◦ ∃y∀xRxy (8.28)

The first step is the same as in (8.25). The second step is the application of the extended
version of ∃L. We apply in the left branch the property Rd1y to the only known name d1.

8-18 CHAPTER 8. VALIDITY TESTING

In this branch the true formula ∀x∃y Rxy is not reintroduced. This try-out branch can
then be extended with the following four steps.

Rd1d1 ◦ ∃y∀xRxy

∃R

Rd1d1 ◦ ∀xRxd1

∀R

∀x∃y Rxy,Rd1d1
+◦ Rd2d1,∃y∀xRxy

∀L

∃y Rd2y,Rd1d1 ◦Rd2Rd1,∃y∀xRxy

∃L+d2

Rd2d2, Rd1d1 ◦Rd2d1,∃y∀xRxy ∀x∃y Rxy,Rd2d3, Rd1d1
+◦ Rd2d1,∃y∀xRxy

(8.29)
In the second step we did not apply ∀R+d1 but the old version ∀R instead. A try-out branch
would close immediately because of the true formula Rd1d1. In the last step we have
chosen for ∃Ld2 . The d1-version would have given a closed branch because of the false
formula Rd2d1. Extension of this new try-out branch results into our desired counter-
model in two more steps.

Rd2d2, Rd1d1 ◦Rd2d1,∃y∀xRxy

∃R

Rd2d2, Rd1d1 ◦Rd2d1,∀xRxd2

∀R+d1

Rd2d2, Rd1d1 �Rd2d1, Rd1d2 ∀x ∃y Rxy ◦Rd3d2,∃y∀xRxy (8.30)

In the first step the false formula ∃y∀xRxy results into ∀xRxd2 only because ∀xRxy
has been applied to d1 in the third step of this branch (8.29). In the second step we used
a d1-try-out branch. The d2-variant would have given closure because of the true formula
Rd2d2. This third try-out branch has finally determined a counter-example. The objects
called d1 and d2 are R-related to themselves but are mutually not R-related.

It is not hard to see that the d1-try-out branch in the second step of this tableau (8.28) can
not give any other counter-examples with only two objects. If we would have chosen for

8.2. TABLEAUS FOR PREDICATE LOGIC 8-19

the regular branch after this second step we could have constructed the other two object
counter-model, that consists of two objects who are mutually related but are not related to
themselves. We leave this as an exercise to the reader.

Exercise 8.11 Try to find the other counter-model as mentioned here above using the try-out
branches on other places.

Exercise 8.12 Show the invalidity of the following inference with a tableau dressed up with try-
out branches. Try to keep the final counter-model as small and simple as possible.

(1) ∀x∃y Rxy/∀x∃y Ryx

(2) ∃x∀y Rxy/∃x∀y Ryx

8.2.3 Invalid inferences without finite counter-examples

With these new extended ‘existential’ rules we can always find finite counter-examples,
but this does not mean that every invalid inference can be recognized as such by the
extended tableau system. In predicate logic we can make up invalid inferences with only
infinite counter-models. Here is an example with two premises:

∀x∃y Rxy,∀x∀y∀z ((Rxy ∧Ryz)→ Rxz) 6|= ∃x∃y (Rxy ∧Ryx) (8.31)

Take again the ‘love’-interpretation for the relation R then the inference can be rephrased
as follows:

Everybody loves somebody

Everybody loves all persons who are loved by his loved ones.

There is at least a pair of persons who love each other.

(8.32)

We would expect that the seemingly cautious conclusion would follow from the happy
hippie optimism conveyed by the two premises. And in fact it holds as long as we would
stick to situations with only a finite number of persons.

Exercise 8.13 Show that for finite models which satisfy the two premises as given (8.31) will
always contain a symmetric pair: ∃x∃y (Rxy ∧ Ryx). A finite happy hippie community always
contains a happily loving couple!

In situations with an infinite number of objects we can interpret R in such a way that the
two premises are true and the conclusion is false. For example, take the integers instead
of people with R interpreted as the relation <. The inference then can be recaptured as
follows:

8-20 CHAPTER 8. VALIDITY TESTING

Every integer is smaller than some integer

If one integer is smaller than a second one, then all the integers which
are larger than the second are also larger than the first.

There is at least one pair of integers who are smaller than each other.

Here the premises are clearly true, and the conclusion is false, which proves that the
inference as given in (8.31) is indeed invalid. Such infinite counter-models can never be
constructed by our tableaus, and since the inference of (8.31) has only infinite counter-
examples its invalidity can never be demonstrated by the system, not even with the help
of the extended ‘existential’ rules.

8.2.4 Tableaus versus natural reasoning

Although the tableau systems which we have discussed so far are pretty good computa-
tional methods for testing the validity of inferences, there is also a clear disadvantage.
Each of the individual steps in a tableau can be understood quite easily, but a tableau as a
full line of argumentation is not very transparent, and it seems that it does not reflect the
way ordinary humans reason.

One part of this type of objection against the tableau method is superficial because there
are many small steps in a tableau that are never made explicitly in a ‘normal’ argumenta-
tion because they are too trivial to be mentioned. Due to the fact that the tableau method
is a pure symbolic method all the small steps have to be taken into account, and therefore
these steps may look quite artificial.

But there is more to it. In a tableau we reason in a negative way, which tends to be un-
natural. Validity is demonstrated by the exclusion of counter-examples, whereas humans
tend to prove the validity of an inference directly, from the given facts to what has to be
proven. If this does not work, or if uncertainty about the validity of an inference arises,
one tries to use his imagination to think of a counter-example to refute the validity. Proof
and refutation are most often considered to be two different sorts of mental activity. The
tableau method incorporates the two in one computational system by argumentation in an
indirect way.

In one of the next chapters we will discuss another proof system which can only be used to
demonstrate validity and which makes use of rules which are close to the way humans rea-
son. Therefore, these system are referred to as ‘natural deduction’. The tableau systems
are considered as ‘unnatural deduction’. They are very useful for ‘black box’ automated
reasoning systems, where the users are only interested in a final answer about the validity
of an inference (and maybe also a specification of a counter-example) but not how it has
been computed.

This is quite an exaggerated qualification. It is true that tableau systems may behave
in an unnatural way. We have seen an example of the first tableau system for predicate

8.2. TABLEAUS FOR PREDICATE LOGIC 8-21

logic where the system tried to construct a complicated infinite counter-example for an
invalid inference for which everybody can make a very simple counter-example. We have
also shown how the rules can be ‘tamed’ to perform in a more ‘reasonable’ way. The
development of more natural and more ‘intelligent’ tableau systems is an important issue
of contemporary research of applied computational logic.

Moreover, systems which may perform strangely in certain circumstances may behave
remarkably intelligent in others. Here is an example:

∃x∀y (Rxy ↔ ¬∃z (Ryz ∧Rzy)) (8.33)

This is a predicate logical formulation of what is known as the Quine paradox (after the
American philosopher and logician Willard Van Orman Quine). This formula turns out to
be inconsistent. This is not directly obvious. It really takes some argumentation.

Exercise 8.14 The formula ∃x∀y (Ryx ↔ ¬Ryy) is a predicate logical version of the famous
Russell paradox (take R to be the relation ‘element of’ to get the exact version). Show with a
tableau that this formula can never be true (is inconsistent).

The subformula¬∃z (Ryz∧Rzy) of (8.33) means that there is no object which is mutually
related to y. In a domain of persons and by interpretingRxy as that ‘x knows y’ this means
that y has no acquaintances, that is, persons known by y who also know y. Let us say that
such a person without acquaintances is called a ‘loner.’ The full formula as given in (8.33)
says that there exists some person who knows all the loners and nobody else. Let us call
this person the ‘loner-knower’. According to the following infallible argumentation this
loner-knower cannot exist.

• If the loner-knower knows himself, then he has an acquaintance, and therefore he
is not a loner himself. But then he knows a person who is not a loner, which
contradicts the fact that he only knows loners.

• If he does not know himself, then he is not a loner, otherwise he would know him-
self. But if he is not a loner then he must have an acquaintance. This acquaintance
is a loner neither, since he knows the loner-knower and the loner-knower knows
him. So, the loner-knower knows a non-loner, which also contradicts the fact that
the loner-knower only knows loners.

• The inevitable conclusion is that the loner-knower does not exist, because for every
person it must be the case that he knows himself or not. For the loner-knower both
options lead to a contradiction.

In Figure (8.4) on page 8-23 the inconsistency of (8.33) has been demonstrated by means
of a closed tableau. This closed tableau, starting with a sequent with the formula on
the left hand side, shows that the Quine paradox can never be true. If we rephrase the
information in the closing tableau of Figure 8.4 we get in fact quite the same line of

8-22 CHAPTER 8. VALIDITY TESTING

argumentation as have been outlined here above. In Figure 8.5 on page 8-24 the tableau
has been translated back to the interpretation in natural language as has been described
here.

8.3 Tableaus for epistemic logic

The tableau method is used extensively for classical logics such as propositional and pred-
icate logic. It does not have been applied very much in the field of modal logic, such as the
epistemic and dynamic logics that have been introduced in the first part. In modal logicref
the tradition tends much more towards axiomatic systems and model-checking. Part of
the underlying reasons are purely cultural, but there are also important technical reasons.
There are many different modal logics using a wide variety of different kind of modal
operators. On top of that, these logics also make use of different classes of possible world
models. Technically, it is just easier to capture these differences by means of axioms. It
is just a matter of replacing some axioms by others in order to skip from one modal logic
to the other. Directed search methods, such as the tableau method, are much harder to
modify appropriately.

We will avoid technical details here. In order to illustrate a tableau method for a modal
system we take the simplest one of which rules look very much like those of the last
system we have presented for predicate logical reasoning. The system we will discuss
here is a validity test for inferences in epistemic propositional logic with only one agent,
that is, propositional logic with a single K operator.

Remember that Kϕ stands for the proposition which says the agent knows that ϕ is the
case, and in terms of possible world semantics, it meant that ϕ is true in all the agent’s
epistemic alternatives. This means that we have to keep track of more worlds in one node
in a tableau, since a counter-model may exist of multiple worlds. In tableau terminology
these are called multi-sequents which are represented by boxes which may contain more
than one sequent.

Below the rules have been given in a brief schematic way. The vertical lines of dots
represent one or more sequents, and ϕ > means that the formula ϕ appears on the left
hand side of at least one of the sequents in the box, and ϕ { means it appears in all of
them. The symbols < ϕ and { ϕ are used to describe analogous situations for formulas
on the right side.

8.3. TABLEAUS FOR EPISTEMIC LOGIC 8-23

∃x∀y (Rxy ↔ ¬∃z(Ryz ∧Rzy)) ◦

∃L

∀y (R1y ↔ ¬∃z(Ryz ∧Rzy)) ◦

∀L

R11↔ ¬∃z(R1z ∧Rz1) ◦

↔L

R11,¬∃z(R1z ∧Rz1)) ◦

¬L

◦ ∃z(R1z ∧Rz1)

∃R

◦R11 ∧R11

∧R

•R11 •R11

◦R11,¬∃z(R1z ∧Rz1)

¬R

∃z(R1z ∧Rz1) ◦

∃L

∀y (R1y ↔ ¬∃z(Ryz ∧Rzy)), R12 ∧R21 ◦

∧L

R12, R21 ◦

∀L

R12↔ ¬∃z(R2z ∧Rz2) ◦

↔L

R12,¬∃z(R2z ∧Rz2) ◦

¬L

◦ ∃z(R2z ∧Rz2)

∃R

◦R21 ∧R12, R22 ∧R22

∧R

•R21 •R12

•R12,¬∃z(R2z ∧Rz2)

Figure 8.4: A tableau which proves that the Quine-paradox is not satisfiable.

8-24 CHAPTER 8. VALIDITY TESTING

There exists a ‘loner-knower’.

∃L

Call this ‘loner-knower’ d1.

∀L

d1 knows himself if and only if d1 is a loner.

↔L

d1 knows himself and d1 is
a loner.

¬L

d1 knows himself and d1
has no acquaintances.

∃R

d1 knows himself and d1 is
not an acquaintance of him-
self.

∧R

d1 knows himself and d1
does not know himself.

d1 does not know himself and d1 is not a loner.

¬R

d1 has an acquaintance.

∃L

d1 has an acquaintance, which we call d2.

∧L

d1 knows d2 and vice versa.

∀L

d1 knows d2 and vv. d1 knows d2 if and only if
d2 is a loner.

↔L

d1 knows d2 and vv. d2 is a loner.

¬L

d1 knows d2 and vv. d2 has no acquaintances.

∃R

d1 knows d2 and vv. d1 nor d2 is an acquaintance of d2.

∧R

d1 knows d2 and
vv. d1 does not
know d2.

d1 knows d2 and
vv. d2 does not
know d1.

d1 knows d2 and vv. d1
does not know d2. d2 is
not a loner.

Figure 8.5: A tableau which proves that the Quine-paradox is not satisfiable.

8.3. TABLEAUS FOR EPISTEMIC LOGIC 8-25

KL Kϕ
〉

...

ϕ
{

...

KR ...
〈
Kϕ

...
+◦ ϕ

KR+ ...
〈
Kϕ

...
〈
ϕ

...
+◦ ϕ

(8.34)

KL: If a formula Kϕ appears on the left part of at least one of the sequents in the box
then remove this formula from those sequents and add ϕ to all the sequents in the
box.

KR: If a formulaKϕ appears in the right part of at least one of the sequents then remove
them and add the sequent ◦ ϕ to the box.

KR+: If a formula Kϕ appears on the right part of at least one of the sequents then add
the sequent ◦ ϕ to the box, and add a try-out branch with the original sequents of
which one is extended with ϕ on the right part of it.

The symbol
+◦ means that a new sequent (world) has been added to the box. This also

implies that all formulas Kϕ which were removed in preceding steps becomes active
again. They are to be placed in left part of the first sequent of the sequent box.

Below two relatively simple examples are given. The first demonstrates thatK(p→ q) |=
Kp → Kq by means of a closed tableau. As you can see, the two end nodes consist of
sequent boxes of which each contains a contradictory sequent. The second tableau shows
that the converse of this inference is invalid: Kp→ Kq 6|= K(p→ q).

8-26 CHAPTER 8. VALIDITY TESTING

K(p→ q) ◦Kp→ Kq

→R

K(p→ q), Kp ◦Kq

KR

K(p→ q), Kp ◦
+◦ q

KL

K(p→ q), p ◦
p ◦ q

KL

p→ q, p ◦
p→ q, p ◦ q

→L

p→ q, p ◦
p • p, q

p→ q, p ◦
q, p • q

Kp→ Kq ◦K(p→ q)

→L

◦Kp,K(p→ q)

KR+

◦ p,K(p→ q)

KR

◦ p
+◦ p→ q

→R

◦ p
p ◦ q

◦K(p→ q)
+◦ p

Kq ◦K(p→ q)

(8.35)
Before we may jump to conclusions we need to be precise about closed and open multi-
sequents. A multi-sequent is closed if it contains an impossible sequent containing con-
tradictory information, i.e., a formula which appears on the left and on the right part of
the sequent. All the worlds as described in a multi-sequent need to be possible to provide
a counter-example. A tableau is closed if it contains only branches with closed multi-
sequents in the terminal nodes. A multi-sequent is open if it is not closed and all of its
sequents are free of logical symbols. A tableau is open if it contains at least one open
multi-sequent. As for propositional and predicate logic, an open tableau detects invalidity
and the open multi-sequent is nothing less than the description of a counter-model. The
first sequent of the open node is then the world at which rejection of the inference takes
place: all the premises are true there, and the conclusion will be false. A closed tableau
tells us that the top sequent represents a valid inference.

The first tableau in (8.35) showed a direct consequence of the logical closure property
of the epistemic operator K, which holds for all ‘necessity’ operators in modal logics
such as the dynamic operator [π]. The second tableau in (8.35) shows the invalidity ofref

8.3. TABLEAUS FOR EPISTEMIC LOGIC 8-27

the converse by means of the construction of a two worlds counter-model of which one
falsifies p and the other verifies p and falsifies q. We have used the try-out version of KR

in the second step in order to find the smallest counter-model. The third step is a regular
KR-step because an additional try-out branch would close immediately (p • p, q).
If we would have used KR twice we would have end up with a three worlds counter-
model. In other more complicated cases of invalid inference the try-out version of the KR

is really needed to find finite counter-models, just as we have seen for certain predicate
logical inferences.

Exercise 8.15 Show with two tableaus that Kp ∨Kq |= K(p ∨ q) and K(p ∨ q) 6|= Kp ∨Kq.

The following tableau shows a principle which holds specifically for epistemic logic:
negative introspection.

¬Kp ◦K¬Kp

¬L

◦Kp,K¬Kp

KR

◦K¬Kp
+◦ p

KR

◦
◦ p

+◦ ¬Kp

¬R

◦
◦ p

Kp ◦

KL

p ◦
p • p
p ◦

(8.36)

The tableau ends with a description of a single ‘impossible’ possible worlds model. In

8-28 CHAPTER 8. VALIDITY TESTING

fact it tells us that a counter-model requires at least one impossible world at which p is
both true and false, and therefore, a counter-model for negative introspection does not
exist.

Exercise 8.16 Show with two tableaus that Kp |= p and p 6|= Kp.

Exercise 8.17 Show with a closed tableau that Kp |= KKp (positive introspection).

Exercise 8.18 Show with a closed tableau that K(Kp ∨ q) |= Kp ∨Kq.

As a last example we demonstrate one other tableau where the try-out version of KR are
required to get a counter-model to compute an invalidity: K¬Kp 6|= K¬p. It says that if
the agent knows that he does not know that p does not imply that he must know that ¬p
is the case. The tableau to find the smallest counter-model requires two applications of
KR+ .

8.3. TABLEAUS FOR EPISTEMIC LOGIC 8-29

K¬Kp ◦K¬p

KR+

K¬Kp ◦ ¬p

¬R

K¬Kp, p ◦

KL

¬Kp, p ◦

¬L

p ◦Kp

KR

K¬Kp, p ◦
+◦ p

KL

¬Kp, p ◦
¬Kp ◦ p

¬L
¬L

p ◦Kp
◦ p,Kp

KR+

p ◦
◦ p, p

K¬Kp, p ◦
◦ p
+◦ p

K¬Kp ◦
+◦ ¬p

(8.37)

The counter-model which has been found in the left-most branch contains two worlds,
one which verifies p and one which falsifies p. In both worlds the agent does not know
that p and so K¬Kp is true in the first world (and also in the second), but K¬p is false in
this world because p is false in the second.

Exercise 8.19 Show with a tableau that K¬K¬p 6|= ¬K¬Kp.

8-30 CHAPTER 8. VALIDITY TESTING

Exercise 8.20 Show with a tableau that ¬K¬Kp |= K¬K¬p.

In many modal logics such as the epistemic and dynamic logic of the first part of this
book the so-called finite model property holds. This means that there exist no inferences
(with a finite set of premises) with only infinite counter-models such as we have seen for
predicate logic in the example (8.31) on page 8-19. This also means that we can always
detect invalidity for invalid inferences in single agent epistemic logic by using the tableau
method with the given rules for the knowledge operator.

Single agent epistemic logic is by far the easiest modal logic when it comes down to
defining a complete tableau system. For other modal logics this is much harder, but
not impossible. Instead of multi-sequents so-called hyper-sequents are needed to search
and specify counter-models by means of reduction rules. A hyper-sequent may not only
contain multiple sequents but also other hyper-sequents. Using the format we have been
using for single agent epistemic logic here this would look like nested boxes which can
be used to capture the accessibility relation of potential counter-models. For multi-modal
logics such as multi-agent epistemic logic and dynamic logic we need in addition labeling
mechanisms for the nested boxes as to keep track of multiple accessibility relations. On
top of that we also need quite complicated rules for ‘path’-operators such as the common
knowledge operator in multi-agent epistemic logic or the iteration operator in dynamic
logic. All these technical complications are the main reason that tableau methods for
advanced modal logics have not been standardized yet. Construction of models, whether
they are realized by means of extended tableau techniques or alternative methods, are in
the field of applied modal logic a very important theme of ongoing research. For sake of
presentation and clarity, we do not want to drag along our readers into the highly technical
mathematics of it.

8.3. TABLEAUS FOR EPISTEMIC LOGIC 8-31

K¬K¬p ◦ ¬K¬Kp
¬R

K¬K¬p,K¬Kp ◦

KL

K¬K¬p,¬Kp ◦
¬L

K¬K¬p ◦Kp

K+
R

K¬K¬p ◦ p

KL

¬K¬p ◦ p
¬L

◦K¬p, p

KR

K¬K¬p,K¬Kp ◦ p
◦ ¬p

KL

¬K¬p,K¬Kp ◦ p
¬K¬p ◦ ¬p

¬L (2×)

K¬Kp ◦K¬p, p
◦K¬p,¬p

K+
R

K¬Kp ◦ p
◦ ¬p,¬p

KL

¬L (2×)

K+
R

◦ p, p
◦ ¬p,¬p

K¬K¬p,K¬Kp ◦ p
◦ ¬p,¬p

+◦ p

K¬K¬p,K¬Kp ◦ p
◦K¬p,¬p

+◦ ¬p

K¬K¬p,K¬Kp ◦
+◦ p

(8.38)

8-32 CHAPTER 8. VALIDITY TESTING

Chapter 9

Proofs

In the first part of this book we have discussed complete axiomatic systems for proposi-
tional and predicate logic. In the previous chapter we have introduced the tableau systems
of Beth, which was a method to test validity. This method is much more convenient to
work with since it tells you exactly what to do when a given formula has to be dealt with
during such a validity test. Despite the convenience of Beth’s system it does not represent
the way humans argue.

In the late 1930s the German mathematician Gerhard Gentzen developed a system which
he called natural deduction, in which the deduction steps as made in mathematical proofs
are formalized. This system is based not so much on axioms but on rules instead. For
each logical symbol, connectives and quantifiers, rules are given just in the way they are
dealt with in mathematical proofs.

Gerhard Gentzen Dag Prawitz

In this chapter we will demonstrate how this system works. The precise definition of

9-1

9-2 CHAPTER 9. PROOFS

these rules goes back to the Swedish logician Dag Prawitz, who gave a very elegant
reformulation of Gentzen’s work in the 1960s.1

9.1 Natural deduction for propositional logic

In chapter 2 we have introduced an axiomatic system for propositional logic. By means
of the rule of modus ponens one may jump from theorems to new theorems. In addition
we had three axioms, theorems that do not have to be proven, and which may be used
as starting points. Since these axioms are tautologies, and the rule of modus ponens is a
sound rule of inference, a proof is then just a list of tautologies, propositions that are true
under all circumstances.

Although this system is fun to work with for enthusiast readers who like combinatoric
puzzles, it is surely not the way people argue. You may remember that it took us even five
steps to prove that an extremely simple tautology as ϕ → ϕ is valid. This may even be
worse for other trivial cases. It takes almost a full page to prove that ϕ→ ¬¬ϕ is valid (a
real challenge for the fanatic puzzler)!

The pragmatic problem of a purely axiomatic system is that it does not facilitate a trans-
parent manner of conditional reasoning, which makes it deviate very much from human
argumentation. In an ordinary setting people derive conclusions which hold under certain
circumstances, rather than summing up information which always hold. Especially when
conditional propositions, such as the implicative formulas as mentioned here above, have
to be proven the conditionals are used as presuppositions. Let us illustrate this with a
simple mathematical example.

If a square of a positive integer doubles the square of another positive integer
then these two integers must both be even.

Suppose m,n are two positive integers such that m2 = 2n2. This means m
must be even, because ifm2 is even thenmmust be even as well. So,m = 2k
for some positive integer k. Since m2 = 2n2 we get 2n2 = (2k)2 = 4k2, and
therefore, n2 = 2k2 which means that n must be even as well.

In the proof we presuppose that the antecedent (m2 = 2n2) of the conditional proposition
(m2 = 2n2 → m,n even) that is to be proven holds. This is what is called an hypothesis.
In the proof we derived that the consequent (m,n even) of the proposition holds under the
circumstances that the hypothesis holds. The validity of this type of conditional reasoning
reflects an important formal property of propositional logic (and also of the other logics

1The format of the proofs in this chapter has been introduced by the American logician John Fitch.
Prawitz used tree like structures, whereas here, in analogy of Fitch’s presentation proofs are divided into
so-called subproofs.

9.1. NATURAL DEDUCTION FOR PROPOSITIONAL LOGIC 9-3

which has been introduced in the first part of this book), which is called the deduction
property. Formally it looks as follows: For every set of formulas Σ and for every pair of
formulas ϕ and ψ:

Σ, ϕ |= ψ if and only if Σ |= ϕ→ ψ (9.1)

It says that by means of the implication we can reason about valid inference within the
propositional language explicitly. A conditional proposition ϕ → ψ is a valid inference
within a context Σ if and only if ψ is a valid conclusion from Σ extended with ϕ as an
additional assumption (hypothesis). The deduction property reveals the operational nature
of implication: ϕ leads to the conclusion ψ.

Exercise 9.1 Show that this deduction property holds for propositional logic by making use of
truth tables.

Exercise 9.2 The modus ponens rule and the deduction property are characteristic for the implica-
tion in propositional logic. Let c© be some propositional connective which has the modus ponens
and deduction property:

ϕ,ϕ c© ψ |= ψ ϕ |= ψ if and only if |= ϕ c© ψ

Show that c© must be the implication→.

Integration of the deduction property in a deduction system requires accommodation of
hypotheses, i.e., additional assumptions that a reasoner uses in certain parts of his line of
argumentation or proof. A proof of ϕ→ ϕ then becomes trivial. Since assuming ϕ leads
to ϕ we may conclude that ϕ→ ϕ is always true. We may write this as follows:[

ϕ

ϕ repeat

]
ϕ→ ϕ Ded

(9.2)

The first part between square brackets we call a subproof of the full proof. A subproof
starts with an hypothesis (underlined) which is assumed to hold within this subproof.
Proving a conditional proposition ϕ → ψ requires a subproof with hypothesis ϕ and
conclusion ψ within this subproof. For our simple example (9.2) this immediately leads to
success, but it may involve much more work for longer formulas. Consider the following
example where we want to prove the second axiom of the axiomatic system as given in
chapter 2: (ϕ→ (ψ → χ))→ ((ϕ→ ψ)→ (ϕ→ χ)).

ϕ→ (ψ → χ)

...

(ϕ→ ψ)→ (ϕ→ χ)

(ϕ→ (ψ → χ))→ ((ϕ→ ψ)→ (ϕ→ χ)) Ded

(9.3)

9-4 CHAPTER 9. PROOFS

We have first set up a preliminary format of our proof. The conditional proposition that
we want to prove has been rewritten as a subproof, which we have to establish later on.
We need to show that the antecedent of the proposition indeed leads to the consequent.
Since the desired conclusion of the subproof is an implication again we may follow the
same procedure and extend our first format in the following way:

ϕ→ (ψ → χ)
ϕ→ ψ

...

ϕ→ χ

(ϕ→ ψ)→ (ϕ→ χ) Ded

(ϕ→ (ψ → χ))→ ((ϕ→ ψ)→ (ϕ→ χ)) Ded

(9.4)

Here we have a subproof within a subproof, in which we need to show that the additional
assumption ϕ→ ψ leads to a conclusion ϕ→ χ. This second hypothesis has been added
to the hypothesis of the first subproof. In order to obtain the desired conclusion we may
therefore use both hypotheses.

Again, the conclusion is a conditional proposition, and so, for the third time, we squeeze
in a new subproof.

ϕ→ (ψ → χ)

ϕ→ ψ
ϕ

...

χ

ϕ→ χ Ded

(ϕ→ ψ)→ (ϕ→ χ) Ded

(ϕ→ (ψ → χ))→ ((ϕ→ ψ)→ (ϕ→ χ)) Ded

(9.5)

Given this reformulation, we need to prove that χ holds given three hypotheses: ϕ →
(ψ → χ), ϕ→ ψ and ϕ. This is not very hard to prove by making use of our earlier rule
of modus ponens. From the second and the third ψ follows and from the first and the third
ψ → χ. These new propositional formulas can then be combined to establish χ. Here is

9.1. NATURAL DEDUCTION FOR PROPOSITIONAL LOGIC 9-5

our final result:

ϕ→ (ψ → χ)

ϕ→ ψ
ϕ

ψ MP

ψ → χ MP

χ MP

ϕ→ χ Ded

(ϕ→ ψ)→ (ϕ→ χ) Ded

(ϕ→ (ψ → χ))→ ((ϕ→ ψ)→ (ϕ→ χ)) Ded

(9.6)

This result means that we no longer have to use the second axiom of the axiomatic system
as described in chapter 2. It can be derived by means of our new deduction rule.

The first axiom of the system, ϕ → (ψ → ϕ), can be established also quite straightfor-
wardly by means of the deduction rule. In order to prove ϕ→ (ψ → ϕ) we need to show
that ψ → ϕ can be proved from ϕ. This can be shown then by simply concluding that ϕ
follows from ϕ and ψ:

ϕ[
ψ

ϕ rep.

]
ψ → ϕ Ded

ϕ→ (ψ → ϕ) Ded

(9.7)

Exercise 9.3 Prove (ϕ→ (ψ → χ))→ (ψ → (ϕ→ χ)).

9.1.1 Proof by refutation

It seems that we can replace the axiomatic system by a natural deduction system by sim-
ply replacing the axioms by a single rule, the deduction rule. This is not the case, however.
The third axiom of the axiomatic system (¬ϕ → ¬ψ) → (ψ → ϕ), also called contra-
position, can not be derived by deduction and modus ponens only. We need something to
deal with the negations in this formula.

There seems to be a way out by taking ¬ϕ to be an abbreviation of the conditional formula
ϕ → ⊥. This establishes a procedure to prove negative information by means of the
deduction rule. Proving ¬ϕ requires a proof that the assumption that ϕ holds leads to
a contradiction (⊥). This is indeed a natural way to establish negative information, as
shown in the following example

9-6 CHAPTER 9. PROOFS

√
2 is not a rational number.

Suppose
√

2 were a rational number. This means there are two positive in-
tegers m and n such that (m/n)2 = 2 and, in addition, that m or n is odd,
since we can simply take the smallest pair such that (m/n)2 = 2 (they can-
not both be even since then it would not be the smallest pair for which this
equation holds). But then m2 = 2n2 and therefore m and n must be even, as
we have shown in an earlier example (page 9-2). Clearly, we have derived a
contradiction, and therefore

√
2 must be an irrational number.

A reformulation in natural deduction style looks as follows:

√
2 ∈ Q

(m/n)2 = 2 for certain pair of positive integers
m,n with m or n being odd.

m = 2n2

m and n are both even positive integers

⊥

¬(
√

2 ∈ Q)

(9.8)

This way of proving negative statements suffices to derive certain propositional logical
theorems containing negative information. For example, the converse of the contraposi-
tion axiom can be established in this way;

ϕ→ ψ

ψ → ⊥
ϕ

ψ MP

⊥ MP

ϕ→ ⊥ Ded

(ψ → ⊥)→ (ϕ→ ⊥) Ded

(ϕ→ ψ)→ ((ψ → ⊥)→ (ϕ→ ⊥)) Ded

(9.9)

Replacing→ ⊥ by negations then settles (ϕ → ψ) → (¬ψ → ¬ϕ). Unfortunately, this
simple solution does not work for the axiom of contraposition. To get a complete system
we need an additional rule.

Exercise 9.4 Show, by trying out the procedure which we have used for the previous examples,
that you can not derive the axiom of contraposition by modus ponens and the deduction rule only.

9.1. NATURAL DEDUCTION FOR PROPOSITIONAL LOGIC 9-7

This supplementary rule that we will need is in fact quite close to the deduction rule for
negations. To derive a formula ¬ϕ we prove that ϕ leads to a contradiction, which in fact
says that ϕ can not be true. Our new rule says that ϕ can be proven by showing that ϕ can
not be false. In terms of subproofs, if the hypothesis ¬ϕ leads to a contradiction we may
conclude that ϕ is the case. In this way we can prove the contraposition indeed.

1. ¬ϕ→ ¬ψ

2. ψ
3. ¬ϕ

4. ¬ψ MP 1,3

5. ⊥ MP 2,5

6. ϕ new rule 3-5

7. ψ → ϕ Ded 2-6

8. (¬ϕ→ ¬ψ)→ (ψ → ϕ) Ded 1-7

(9.10)

In step 6 we derived ϕ from the subproof [¬ϕ | . . .⊥]. The hypothesis that ϕ is false has
led to a contradiction. The contradiction in 5 is obtained by a modus ponens, since ¬ψ is
an abbreviation of ψ → ⊥ here.

Exercise 9.5 Prove ((ϕ→ ψ)→ ϕ)→ ϕ. Despite the absence of negations in this formula, you
will need the new rule.

Exercise 9.6 Prove ϕ→ ¬¬ϕ and ¬¬ϕ→ ϕ. Which of those proofs makes use of the new rule?

In logic this new rule is also called proof by refutation, or more academically, reductio ad
absurdum. In fact, it captures the same way of reasoning as we have used in the tableau
systems of the previous chapter. Proving the validity of an inference by presenting a
closed tableau we show that the given formula can never be false, and therefore must be
true, under the circumstances that the premises hold.

9.1.2 Introduction and elimination rules

The three rules suffice to obtain a complete system for propositional logic. The tradition
in natural deduction is to separate the treatment of negations and implications which leads

9-8 CHAPTER 9. PROOFS

to the following five rules.

...

ϕ→ ψ

...

ϕ

...

ψ E→

...
ϕ

...
ψ
...

...
ϕ→ ψ I→

...

¬ϕ
...

ϕ

...

⊥ E¬

...
ϕ

...
⊥
...

...
¬ϕ I¬

...
¬ϕ

...
⊥
...

...
ϕ E⊥

(9.11)

These rules are called elimination (E) and introduction (I) rules. The modus ponens is
called an elimination rule since it says how to remove an implication ϕ→ ψ and replace
it by its consequent ψ. The rule then obtains the structural name E→. Elimination of
negation, E¬, is then, as a consequence, the derivation of ⊥ from ¬ϕ and ϕ. The intro-
duction rule for implication, I→, is the deduction rule because it puts an implication on
stage. I¬ is defined analogously. The last rule represents the rule of proof by refutation
and is most often seen as elimination of ⊥ (E⊥).2

Two simpler versions of the deduction rule and the rule of proof by refutation are some-
times added to the system such that repetitions, as for example in the proof of ϕ→ (ψ →
ϕ) as given in (9.7), can be avoided. If a statement ϕ is true then it also holds under
arbitrary conditions: ψ → ϕ. This is in fact a variation of the deduction rule (without
hypothesis). [

ϕ

ψ → ϕ I→ ‘simple’

]
ϕ→ (ψ → ϕ) I→

(9.12)

For proofs of refutation the analogous simplification is called ex falso. Everything may
be derived from a contradiction. We will use these simplified versions also in the sequel
of this chapter. In general deductive form they look as follows:

...

ψ

...

ϕ→ ψ I→

...

⊥
...

ϕ E⊥

(9.13)

2Sometimes I¬ is used for this rule, and then the introduction rule for negation is called falsum intro-
duction (I⊥).

9.1. NATURAL DEDUCTION FOR PROPOSITIONAL LOGIC 9-9

9.1.3 Rules for conjunction and disjunction

In propositional logic we also want to have rules for the other connectives. We could try
the same procedure as we have done for negation. Find an equivalent formulation in terms
of→ and ⊥ and then derive rules for these connectives.

ϕ ∨ ψ ≡ (ϕ→ ⊥)→ ψ ϕ ∧ ψ ≡ (ϕ→ (ψ → ⊥))→ ⊥ (9.14)

This option does not lead to what may be called a system of natural deduction. The
equivalent conditional formulas are much too complicated. Instead, we use direct rules
for manipulating conjunctive and disjunctive propositions. Below the introduction and
elimination rules are given for the two connectives.

...

ϕ ∧ ψ
...

ϕ/ψ I∨

...

ϕ

...

ψ

...

ϕ ∧ ψ I∧

...

ϕ ∨ ψ
...

ϕ

...
χ
...

...

ψ

...
χ
...

...

χ E∨

...

ϕ/ψ

...

ϕ ∨ ψ I∨

(9.15)

The rules for conjunction are quite straightforward. The elimination of a conjunction
is carried out by selecting one of its arguments. Since we know that they are both true
this is perfectly sound and a natural way of eliminating conjunctions. Introduction of a
conjunction is just as easy. Derive a conjunction if both arguments have already been
derived.

The introduction of a disjunction is also very simple. If you have derived one of the
arguments then you may also derive the disjunction. The rule is perfectly correct but it
is not very valuable, since in general, the disjunction contains less information then the
information conveyed by one of the arguments.

9-10 CHAPTER 9. PROOFS

The elimination of the disjunction is the most complicated rule. It uses two subproofs, one
for each of the arguments of the disjunction. If in both subproofs, starting with one of the
disjuncts (ϕ, ψ) as a hypothesis, the same information can be derived (χ) then we know
that this must also hold in a context in which we are uncertain which of the arguments in
fact holds (ϕ ∨ ψ). Despite the complexity of the rule, its soundness can be seen quite
easily. We leave this to the reader in the next exercise.

Exercise 9.7 Show that Σ, ϕ ∨ ψ |= χ if and only if Σ, ϕ |= χ and Σ, ψ |= χ.

The elimination rule of disjunction reflects a natural way of dealing with uncertainty in
argumentation. Here is an example of a mathematical proof.

There exists two irrational numbers x and y such that xy is rational.

Let z =
√

2
√
2
. This number must be either irrational or rational. Although,

we are uncertain about the status of z we can find in both cases two irrational
x and y such that xy must be rational.

Suppose that z is rational, then we may take x = y =
√

2. We have just seen
earlier that

√
2 is irrational, so this choice would be satisfactory.

Suppose that z is irrational. Then we may take x = z and y =
√

2, because

then xy = z
√
2 =
√

2
√
2·
√
2

=
√

2
2

= 2, and that is a perfect rational number.

In the deduction style we could reformulate our argumentation as follows

√
2
√
2 ∈ Q ∨

√
2
√
2 6∈ Q

√
2
√
2 ∈ Q

x = y =
√

2

xy =
√

2
√
2

xy ∈ Q for certain x, y 6∈ Q

√
2
√
2 6∈ Q

x =
√

2
√
2
, y =

√
2

xy = 2

xy ∈ Q for certain x, y 6∈ Q

xy ∈ Q for certain x, y 6∈ Q

(9.16)

In practical reasoning disjunction elimination is also manifest as a way to jump to conclu-
sions when only uncertain information is available. The following realistic scenario gives
an illustration of this.

9.1. NATURAL DEDUCTION FOR PROPOSITIONAL LOGIC 9-11

I am traveling from A to B by train. If I run to the railway station of my home
town A then I’ll be in time to catch the train to B at 7.45AM, and then in B I
will take the bus to the office and I will be there in time. If I won’t run then
I won’t catch the 7.45AM train, but in this case I could take the train to B at
8.00AM instead. I would then need to take a cab from the railway station in B
to arrive in time at the office. I start running to the railway station, not being
sure whether my physical condition this morning will be enough to make me
catch the first train (last night I have been to the cinema, and later on we
went to the pub, etcetera). But no worries, I’ll be in time at the office anyway
(okay, it will cost me a bit more money if I won’t catch the first train, since
taking a cab is more expensive then taking the bus).

Here is the deductive representation of my reasoning:

Catch 7.45AM-train ∨ Catch 8.00AM-train
Catch 7.45AM-train.

Take the bus in B to the office.

I’ll be in time at the office.

Catch 8.00AM-train.

Take a cab in B to the office.

I’ll be in time at the office.

I’ll be in time at the office.

(9.17)

Exercise 9.8 Can you make up a similar scenario, jumping to safe conclusion while being un-
certain about the conditions, from your personal daily experience? Now, reformulate this as a
deduction such as given for the previous example.

Here is a very simple example of disjunction elimination in propositional logic. We derive
ψ ∨ ϕ from the assumption ϕ ∨ ψ:

1. ϕ ∨ ψ[
2. ϕ

3. ψ ∨ ϕ I∨ 2

]
[

4. ψ

5. ψ ∨ ϕ I∨ 4

]
6. ψ ∨ ϕ E∨ 1,2-3,4-5

(9.18)

The formula ψ∨ϕ can be derived from ϕ and ψ by applying I∨, so we can safely conclude
ψ ∨ ϕ from ϕ ∨ ψ by E∨.

9-12 CHAPTER 9. PROOFS

Exercise 9.9 Prove ϕ→ ψ from the assumption ¬ϕ ∨ ψ.

Exercise 9.10 Prove ¬(ϕ ∧ ψ) from ¬ϕ ∨ ¬ψ.

Exercise 9.11 Prove (ϕ ∨ ψ) ∧ (ϕ ∨ χ) from ϕ ∨ (ψ ∧ χ).

In general, disjunction elimination applies whenever we need to prove a certain formula χ
from a disjunctive assumption ϕ ∨ ψ. The strength of the elimination rule for disjunction
is reflected by the equivalence of the inference ϕ ∨ ψ |= χ on the one hand and the two
inferences ϕ |= χ and ψ |= χ on the other (as you may have computed for yourself when
you have made exercise 9.7 on page 9-10).

Disjunctive conclusions are much harder to establish in a deduction because of the earlier
mentioned weakness of the introduction rule for disjunctions. Direct justification of a
conclusion ϕ ∨ ψ by means of I∨ requires a proof of one of the arguments, ϕ or ψ,
which in many cases is simply impossible. Often a refutational proof is needed to obtain
the desired disjunctive conclusion, that is, we show that ¬(ϕ ∨ ψ) in addition to the
assumptions leads to a contradiction (⊥).

A clear illustration can be given by one of the most simple tautologies: ϕ ∨ ¬ϕ. When
it comes to reasoning with truth-values the principle simply says that there are only two
opposite truth-values, and therefore it is also called ‘principle of the excluded third’ or
‘tertium non datur’. From an operational or deductive point of view the truth of ϕ ∨ ¬ϕ
is much harder to see. Since, in general, ϕ and ¬ϕ are not tautologies, we have to prove
that ¬(ϕ ∨ ¬ϕ) leads to a contradiction. Below a deduction, following the refutational
strategy, has been given:

1 ¬(ϕ ∨ ¬ϕ)
2 ϕ

3 ϕ ∨ ¬ϕ I∨ 2

4 ⊥ E¬ 1,3

5 ¬ϕ I¬ 2-4

6 ϕ ∨ ¬ϕ I∨ 5

7 ⊥ E→ 1,6

8 ϕ ∨ ¬ϕ ⊥E 1-7

(9.19)

As you can see ¬ϕ is derived from ¬(ϕ ∨ ¬ϕ) and this gives us finally the contradiction
that we aimed at. In general this is the way to derive a disjunctive conclusion ϕ ∨ ψ for
which a direct proof does not work. We assume the contrary ¬(ϕ ∨ ψ) then derive ¬ϕ or
¬ψ (or both) and show that this leads to a contradiction.

Exercise 9.12 Prove by a deduction that (ϕ→ ψ) ∨ (ψ → ϕ) is a tautology.

9.2. NATURAL DEDUCTION FOR PREDICATE LOGIC 9-13

Exercise 9.13 Deduce ¬ϕ ∨ ¬ψ from ¬(ϕ ∧ ψ)

Exercise 9.14 Prove by a deduction that ¬ϕ ∨ ψ follows from ϕ→ ψ.

9.2 Natural deduction for predicate logic

The natural deduction system for predicate logic consists of two simple rules and two
more complicated, but at the same time more compelling, rules for the quantifiers ∀ and ∃.
The easy weaker rules are ∀-elimination and ∃-introduction. They are just generalizations
of the earlier elimination rule for ∧ and the introduction rule for ∨.

From ∀xϕ we may derive that ϕ holds for ‘everything’. This means that we substitute a
term for x in ϕ. Substitution only has a small syntactic limitation. A term may contain
variables, and we have to take care that no variable which occurs in such a ‘substitute’
gets bound by a quantifier in ϕ after replacing the occurrence of x by this term. If this
is the case we say that this term is substitutable for x in ϕ. As an illustration that things
go wrong when we neglect this limitation take the formula ∀x∃y ¬(x = y). Obviously,
this formula is true in every model with more than one object. If we substitutes y for x
in ∃y ¬(x = y) we get ∃y ¬(y = y) which is an inconsistent formula. The term y is not
substitutable since y gets bound by the existential quantifier in ∃y ¬(x = y).

Introduction of the existential quantifier works in the same way. If you have derived a
property ϕ for certain term t you may replace this term by x and derive ∃xϕ successively.
If we write ϕ[t/x] for the result of substitution of t for x in ϕ and in addition prescribing
that t must be substitutable for x in ϕ, we can formulate the rules mentioned here as
follows:

...

∀xϕ
...

ϕ[t/x] E∀

...

ϕ[t/x]

...

∃xϕ I∃

(9.20)

In practice these weak rules are only used to make small completing steps in a proof.

Also in the condition of I∃ it is required that t is substitutable for x in ϕ. To see that
neglecting this additional constraint leads to incorrect result take the formula ∀y y = y.
This is a universally valid formula. It is also the result of replacing x by y in the formula
∀y x = y, but ∃x∀y x = y is certainly not a valid consequence of ∀y y = y: ∃x∀y x = y
only holds in models containing only a single object.

The introduction rule of the universal quantifier is a bit more complicated rule, but, at
the same time, it is a very strong rule. The rule is also referred at as generalization.
By proving that a property ϕ holds for an arbitrary object we derive that ϕ holds for all
objects: ∀xϕ. To make sure that the object of which we prove ϕ-ness is indeed completely

9-14 CHAPTER 9. PROOFS

arbitrary we use a new name which is not a constant in the language. Starting the subproof
we extend the language with this new name only within the range of this subproof. Such
an additional constant is also called a parameter. It may not be used in the main line of
the proof which contains this subproof. Here is the formal version of the rule I∀.

...
c

...

ϕ[c/x]

...

∀xϕ I∀

(9.21)

As you can see the subproof does not contain an hypothesis. The only information which
is relevant here is that the parameter c does not appear in the line of the argument outside
the subproof (represented by the vertical dots outside the subproof box), and that it is not
a constant in the base language. To stress this minor syntactical limitation we indicate this
c on top of the line where the subproof starts. This makes it clear that this is the reference
to the arbitrary object for which we have to prove the desired property ϕ.

In natural settings of argumentation the generalization rule is most often combined with
the deduction rule (I→). If the assumption that an arbitrary object has the property ϕ
leads to the conclusion that it also must have another property ψ we have proven that ‘All
ϕ are ψ’ or in predicate logical notation ∀x (ϕ→ ψ). In a formal deduction this looks as
follows:

c
ϕ[c/x]

...

ψ[c/x]

(ϕ→ ψ)[c/x] I→

∀x (ϕ→ ψ) I∀

(9.22)

If we are able to prove for an arbitrary man that he must be mortal, we have proven that
all men are mortal.

Take, as a mathematical example of this combination, the proof that if the square of a
positive integer m doubles the square of another positive integer n, m2 = 2n2, they must
both be even (page 9-2). The generalization rule, applied twice, would then rephrase this
as universal result (given that the domain of discourse here contains only positive integers)

∀x∀y (x2 = 2y2 → x, y both even)

9.2. NATURAL DEDUCTION FOR PREDICATE LOGIC 9-15

Here is a first example deduction in predicate logic, showing that ∀x (Px ∧ Qx) follows
from two assumptions, ∀xPx and ∀xQx:

1. ∀xPx Ass

2. ∀xQx Ass
3. c

4. P c E∀ 1

5. Qc E∀ 2

6. P c ∧Qc I∧ 4,5

7. ∀x (Px ∧Qx) I∀ 3-6

(9.23)

As you can see the generalization rule dominates the proof. It determines the external
structure of the proof, whereas the weaker rule E∀ shows up only within the very inner part
of the proof. The generalization rule works pretty much the same way as the deduction
rule in propositional logic. In pure predicate logic a proof of a universal statement requires
most often the generalization procedure. As we will see in the next section, there are
other rules to prove statements with universal strength when we apply predicate logic for
reasoning about a specific mathematical structure: the natural numbers.

Just as I∃ is a generalization of I∨, the elimination of existential quantifiers is taken care
of by a generalization of disjunction elimination. A formula ∃xϕ represents that there is
an object which has the property ϕ but, in general, we do not know who or what this ϕ-er
is. To jump to a fixed conclusion we introduce an arbitrary ϕ-er, without caring about
who or what this ϕ-er is, and show that this is enough to derive the conclusion that we are
aiming at. The rule looks as follows:

...

∃xϕ
...

ϕ[c/x] c

...

ψ

...

ψ E∃

(9.24)

The conclusion ψ can be derived on the basis of the introduction of an arbitrary ϕ-er (and
nothing else). This means that if such a ϕ-er exists (∃xϕ) then we may safely conclude
that ψ must hold. Again, the indication of the parameter c reminds us that it restricted by
the same limitations as in the generalization rule I∀.

9-16 CHAPTER 9. PROOFS

There is also a close relation with the generalization and the deduction rule. Combination
of the latter two facilitated a way to prove statements of the form ‘All ϕ are ψ’. In fact a
slight variation of this is presupposed by means of the subproof in the E∃- rule. Here it in
fact says that it has been proven for an arbitrary object that if this object has the property
ϕ then ψ must hold. And then we conclude that, given the assumption that there exists
such a ϕ-er (∃xϕ), we know that ψ must hold.

The following variant of the train scenario as discussed on page 9-11 illustrates elimina-
tion of uncertainty conveyed by existential information in practice.

Again, I am traveling from A to B. I don’t know when trains leave, but I know
at least there is a train departing from A going to B every half hour. Right
now it is 7.35AM, and it will take me only ten minutes to get to the station.
This means that I’ll catch some train before 8.15AM: or some point in time t
between 7.45AM and 8.15AM. The train from A to B takes 35 minutes, and
my arrival at B will therefore be before 8.50AM (t + 35’ < 8.50AM). A cab
ride will bring me in less than 15 minutes to the office and so I will be at the
office before 9.05AM (t + 35’ + 15’ < 9.05AM). This means I will be there
before 9.15AM, when the first meeting of this morning starts.

Although I am quite uncertain about the time of departure I can safely conclude that I will
be in time at the office.

Below a deduction is given which proves that ∀x∃y Rxy follows from ∃y∀xRxy. Each
of the quantifier rules is used once:

1. ∃y∀xRxy Ass

2. ∀xRxc c
3. d

4. Rdc E∀ 2

5. ∃y Rdy I∃ 4

6. ∀x∃y Rxy I∀ 3-5

7. ∀x∃y Rxy E∃ 2-6

(9.25)

As an explanation what the individual steps in this proof mean, let us say that Rxy stands
for ‘x knows y’ in some social setting. The assumption says there is some ‘famous’ person
known by everybody. The conclusion that we want to derive means that ‘everybody knows
someone’. We started with E∃, introducing an arbitrary person known by everybody, and
we called him or her c (∀xRxc), and from this we want to derive the same conclusion
(∀x∃y Rxy). To get this settled, we introduced an arbitrary object d and proved that d
must know somebody (∃y Rdy). This is proved by using Rdc (I∃) which follows from
∀xRxc (E∀).

9.2. NATURAL DEDUCTION FOR PREDICATE LOGIC 9-17

Let us try a more difficult case: ∀xPx∨∃xQx follows from ∀x (Px∨Qx). The conclu-
sion is a disjunction, and one can easily see that both disjuncts are not valid consequences
of the given assumption. This means we have to prove this by using refutation (E⊥). We
need to show that the assumption and the negation of the conclusion lead to a contradic-
tion (⊥). Here is the complete deduction.

1. ∀x (Px ∨Qx) Ass

2. ¬(∀xPx ∨ ∃xQx)

3. c

4. P c ∨Qc E∀ 1[
5. P c

]

6. Qc

7. ∃xQx I∃ 6

8. ∀xPx ∨ ∃xQx I∃ 7

9. ⊥ E¬ 2,8

10. P c E⊥ 9 (simple version)

11. P c E∨ 4,5-5,6-10

12. ∀xPx I∀ 3-11

13. ∀xPx ∨ ∃xQx I∨ 12

14. ⊥ E¬ 2,13

15. ∀xPx ∨ ∃xQx E⊥ 2-14

(9.26)

In the outermost subproof we have shown that ∀x (Px∨Qx) in combination with¬(∀xPx∨
∃xQx) leads to the conclusion ∀xPx (12) which gives indeed an immediate contradic-
tion (13,14). ∀xPx can be obtained by proving the property P for an arbitrary object (c),
which is carried in the second subproof. This can be proved then by using Pc ∨ Qc and
disjunction elimination. Pc immediately follows from the first disjunct, Pc itself, and it
also follows from Qc, since this leads to a contradiction and by applying ex falso, the
simple form of proof by refutation, also to Pc.

Exercise 9.15 Prove that ∀x¬Px follows from ¬∃xPx.

Exercise 9.16 Prove that ∃xPx ∧ ∃xQx follows from ∃x (Px ∧Qx).

Exercise 9.17 Prove that ∃x¬Px follows from ¬∀xPx. You need to prove this by refutation,
since a direct proof of the existential conclusion is not possible.

Exercise 9.18 Prove that ∃x (Px ∨ Qx) follows from ∃xPx ∨ ∃xQx, and also the other way
around.

9-18 CHAPTER 9. PROOFS

Exercise 9.19 (*) Prove that ∃x (Px → ∀xPx) is valid. This one requires a proof by refutation
as well: show that ⊥ follows from ¬∃x (Px→ ∀xPx).

9.2.1 Rules for identity

In addition to the rules for the quantifiers we also have to formulate rules for identity
which are particularly important for mathematical proofs. The introduction rule is the
simplest of all rules. It just states that an object is always equal to itself. It is in fact an
axiom, there are no conditions which restrict application of this rule.

...

t = t I=

(9.27)

The elimination rule says that we always may replace terms by other terms which refer
to the same object. We only have to take care that the variables which occur within
these terms do not mess up the binding of variables by quantifiers. The term that we
replace may only contain variables that occur freely (within the formula which is subject
to the replacement), and the substitute may not contain variables which get bound after
replacement. If these condition hold then we may apply the following rule:

...

t1 = t2/t2 = t1
...

ϕ

...

ϕ′ E=

(9.28)

where ϕ′ is the result of replacing occurrences of t1 by t2 in ϕ (not necessarily all). Here
are two simple examples showing the symmetry and transitivity of equality:

1. a = b Ass

2. a = a I=

3. b = a E= 1,2

1. a = b Ass

2. b = c Ass

3. a = c E= 1,2

(9.29)

In the first derivation the first occurrence of a in 2 is replaced by b. In the second derivation
the occurrence of b in 2 is replaced by a.

9.3 Natural deduction for natural numbers

In chapter 4 an axiomatic system of arithmetic, as introduced by the Italian logician and
mathematician Giuseppe Peano, in predicate logical notation has been discussed.

9.3. NATURAL DEDUCTION FOR NATURAL NUMBERS 9-19

Giuseppe Peano

In this section we want to give a natural deduction format for Peano’s arithmetic, as an ex-
ample of ‘real’ mathematical proof by means of natural deduction. These kind of systems
are used for precise formalization of mathematical proofs, such that they can be checked,
or sometimes be found (that is much harder of course), by computers.

Let us first repeat the axioms as discussed in chapter 4.

P1. ∀x (x+ 0 = x)

P2. ∀x ∀y (x+ sy = s(x+ y))

P3. ∀x (x · 0 = 0)

P4. ∀x ∀y (x · sy = x · y + x)

P5. ¬∃x sx = 0

P6. (ϕ[0/x] ∧ ∀x (ϕ→ ϕ[sx/x]))→ ∀xϕ

(9.30)

A straightforward manner to build a predicate logical system for arithmetic is to add these
axioms to the system as has been introduced in the previous section. For the first five
axioms we do not have an alternative. These axioms are then treated as rules without
conditions, and can therefore be applied at any time at any place in a mathematical proof.

The last axiom, the principle of induction, can be reformulated as a conditional rule of
deduction, in line with the way it is used in mathematical proofs. For the reader who is
not familiar with the induction principle, the following simple example clarifies how it
works.

For every natural number n the sum of the first n odd numbers equals n2.

For 0 this property holds in a trivial way. The sum of the first zero odd
numbers is an empty sum and therefore equals 0, which is also 02.

Suppose that the property holds for a certain number k (induction hypothesis).

1 + 3 + ...+ (2k − 1) = k2

9-20 CHAPTER 9. PROOFS

We need to prove that under this condition the property must also hold for
k + 1 (sk). The sum of the first k + 1 odd numbers is the same as

1 + 3 + ...+ (2k − 1) + (2k + 1)

According the induction hypothesis, this must be equal to

k2 + 2k + 1

and this equals (k + 1)2.

We have proven the property for 0 and also shown that if it holds for a certain
natural number then it must also hold for its successors. From this we derive
by induction that the property holds for all natural numbers.

9.3.1 The rule of induction

The inductive axiom in Peano’s system can be rephrased as a conditional rule in the fol-
lowing way.

...

ϕ[0/x]

...
ϕ[c/x] c

...

ϕ[sc/x]

...

...

∀xϕ Ind

(9.31)

It mimics the format as has been described by the proof example here above. The formula
ϕ[0/x] says that the property ϕ holds for 0. The subproof represents the inductive step,
and starts with the induction hypothesis. We assume ϕ[c/x], i.e., an arbitrary ϕ-er repre-
sented by the parameter c (the induction hypothesis). If this assumption suffices to derive
that the successor of c, sc, also must have the property ϕ, ϕ[sc/x], then ϕ must hold for
all objects, i.e., all the natural numbers.

In terms of the natural deduction system for predicate logic, the induction rule is an ad-
ditional introduction rule for the universal quantifier. For some cases we can do without
this rule and use the generalization rule instead. Here is a simple example which proves

9.3. NATURAL DEDUCTION FOR NATURAL NUMBERS 9-21

that x+ 1 coincides with the successor sx of x.

1. c

2. ∀x∀y (x+ sy = s(x+ y)) P2

3. c+ s0 = s(c+ 0) E∀ 2 (twice)

4. ∀x (x+ 0 = x) P1

5. c+ 0 = c E∀ 4

6. c+ s0 = sc E= 5,3

7. ∀x (x+ s0 = sx) I∀ 1-6

(9.32)

The proof demonstrates that this arithmetical theorem is a pure predicate logical conse-
quence of the two first axioms of the Peano system.

In other cases we have to rely on the induction rule to derive a universal statement about
the natural numbers. Here is a very simple example:

1. 0 + 0 = 0 E∀ P1
2. 0 + c = c c

3. 0 + sc = s(0 + c) E∀ P2 (twice)

4. 0 + sc = sc E= 2,3

5. ∀x (0 + x = x) Ind 1,2-4

(9.33)

0 + x = x is the property we have proved for all natural numbers x. First we have shown
this is true for 0 and then in the induction step, the subproof 2-4, we have shown that the
property 0 + c = c for an arbitrary c leads to 0 + sc = sc.

Exercise 9.20 Prove that ∀x (x · s0 = x).

Exercise 9.21 Prove that ∀x (0 · x = 0).

9-22 CHAPTER 9. PROOFS

The following proof uses both rules, generalization and induction.

1. c

2. c+ s0 = sc E∀ (9.32)

3. sc+ 0 = sc E∀ P1

4. c+ s0 = sc+ 0 E= 3,2

5. c+ sd = sc+ d d

6. c+ ssd = s(c+ sd) E∀ P2

7. c+ ssd = s(sc+ d) E= 5,6

8. sc+ sd = s(sc+ d) E∀ P2

9. c+ ssd = sc+ sd E= 8,7

10. ∀y (c+ sy = sc+ y) Ind 4,5-9

11. ∀x∀y (x+ sy = sx+ y) I∀ 1-10

(9.34)

The outermost subproof justifies the use of a generalization in the last step, whereas the
inner subproof contains the induction step of the inductive proof of 10.

Exercise 9.22 Prove that ∀x ∀y (x + y = y + x) by filling in the gap represented by the vertical
dots. You may use the theorem which has already been proved in (9.34).

1. c

...

n. c+ 0 = 0 + c ...
n+ 1. c+ d = d+ c d

...

n+ k. c+ sd = sd+ c ..

n+ k + 1. ∀y (c+ y = y + c) Ind n,n + 1-n + k

n+ k + 2. ∀x∀y (x+ y = y + x) I∀ 1-n + k + 1

Exercise 9.23 Prove that ∀x (x · ss0 = x+ x).

Exercise 9.24 (*) Prove that ∀x∀y (x · y = y · x).

Exercise 9.25 Prove that ∀x∀y∀z (x+ (y + z) = (x+ y) + z).

9.4. OUTLOOK 9-23

9.4 Outlook

9.4.1 Completeness and incompleteness

9.4.2 Natural deduction, tableaus and sequents

9.4.3 Intuitionistic logic

9.4.4 Automated deduction

9-24 CHAPTER 9. PROOFS

Chapter 10

Computation

Things You Will Learn in This Chapter This chapter gives a lightning introduction
to computation with logic. First we will look at computing with propositional logic. You
will learn how to put propositional formulas in a format suitable for computation, and
how to use the so-called resolution rule. Next, we turn to computation with predicate
logic. The procedure for putting predicate logical formulas into computational format is
a bit more complicated. You will learn how to transform a predicate logical formula into
a set of clauses. Next, in order to derive conclusions from predicate logical clauses, we
need to apply a procedure called unification. Terms containing variables can sometimes
made equal by means of substitution. We will present the so-called unification algorithm,
and we will prove that if two terms can be made equal, then the unification algorithm
computes the most general way of doing so. Finally, unification will be combined with
resolution to give an inference mechanism that is very well suited for predicate logical
computation, and we will see how this method is put to practical use in the Prolog pro-
gramming language.

10.1 A Bit of History

Leibniz in his youth

In 1673 the polymath Godfried Wilhelm Leibniz (1645–1716) demonstrated to the Royal

10-1

10-2 CHAPTER 10. COMPUTATION

Society in London a design for a calculation device that was intended to solve mathe-
matical problems by means of execution of logical inference steps. Leibniz was not only
a mathematician, a philosopher and a historian, but also a diplomat, and he dreamed of
rational approaches to conflict resolution. Instead of quarrelling without end or even re-
sorting to violence, people in disagreement would simply sit down with their reasoning
devices, following the adage Calculemus (“Let’s compute the solution”). Mechanical
computation devices were being constructed from that time on, and in 1928 the famous
mathematician David Hilbert posed the challenge of finding a systematic method for me-
chanically settling mathematical questions formulated in a precise logical language.

David Hilbert

This challenge was called the Entscheidungsproblem (“the decision problem”). In 1936
and 1937 Alonzo Church and Alan Turing independently proved that it is impossible to
decide algorithmically whether statements of simple school arithmetic are true or false.
This result, now known as the Church-Turing theorem, made clear that a general solution
to the Entscheidungsproblem is impossible. It follows from the Church-Turing theorem
that a decision method for predicate logic does not exist. Still, it is possible to define
procedures for computing inconsistency in predicate logic, provided that one accepts that
these procedures may run forever for certain (consistent) input formulas.

Alonzo Church Alan Turing

10.2. PROCESSING PROPOSITIONAL FORMULAS 10-3

10.2 Processing Propositional Formulas

For computational processing of propositional logic formulas, it is convenient to first put
them in a particular syntactic shape.

The simplest propositional formulas are called literals. A literal is a proposition letter or
the negation of a proposition letter. Here is a BNF definition of literals. We assume that p
ranges over a set of proposition letters P .

L ::= p | ¬p.

Next, a disjunction of literals is called a clause. Clauses are defined by the following BNF
rule:

C ::= L | L ∨ C.

Finally a CNF formula (formula in conjunctive normal form) is a conjunction of clauses.
In a BNF rule:

ϕ ::= C | C ∧ ϕ.

Formulas in CNF are useful, because it is easy to test them for validity. For suppose ϕ
is in CNF. Then ϕ consists of a conjunction C1 ∧ · · · ∧ Cn of clauses. For ϕ to be valid,
each conjunct clause C has to be valid, and for a clause C to be valid, it has to contain
a proposition letter p and its negation ¬p. So to check ϕ for validity, find for each of its
clauses C a proposition letter p such that p and ¬p are both in C. In the next section, we
will see that there is a simple powerful rule to check CNF formulas for satisfiability.

We will now start out from arbitrary propositional formulas, and show how to convert
them into equivalent CNF formulas, in a number of steps. Here is the BNF definition of
the language of propositional logic once more.

ϕ ::= p | ¬ϕ | (ϕ ∧ ϕ) | (ϕ ∨ ϕ) | (ϕ→ ϕ) | (ϕ↔ ϕ)

Translating into CNF, first step The first step translates propositional formulas into
equivalent formulas that are arrow-free: formulas without ↔ and → operators. Here is
how this works:

• Use the equivalence between p→ q and ¬p ∨ q to get rid of→ symbols.

• Use the equivalence of p↔ q and (¬p ∨ q) ∧ (p ∨ ¬q), to get rid of↔ symbols.

Here is the definition of arrow-free formulas of propositional logic:

ϕ ::= p | ¬ϕ | (ϕ ∧ ϕ) | (ϕ ∨ ϕ).

10-4 CHAPTER 10. COMPUTATION

Translating into CNF, first step in pseudocode We will now write the above recipe
in so-called pseudocode, i.e., as a kind of fake computer program. Pseudocode is meant
to be readable by humans (like you), while on the other hand it is so close to computer
digestible form that an experienced programmer can turn it into a real program as a matter
of routine.

The pseudocode for turning a propositional formula into an equivalent arrow free formula
takes the shape of a function. The function has a name, ArrowFree. A key feature of the
definition of ArrowFree is that inside the definition, the function that is being defined is
mentioned again. This is an example of a phenomenon that you will encounter often in
recipes for computation. It is referred to as a recursive function call.

What do you have to do to make a formula of the form ¬ψ arrow free? First you ask your
dad to make ψ arrow free, and then you put ¬ in front of the result. The part where you
ask your dad is the recursive function call.

function ArrowFree (ϕ):
/* precondition: ϕ is a formula. */
/* postcondition: ArrowFree (ϕ) returns arrow free version of ϕ */
begin function
case
ϕ is a literal: return ϕ
ϕ is ¬ψ: return ¬ ArrowFree (ψ)
ϕ is ψ1 ∧ ψ2: return (ArrowFree (ψ1) ∧ ArrowFree (ψ2))
ϕ is ψ1 ∨ ψ2: return (ArrowFree (ψ1) ∨ ArrowFree (ψ2))
ϕ is ψ1 → ψ2: return ArrowFree (¬ψ1 ∨ ψ2)
ϕ is ψ1 ↔ ψ2: return ArrowFree ((¬ψ1 ∨ ψ2) ∧ (ψ1 ∨ ¬ψ2))

end case
end function

Note that the pseudocode uses comment lines: everything that is between /* and */
is a comment. The first comment of the function states the precondition. This is the
assumption that the argument of the function is a propositional formula. This assumption
is used in the function definition, for notice that the function definition follows the BNF
definition of the formulas of propositional logic. The second comment of the function
states the postcondition. This is the statement that all propositional formulas will be
turned into equivalent arrow free formulas.

You can think of the precondition of a function recipe as a statement of rights, and of
the postcondition as a statement of duties. The pre- and postcondition together form a
contract: if the precondition is fulfilled (i.e., if the function is called in accordance with its
rights) the function definition ensures that the postcondition will be fulfilled (the function
will perform its duties). This way of thinking about programming is called design by
contract.

10.2. PROCESSING PROPOSITIONAL FORMULAS 10-5

Exercise 10.1 Work out the result of the function call ArrowFree (p↔ (q ↔ r)).

Translating into CNF, second step Our next step is to turn an arrow free formula into
a formula that only has negation signs in front of proposition letters. A formula in this
shape is called a formula in negation normal form. Here is the BNF definition of formulas
in negation normal form:

L ::= p | ¬p
ϕ ::= L | (ϕ ∧ ϕ) | (ϕ ∨ ϕ).

What this says is that formulas in negation normal form are formulas that are constructed
out of literals by means of taking conjunctions and disjunctions.

The principles we use for translating formulas into negation normal form are the equiv-
alence between¬(p ∧ q) and ¬p ∨ ¬q, and that between ¬(p ∨ q) and ¬p ∧ ¬q. If we
encounter a formula of the form ¬(ψ1 ∧ ψ1), we can “push the negation sign inward” by
replacing it with ¬ψ1 ∨ ¬ψ2, and similarly for formulas of the form ¬(ψ1 ∨ ψ1). Again,
we have to take care of the fact that the procedure will have to be carried out recursively.
Also, if we encounter double negations, we can let them cancel out: formula ¬¬ψ is
equivalent to ψ. Here is the pseudocode for turning arrow free formulas into equivalent
formulas in negation normal form.

function NNF (ϕ):
/* precondition: ϕ is arrow-free. */
/* postcondition: NNF (ϕ) returns NNF of ϕ */
begin function
case
ϕ is a literal: return ϕ
ϕ is ¬¬ψ: return NNF (ψ)
ϕ is ψ1 ∧ ψ2: return (NNF (ψ1) ∧ NNF (ψ2))
ϕ is ψ1 ∨ ψ2: return (NNF (ψ1) ∨ NNF (ψ2))
ϕ is ¬(ψ1 ∧ ψ2): return (NNF (¬ψ1) ∨ NNF (¬ψ2))
ϕ is ¬(ψ1 ∨ ψ2): return (NNF (¬ψ1) ∧ NNF (¬ψ2))

end case
end function

Again, notice the recursive function calls. Also notice that there is a contract consisting
of a precondition stating that the input to the NNF function has to be arrow free, and
guaranteeing that the output of the function is an equivalent formula in negation normal
form.

Exercise 10.2 Work out the result of the function call NNF (¬(p ∨ ¬(q ∧ r))).

10-6 CHAPTER 10. COMPUTATION

Translating into CNF, third step The third and final step takes a formula in negation
normal form and produces an equivalent formula in conjunctive normal form. This func-
tion uses an auxiliary function DIST, to be defined below. Intuitively, DIST(ψ1, ψ2) gives
the CNF of the disjunction of ψ1 and ψ2, on condition that ψ1, ψ2 are themselves in CNF.

function CNF (ϕ):
/* precondition: ϕ is arrow-free and in NNF. */
/* postcondition: CNF (ϕ) returns CNF of ϕ */
begin function
case
ϕ is a literal: return ϕ
ϕ is ψ1 ∧ ψ2: return CNF (ψ1) ∧ CNF (ψ2)
ϕ is ψ1 ∨ ψ2: return DIST (CNF (ψ1), CNF (ψ2))

end case
end function

Translating into CNF, auxiliary step The final thing that remains is define the CNF of
the disjunction of two formulas ϕ1, ϕ2 that are both in CNF. For that, we use:

• (p ∧ q) ∨ r is equivalent to (p ∨ r) ∧ (q ∨ r),

• p ∨ (q ∧ r) is equivalent to (p ∨ q) ∧ (p ∨ r).

The assumption that ϕ1 and ϕ2 are themselves in CNF helps us to use these principles.
The fact that ϕ1 is in CNF means that either ϕ1 is a conjunction ψ11 ∧ ψ12 of clauses,
or it is a single clause. Similarly for ϕ2. This means that either at least one of the two
principles above can be employed, or both of ϕ1, ϕ2 are single clauses. In this final case,
ϕ1 ∨ ϕ2 is in CNF.

function DIST (ϕ1, ϕ2):
/* precondition: ϕ1, ϕ2 are in CNF. */
/* postcondition: DIST (ϕ1, ϕ2) returns CNF of ϕ1 ∨ ϕ2 */
begin function
case
ϕ1 is ψ11 ∧ ψ12: return DIST (ψ11,ϕ2) ∧ DIST (ψ12,ϕ2)
ϕ2 is ψ21 ∧ ψ22: return DIST (ϕ1,ψ21) ∧ DIST (ϕ1,ψ22)
otherwise: return ϕ1 ∨ ϕ2

end case
end function

In order to put a propositional formula ϕ in conjunctive normal form we can proceed as
follows:

(1) First remove the arrows→ and↔ by means of a call to ArrowFree.

10.3. RESOLUTION 10-7

(2) Next put the result of the first step in negation normal form by means of a call to
NNF.

(3) Finally, put the result of the second step in conjunctive normal form by means of a
call to CNF.

In other words, if ϕ is an arbitrary propositional formula, then

CNF(NNF(ArrowFree(ϕ)))

gives an equivalent formula in conjunctive normal form.

Exercise 10.3 Work out the result of the function call CNF ((p ∨ ¬q) ∧ (q ∨ r)).

Exercise 10.4 Work out the result of the function call CNF ((p ∧ q) ∨ (p ∧ r) ∨ (q ∧ r)).

10.3 Resolution

It is not hard to see that if ¬ϕ∨ψ is true, and ϕ∨ χ is also true, then ψ ∨ χ has to be true
as well. For assume ¬ϕ ∨ ψ and ϕ ∨ χ are true. If ϕ is true, then it follows from ¬ϕ ∨ ψ
that ψ. If on the other hand ¬ϕ is true, then it follows from ϕ ∨ χ that χ. So in any case
we have ψ ∨ χ. This inference principle is called resolution. We can write the resolution
rule as:

¬ϕ ∨ ψ ϕ ∨ χ
ψ ∨ χ

Note that Modus Ponens can be viewed as a special case of this. Modus Ponens is the
rule:

ϕ→ ψ ϕ

ψ

But this can be written with negation and disjunction:

¬ϕ ∨ ψ ϕ ∨ ⊥
ψ

The idea of resolution leads to a powerful inference rule if we apply it to two clauses.
Clauses are disjunctions of literals, so suppose have two clauses A1 ∨ · · · ∨ An and B1 ∨
· · · ∨ Bm, where all of the A and all of the B are literals. Assume that Ai and Bj are
complements (one is the negation of the other, i.e., one has the form p and the other the
form ¬p). Then the following inference step is valid:

10-8 CHAPTER 10. COMPUTATION

A1 ∨ · · · ∨ An B1 ∨ · · · ∨Bm

A1 ∨ · · · ∨ Ai−1 ∨ Ai+1 ∨ · · · ∨ An ∨B1 ∨ · · · ∨Bj−1 ∨Bj+1 ∨ · · · ∨Bm

This rule is called the resolution rule. It was proposed by J. Alan Robinson (one of the
inventors of the Prolog programming language) in 1965, in a landmark paper called “A
Machine-Oriented Logic Based on the Resolution Principle.” The rule allows to fuse two
clauses together in a single clause.

Before we go on, it is convenient to switch to set notation. Let us say that a clause is a set
of literals, and a clause form a set of clauses. Then here is an example of a clause form:

{{p,¬q, r,¬r}, {p,¬p}}.

Resolution can now be described as an operation on pairs of clauses, as follows:

C1 ∪ {p} {¬p} ∪ C2

C1 ∪ C2

Alternatively, we may view resolution as an operation on clause forms, as follows:

C1, . . . , Ci ∪ {p}, {¬p} ∪ Ci+1, Ci+2, . . . , Cn
C1, . . . , Ci ∪ Ci+1, Ci+2, . . . , Cn

The empty clause, notation [], corresponds to an empty disjunction. To make a disjunction
true, at least one of the disjuncts has to be true. It follows that the empty clause is always
false.

The empty clause form, notation ∅, corresponds to an empty conjunction, for clause form
is conjunctive normal form. A conjunction is true if all of its conjuncts are true. It follows
that the empty clause form is always true.

Exercise 10.5 Suppose a clause Ci contains both p and ¬p, for some proposition letter p. Show
that the following rule can be used to simplify clause forms:

C1, . . . , Ci, . . . , Cn
C1, . . . , Ci−1, Ci+1, . . . , Cn

p ∈ Ci,¬p ∈ Ci

You have to show that this rule is sound. Assuming that the premise is true, show that the conclu-
sion is also true.

If a clause form has [] (the empty clause) as a member, then, since [] is always false, and
since clause forms express conjunctions, the clause form is always false. In other words,
a clause form that has [] as a member expresses a contradiction. So if we can derive the
empty clause [] from a clause form, we know that the clause form is not satisfiable.

10.3. RESOLUTION 10-9

Thus, resolution can be used as a refutation technique. To check whether ψ follows logi-
cally from ϕ1, . . . , ϕn, check whether the clause form corresponding to

ϕ1 ∧ · · · ∧ ϕn ∧ ¬ψ

is satisfiable, by attempting to derive the empty clause [] from the clause form, by means
of the resolution rule. If the clause form is not satisfiable, the original inference is valid.

Example: we want to check whether from ¬p∨¬q ∨ r, and ¬p∨ q it follows that ¬p∨ r.
Construct the formula

(¬p ∨ ¬q ∨ r) ∧ (¬p ∨ q) ∧ ¬(¬p ∨ r).

This is the conjunction of the premisses together with a negation of the conclusion. Bring
this in conjunctive normal form:

(¬p ∨ ¬q ∨ r) ∧ (¬p ∨ q) ∧ p ∧ ¬r.

Write this formula in clause form:

{{¬p,¬q, r}, {¬p, q}, {p}, {¬r}}.

Applying resolution for ¬q, q to the first two clauses gives:

{{¬p, r}, {p}, {¬r}}.

Applying resolution for ¬p, p to the first two clauses gives:

{{r}, {¬r}}.

Applying resolution for r,¬r gives:
{[]}

We have derived a clause form containing the empty clause. This is a proof by resolution
that the inference is valid. We have tried to construct a situation where the premisses are
true and the conclusion is false, but this attempt has led us to a contradiction. No doubt
you will have noticed that this refutation strategy is quite similar to the strategy behind
tableau style theorem proving.

Exercise 10.6 Test the validity of the following inferences using resolution:

(1) ((p ∨ q) ∧ ¬q)→ r, q ↔ ¬p |= r

(2) (p ∨ q)→ r,¬q,¬q ↔ p |= r

Exercise 10.7 Determine which of the following clause forms are satisfiable:

(1) {{¬p, q}, {¬q}, {p,¬r}, {¬s}, {¬t, s}, {t, r}}

10-10 CHAPTER 10. COMPUTATION

(2) {{p,¬q, r}, {q, r}, {q}, {¬r, q}, {¬p, r}}

Exercise 10.8 You are a professor and you are trying to organize a congress. In your attempt to
draw up a list of invited speakers, you are considering professors a, b, c, d, e, f . Unfortunately,
your colleagues have big egos, and informal consultation concerning their attitudes towards ac-
cepting your invitation reveals the following constraints:

• At least one of a, b is willing to accept.

• Exactly two of a, e, f will accept.

• b will accept if and only if c also accepts an invitation.

• a will accept if and only if d will not get invited.

• Similarly for c and d.

• If d will not get an invitation, e will refuse to come.

Use propositional logic to set up a clause set representing these constraints. (Hint: first express the
constraints as propositional formulas, using proposition letters a, b, c, d, e, f . Next, convert this
into a clause form.)

Exercise 10.9 As it turns out, there is only one way to satisfy all constraints of Exercise 10.8.
Give the corresponding propositional valuation. (Hint: you can use resolution to simplify the
clause form of the previous exercise.)

We know that checking (un)satisfiability for propositional logic can always be done. It
cannot always be done efficiently. The challenge of building so called sat solvers for
propositional logic is to speed up satisfiability checking for larger and larger classes of
propositional formulas. Modern sat solvers can check satisfiability of clause forms con-
taining hundreds of proposition letters. The usual way to represent a clause form is as a
list of lines of integers. Here is an example of this so-called DIMACS format:

c Here is a comment.
p cnf 5 3
1 -5 4 0
-1 5 3 4 0
-3 -4 0

The first line gives a comment (that’s what it says, and what is says is correct). The second
line states that this is a problem in conjunctive normal form with five proposition letters
and three clauses. Each of the next three lines is a clause. 0 indicates the end of a clause.
The home page of a popular sat solver called MiniSat can be found at http://minisat.
se/. MiniSat calls itself a minimalistic, open-source SAT solver. It was developed to help
researchers and developers to get started on SAT. So this is where you should start also if
you want to learn more. Running the example (stored in file sat.txt) in MiniSat gives:

10.3. RESOLUTION 10-11

jve@vuur:˜/tmp$ minisat2 sat.txt
This is MiniSat 2.0 beta
WARNING: for repeatability, setting FPU to use double precision
============================[Problem Statistics]=============================
| |
| Number of variables: 5 |
| Number of clauses: 3 |
| Parsing time: 0.00 s |
============================[Search Statistics]==============================
| Conflicts | ORIGINAL | LEARNT | Progress |
| | Vars Clauses Literals | Limit Clauses Lit/Cl | |
===
| 0 | 0 0 0 | 0 0 nan | 0.000 % |
===
restarts : 1
conflicts : 0 (nan /sec)
decisions : 1 (0.00 % random) (inf /sec)
propagations : 0 (nan /sec)
conflict literals : 0 (nan % deleted)
Memory used : 14.58 MB
CPU time : 0 s

SATISFIABLE

Now let’s have another look at the earlier clause form we computed:

{{¬p,¬q, r}, {¬p, q}, {p}, {¬r}}.

Written with indices, it looks like this:

{{¬p1,¬p2, p3}, {¬p1, p2}, {p1}, {¬p3}}.

And here is the clause form in DIMACS format:

p cnf 4 3
-1 -2 3 0
-1 2 0
1 0
-3 0

If this text is stored in file sat2.txt then here is the result of feeding it to minisat:

jve@vuur:˜/tmp$ minisat2 sat2.txt
This is MiniSat 2.0 beta
WARNING: for repeatability, setting FPU to use double precision
============================[Problem Statistics]=============================
| |
| Number of variables: 4 |
| Number of clauses: 3 |
| Parsing time: 0.00 s |
Solved by unit propagation
UNSATISFIABLE

General background on propositional satisfiability checking can be found at http://
www.satisfiability.org/.

10-12 CHAPTER 10. COMPUTATION

10.4 Automating Predicate Logic

Alloy (http://alloy.mit.edu) is a software specification tool based on first order
logic plus some relational operators. Alloy automates predicate logic by using bounded
exhaustive search for counterexamples in small domains [Jac00]. Alloy does allow for
automated checking of specifications, but only for small domains. The assumption that
most software design errors show up in small domains is known as the small domain
hypothesis [Jac06]. The Alloy website links to a useful tutorial, where the three key
aspects of Alloy are discussed: logic, language and analysis.

The logic behind Alloy is predicate logic plus an operation to compute the transitive
closures of relations. The transitive closure of a relation R is by definition the smallest
transitive relation that contains R.

Exercise 10.10 Give the transitive closures of the following relations. (Note: if a relation is
already transitive, the transitive closure of a relation is that relation itself.)

(1) {(1, 2), (2, 3), (3, 4)},

(2) {(1, 2), (2, 3), (3, 4), (1, 3), (2, 4)},

(3) {(1, 2), (2, 3), (3, 4), (1, 3), (2, 4), (1, 4)},

(4) {(1, 2), (2, 1)},

(5) {(1, 1), (2, 2)}.

The language is the set of syntactic conventions for writing specifications with logic.
The analysis of the specifications takes place by means of bounded exhaustive search for
counterexamples. The technique used for this is translation to a propositional satisfiability
problem, for a given domain size.

Here is an example of a check of a fact about relations. We just defined the transitive
closure of a relation. In a similar way, the symmetric closure of a relation can be defined.
The symmetric closure of a relation R is the smallest symmetric relation that contains R.

We call the converse of a binary R the relation that results from changing the direction of
the relation. A common notation for this is R .̌ The following holds by definition:

Rˇ = {(y, x) | (x, y) ∈ R}.

We claim that R ∪ Rˇ is the symmetric closure of R. To establish this claim, we have to
show two things: (i) R ∪ Rˇ is symmetric, and (ii) R ∪ Rˇ is the least symmetric relation
that contains R. (i) is obvious. To establish (ii), we assume that there is some symmetric
relation S with R ⊆ S (S contains R). If we can show that R ∪ Rˇ is contained in S we
know that R ∪ Rˇ is the least relation that is symmetric and contains R, so that it has to
be the symmetric closure of R, by definition.

10.4. AUTOMATING PREDICATE LOGIC 10-13

So assume R ⊆ S and assume S is symmetric. Let (x, y) ∈ R∪R .̌ We have to show that
(x, y) ∈ S. From (x, y) ∈ R ∪ Rˇ it follows either that (x, y) ∈ R or that (x, y) ∈ R .̌ In
the first case, (x, y) ∈ S by R ⊆ S, and we are done. In the second case, (y, x) ∈ R, and
therefore (y, x) ∈ S by R ⊆ S. Using the fact that S is symmetric we see that also in this
case (x, y) ∈ S. This settles R ∪Rˇ⊆ S.

Now that we know what the symmetric closure of R looks like, we can define it in predi-
cate logic, as follows:

Rxy ∨Ryx.

Now here is a question about operations on relations. Given a relationR, do the following
two procedures boil down to the same thing?

First take the symmetric closure, next the transitive closure

First take the transitive closure, next the symmetric closure

If we use R+ for the transitive closure of R and R ∪ Rˇ for the symmetric closure, then
the question becomes:

(R ∪R)̌+
?
= R+ ∪R+ˇ

Here is an Alloy version of this question:

sig Object { r : set Object }
assert claim { *(r + ˜r) = *r + ˜*r }
check claim

If you run this in Alloy, the system will try to find counterexamples. Here is a counterex-
ample that it finds:

Object1

Object0

r

Object2

r

10-14 CHAPTER 10. COMPUTATION

To see that this is indeed a counterexample, note that for this R we have:

R = {(1, 0), (2, 0)}
Rˇ = {(0, 1), (0, 2)}

R ∪Rˇ = {(1, 0), (2, 0), (0, 1), (0, 2)}
R+ = {(1, 0), (2, 0)}
Rˇ+ = {(0, 1), (0, 2)}

R+ ∪R+ˇ = {(1, 0), (2, 0), (0, 1), (0, 2)}
(R ∪R)̌+ = {(0, 0), (0, 1), (0, 2), (1, 0), (1, 1), (1, 2), (2, 0), (2, 1), (2, 2)}

Here is another question about relations. Suppose you know that R and S are transitive.
Does it follow that their composition, the relation you get by first taking an R step and
next an S step, is also transitive? The composition of R and S is indicated by R ◦ S.

Here is a definition of the composition of R and S in predicate logic:

∃z(Rxz ∧ Szy).

Exercise 10.11 Find a formula of predicate logic stating that if R and S are transitive then their
composition is transitive as well.

The answer to exercise 10.11 gives us a rephrasing of our original question: does the
formula ϕ that you constructed have counterexamples (model where it is not true), or
not?

The Alloy version of the question is again very succinct. This is because we can state the
claim that R is transitive simply as: R = R+.

sig Object { r,s: set Object }
fact { r = ˆr and s = ˆs }
assert claim { r.s = ˆ(r.s) }
check claim

Again the system finds counterexamples:

10.5. CONJUNCTIVE NORMAL FORM FOR PREDICATE LOGIC 10-15

Object0 r

Object2

s

Object1 r s

r

r

In this example, R = {(0, 0), (2, 2), (2, 1), (1, 1)} and S = {(0, 2), (1, 1)}.

Exercise 10.12 This exercise is about the example relations R and S that were found by Alloy.
For these R and S, give R ◦ S and give (R ◦ S)+. Check that these relations are not the same, so
R ◦ S is not transitive.

10.5 Conjunctive Normal Form for Predicate Logic

Now suppose we have a predicate logical formula. We will assume that there are no free
variables: each variable occurrence is bound by a quantifier. In other words: we assume
that the formula is closed.

To convert closed formulas of predicate logic to conjunctive normal form, the following
steps have to be performed:

(1) Convert to arrow-free form.

(2) Convert to negation normal form by moving ¬ signs inwards. This involves the
laws of De Morgan, plus the following quantifier principles:

• ¬∀xϕ↔ ∃x¬ϕ.

• ¬∃xϕ↔ ∀x¬ϕ.

(3) Standardize variables, in order to make sure that each variable binder ∀x or ∃x
occurs only once in the formula. For example, ∀xPx ∨ ∃xQx should be changed

10-16 CHAPTER 10. COMPUTATION

to ∀xPx ∨ ∃yQy. Or a more complicated example: ∀x(∃y(Py ∧ Rxy) ∨ ∃ySxy)
gets changed to ∀x(∃y(Py ∧ Rxy) ∨ ∃zSxz). In the standardized version, each
variable name x will have exactly one binding quantifier in the formula. This will
avoid confusion later, when we are going to drop the quantifiers.

(4) Move all quantifiers to the outside, by using the following equivalences:

• (∀xϕ ∧ ψ)↔ ∀x(ϕ ∧ ψ),

• (∀xϕ ∨ ψ)↔ ∀x(ϕ ∨ ψ).

• (∃xϕ ∧ ψ)↔ ∃x(ϕ ∧ ψ),

• (∃xϕ ∨ ψ)↔ ∃x(ϕ ∨ ψ).

Note that these principles hold because accidental capture of variables is impossi-
ble. We standardized the variables, so we may assume that every variable name
x has exactly one binding quantifier in the formula. Recall that there are no free
variables.

(5) Get rid of existential quantifiers, as follows.

• If the outermost existential quantifier ∃x of the formula is not in the scope of
any universal quantifiers, remove it, and replace every occurrence of x in the
formula by a fresh constant c.

• If the outermost existential quantifier ∃x of the formula is in the scope of
universal quantifiers ∀y1 through ∀yn, remove it, and replace every occurrence
of x in the formula by a fresh function f(y1, . . . yn). (Such a function is called
a Skolem function.)

• Continue like this until there are no existential quantifiers left.

This process is called skolemization.

(6) Remove the universal quantifiers.

(7) Distribute disjunction over conjunction, using the equivalences:

• ((ϕ ∧ ψ) ∨ χ)↔ ((ϕ ∨ χ) ∧ (ψ ∨ χ)),

• (ϕ ∨ (ψ ∧ χ))↔ ((ϕ ∨ χ) ∧ (ϕ ∨ χ)).

To illustrate the stages of this process, we run through an example. We start with the
formula:

∀x(∃y(Py ∨Rxy)→ ∃ySxy).

First step: make this arrow-free:

∀x(¬∃y(Py ∨Rxy) ∨ ∃ySxy).

10.6. SUBSTITUTIONS 10-17

Second step: move negations inwards:

∀x(∀y(¬Py ∧ ¬Rxy) ∨ ∃ySxy).

Third step: standardize variables:

∀x(∀y(¬Py ∧ ¬Rxy) ∨ ∃zSxz).

Fourth step: move quantifiers out:

∀x∀y∃z((¬Py ∧ ¬Rxy) ∨ Sxz).

Fifth step: skolemization:

∀x∀y((¬Py ∧ ¬Rxy) ∨ Sxf(x, y)).

Sixth step: remove universal quantifiers:

((¬Py ∧ ¬Rxy) ∨ Sxf(x, y)).

Seventh step, distribute disjunction over conjunction:

(¬Py ∨ Sxf(x, y)) ∧ (¬Rxy ∨ Sxf(x, y)).

The clause form of the predicate logical formula contains two clauses, and it looks like
this:

{{¬Py, Sxf(x, y)}, {¬Rxy, Sxf(x, y)}}.

Exercise 10.13 Stefan

Exercise 10.14 Stefan

10.6 Substitutions

If we want to compute with first order formulas in clause form, it is necessary to be
able to handle substitution of terms in such forms. In fact, we will look at the effects of
substitutions on terms, on clauses, and on clause forms.

A variable binding is a pair consisting of a variable and a term. A binding binds the
variable to the term. A binding (v, t) is often represented as v 7→ t. A binding is proper
if it does not bind variable v to term v (the same variable, viewed as a term). A variable
substitution is a finite list of proper bindings, satisfying the requirement that no variable
v occurs as a lefthanded member in more than one binding v 7→ t.

The substitution that changes nothing is called the identity substitution. It is represented
by the empty list of variable bindings. We will denote it as ε.

10-18 CHAPTER 10. COMPUTATION

The domain of a substitution is the list of all lefthanded sides of its bindings. The range
of a substitution is the list of all righthand sides of its bindings. For example, the domain
of the substitution {x 7→ f(x), y 7→ x} is {x, y}, and its range is {x, f(x)}.
Substitutions give rise to mappings from terms to terms via the following recursion. Let
σ be a substitution. Then a term t either has the form v (the term is a variable) or the form
c (the term is a constant) or the form f(t1, . . . , tn) (the term is a function with n argument
terms). The result σt of applying the substitution to the term t is given by:

• σv := σ(v),

• σc := c,

• σf(t1, . . . , tn) := f(σt1, . . . , σtm).

Next, we define the result of applying a substitution σ to a formula ϕ, again by recursion
on the structure of the formula.

• σP (t1, . . . , tn) := P (σt1, . . . , σtn),

• σ(¬ϕ) := ¬(σϕ),

• σ(ϕ ∧ ψ) := (σϕ ∧ σψ),

• σ(ϕ ∨ ψ) := (σϕ ∨ σψ),

• σ(ϕ→ ψ) := (σϕ→ σψ),

• σ(ϕ↔ ψ) := (σϕ↔ σψ),

• σ(∀vϕ) := ∀vσ′ϕ, where σ′ is the result of removing the binding for v from σ,

• σ(∃vϕ) := ∃vσ′ϕ, where σ′ is the result of removing the binding for v from σ.

Exercise 10.15 Stefan

Exercise 10.16 Stefan

The composition of substitution σ with substitution τ should result in the substitution that
one gets by applying σ after τ . The following definition has the desired effect.

Definition 10.17 (Composition of substitution representations) Let

θ = [v1 7→ t1, . . . , vn 7→ tn] and σ = [w1 7→ r1, . . . , wm 7→ rm]

be substitution representations. Then θ · σ is the result of removing from the sequence

[w1 7→ θ(r1), . . . , wm 7→ θ(rm), v1 7→ t1, . . . , vn 7→ tn]

the bindings w1 7→ θ(ri) for which θ(ri) = wi, and the bindings vj 7→ tj for which
vj ∈ {w1, . . . , wm}.

10.7. UNIFICATION 10-19

Exercise 10.18 Prove that this definition gives the correct result.

Applying the recipe for composition to {x 7→ y} · {y 7→ z} gives {y 7→ z, x 7→ y},
applying it to {y 7→ z} · {x 7→ y} gives {x 7→ z, y 7→ z}. This example illustrates the
fact that order of application of substitution matters. Substitutions do not commute.

Exercise 10.19 Stefan

Exercise 10.20 Stefan

We use the notion of composition to define a relation v on the set S of all substitutions
(for given sets of variables V and terms T), as follows. θ v σ iff there is a substitution ρ
with θ = ρ · σ. (θ v σ is sometimes pronounced as: ‘θ is less general than σ.’)

The relation v is reflexive. For all θ we have that θ = ε · θ, and therefore θ v θ.
The relation is also transitive. v is transitive because if θ = ρ · σ and σ = τ · γ then
θ = ρ · (τ · γ) = (ρ · τ) · γ, i.e., θ v γ. A relation that is reflexive and transitive is called
a pre-order, so what we have just shown is that v is a pre-order.

10.7 Unification

If we have two expressions A andB (where A,B can be terms, or formulas, or clauses, or
clause forms), each containing variables, then we are interested in the following questions:

• Is there a substitution θ that makes A and B equal?

• How do we find such a substitution in an efficient way?

We introduce some terminology for this. The substitution θ unifies expressions A and
B if θA = θB. The substitution θ unifies two sequences of expressions (A1, . . . , An)
and (B1, . . . , Bn) if, for 1 ≤ i ≤ n, θ unifies Ai and Bi. Note that unification of pairs of
atomic formulas reduces to unification of sequences of terms, for two atoms that start with
a different predicate symbol do not unify, and two atoms P (t1, . . . , tn) and P (s1, . . . , sn)
unify iff the sequences (t1, . . . , tn) and (s1, . . . , sn) unify.

What we are going to need to apply resolution reasoning (Section 10.3) to predicate logic
is unification of pairs of atomic formulas.

For example, we want to find a substitution that unifies the pair

P (x, g(a, z)), P (g(y, z), x).

In this example case, such unifying substitutions exist. A possible solution is

{x 7→ g(a, z), y 7→ a}.

10-20 CHAPTER 10. COMPUTATION

for applying this substitution gives P (g(a, z), g(a, z)). Another solution is

{x 7→ g(a, b), y 7→ a, z 7→ b}.

In this case, the second solution is an instance of the first, for

{x 7→ g(a, b), y 7→ a, z 7→ b} v {x 7→ g(a, z), y 7→ a},

because

{x 7→ g(a, b), y 7→ a, z 7→ b} = {z 7→ b} · {x 7→ g(a, z), y 7→ a}.

So we see that solution {x 7→ g(a, z), y 7→ a} is more general than solution {x 7→
g(a, b), y 7→ a, z 7→ b}.
If a pair of atoms is unifiable, it is useful to try and identify a solution that is as general
as possible, for the more general a solution is, the less unnecessary bindings it contains.
These considerations motivate the following definition.

Definition 10.21 If θ is a unifier for a pair of expressions (a pair of sequences of expres-
sions), then θ is called an mgu (a most general unifier) if σ v θ for every unifier σ for the
pair of expressions (the pair of sequences of expressions).

In the above example, {x→ g(a, z), y 7→ a} is an mgu for the pair

P (x, g(a, z)), P (g(y, z), x).

The Unification Theorem says that if a unifier for a pair of sequences of terms exists, then
an mgu for that pair exists as well. Moreover, there is an algorithm that produces an mgu
for any pair of sequences of terms in case these sequences are unifiable, and otherwise
ends with failure.

We will describe the unification algorithm and prove that it does what it is supposed to
do. This constitutes the proof of the theorem.

We give the algorithm in stages.

10.7. UNIFICATION 10-21

First we define unification of terms UnifyTs, in three cases.

• Unification of two variables x and y gives the empty substitution if the variables
are identical, and otherwise a substitution that binds one variable to the other.

• Unification of x to a non-variable term t fails if x occurs in t, otherwise it yields
the binding {x 7→ t}.

• Unification of f t̄ and gr̄ fails if the two variable names are different, otherwise
it yields the return of the attempt to do term list unification on t̄ and r̄.

If unification succeeds, a unit list containing a representation of a most general uni-
fying substitution is returned. Return of the empty list indicates unification failure.

Unification of term lists (UnifyTlists):

• Unification of two empty term lists gives the identity substitution.

• Unification of two term lists of different length fails.

• Unification of two term lists t1, . . . , tn and r1, . . . , rn is the result of trying to
compute a substitution σ = σn ◦ · · · ◦ σ1, where

– σ1 is a most general unifier of t1 and r1,

– σ2 is a most general unifier of σ1(t2) and σ1(r2),

– σ3 is a most general unifier of σ2σ1(t3) and σ2σ1(r3),

– and so on.

Our task is to show that these two unification functions do what they are supposed to do:
produce a unit list containing an mgu if such an mgu exists, produce the empty list in case
unification fails.

The proof consists of a Lemma and two Theorems. The Lemma is needed in Theorem
10.23. The Lemma establishes a simple property of mgu’s. Theorem 10.24 establishes
the result.

Lemma 10.22 If σ1 is an mgu of t1 and s1, and σ2 is an mgu of

(σ1t2, . . . , σ1tn) and (σ1s2, . . . , σ1sn),

then σ2 · σ1 is an mgu of (t1, . . . , tn) and (s1, . . . , sn).

10-22 CHAPTER 10. COMPUTATION

Proof. Let θ be a unifier of (t1, . . . , tn) and (s1, . . . , sn). Given this assumption, we
have to show that σ2 · σ1 is more general than θ.

By assumption about θ we have that θt1 = θs1. Since σ1 is an mgu of t1 and s1, there is a
substitution ρ with θ = ρ · σ1.
Again by assumption about θ, it holds for all i with 1 < i ≤ n that θti = θsi. Since
θ = ρ · σ1, it follows that

(ρ · σ1)ti = (ρ · σ1)si,

and therefore,

ρ(σ1ti) = ρ(σ1si).

Since σ2 is an mgu of (σ1t2, . . . , σ1tn) and (σ1s2, . . . , σ1sn), there is a substitution ν with
ρ = ν · σ2. Therefore,

θ = ρ · σ1 = (ν · σ2) · σ1 = ν · (σ2 · σ1).

This shows that σ2 · σ1 is more general than θ, which establishes the Lemma. 2

Theorem 10.23 shows, by induction on the length of term lists, that if unifyTs t s does
what it is supposed to do, then unifyTlists also does what it is supposed to do.

Theorem 10.23 Suppose unifyTs t s yields a unit list containing an mgu of t and s if the
terms are unifiable, and otherwise yields the empty list. Then unifyTlists t̄ s̄ yields a unit
list containing an mgu of t̄ and s̄ if the lists of terms t̄ and s̄ are unifiable, and otherwise
produces the empty list.

Proof. If the two lists have different lengths then unification fails.

Assume, therefore, that t̄ and s̄ have the same length n. We proceed by induction on n.

Basis n = 0, i.e., both t̄ and s̄ are equal to the empty list. In this case the ε substitution
unifies t̄ and s̄, and this is certainly an mgu.

Induction step n > 0. Assume t̄ = (t1, . . . , tn) and s̄ = (s1, . . . , sn), with n > 0. Then
t̄ = t1 : (t2, . . . , tn) and s̄ = s1 : (s2, . . . , sn), where : expresses the operation of
putting an element in front of a list.

What the algorithm does is:

(1) It checks if t1 and s1 are unifiable by calling unifyTs t1 s1. By the assumption
of the theorem, unifyTs t1 s1. yields a unit list (σ1), with σ1 an mgu of t1 and
s1 if t1 and s1 are unifiable, and yields the empty list otherwise. In the second
case, we know that the lists t̄ and s̄ are not unifiable, and indeed, in this case
unifyTlists will produce the empty list.

10.7. UNIFICATION 10-23

(2) If t1 and s1 have an mgu σ1, then the algorithm tries to unify the lists

(σ1t2, . . . , σ1tn) and (σ1s2, . . . , σ1sn),

i.e., the lists of terms resulting from applying σ1 to each of (t2, . . . , tn) and
each of (s2, . . . , sn). By induction hypothesis we may assume that applying
unifyTlists to these two lists produces a unit list (σ2), with σ2 an mgu of
the lists, if the two lists are unifiable, and the empty list otherwise.

(3) If σ2 is an mgu of the two lists, then the algorithm returns a unit list containing
σ2 · σ1. By Lemma 10.22, σ2 · σ1 is an mgu of t̄ and s̄.

2

Theorem 10.24 clinches the argument. It proceeds by structural induction on terms. The
induction hypothesis will allow us to use Theorem 10.23.

Theorem 10.24 The function unifyTs t s either yields a unit list (γ) or the empty list. In
the former case, γ is an mgu of t and s. In the latter case, t and s are not unifiable.

Proof. Structural induction on the complexity of (t, s). There are 4 cases.

1. Both terms are variables, i.e., t equals x, s equals y. In this case, if x and y are
identical, the ε substitution is surely an mgu of t and s. This is what the algorithm yields.
If x and y are different variables, then the substitution {x 7→ y} is an mgu of x and y. For
suppose σx = σy. Then σx = (σ · {x 7→ y})x, and for all z different from x we have
σz = (σ · {x 7→ y})z. So σ = σ · {x 7→ y}.
2. t = x and s is not a variable. If x is not an element of the variables of s, then {x 7→ s}
is an mgu of t and s. For if σx = σs, then σx = (σ · {x 7→ s})x, and for all variables z
different from x we have that σz = (σ · {x 7→ s})z. σ = σ · {x 7→ s}. If x is an element
of the variables of s, then unification fails (and this is what the algorithm yields).

3. s = x and t not a variable. Similar to case 2.

4. t = f(t̄) and s = g(s̄). Then t and s are unifiable iff (i) f equals g and (ii) the term
lists t̄ and s̄ are unifiable. Moreover, ν is an mgu of t and s iff f equals g and ν is an mgu
of t̄ and s̄.

By the induction hypothesis, we may assume for all subterms t′ of t and all subterms s′

of s that unifyTs t’ s’ yields the empty list if t′ and s′ do not unify, and a unit list (ν), with
ν an mgu of t′ and s′ otherwise. This means the condition of Theorem 10.23 is fulfilled,
and it follows that unifyTlists t̄ s̄ yields (ν), with ν an mgu of t̄ and s̄, if the term lists t̄
and s̄ unify, and unifyTlists t̄ s̄ yields the empty list if the term lists do not unify.

This establishes the Theorem. 2

Some examples of unification attempts:

• unifyTs x (f(x) yields ().

10-24 CHAPTER 10. COMPUTATION

• unifyTs x (f(y) yields ({x 7→ y}).

• unifyTs g(x, a) g(y, x) yields ({x 7→ a, y 7→ a}).

Further examples are in the exercises.

Exercise 10.25 Stefan

Exercise 10.26 Stefan

Exercise 10.27 Stefan

10.8 Resolution with Unification

Suppose we have clausal forms for predicate logic. Then we can adapt the resolution
rule to predicate logic by combining resolution with unification, as follows. Assume that
C1∪{P t̄} and C2∪{¬P s̄} are predicate logical clauses. The two literals P t̄ and P s̄ need
not be the same in order to apply resolution to the clauses. It is enough that P t̄ and P s̄
are unifiable.

For what follows, let us assume that the clauses in a predicate logical clause form do not
have variables in common. This assumption is harmless: see Exercise 10.28.

Exercise 10.28 Suppose C and C ′ are predicate logical clauses, and they have a variable x in
common. Show that it does not affect the meaning of the clause form {C,C ′} if we replace the
occurrence(s) of x in C ′ by occurrences of a fresh variable z (“freshness” of z means that z occurs
in neither C nor C ′.)

Assume that C1 ∪ {P t̄} and C2 ∪ {¬P s̄} do not have variables in common. Then the
following inference rule is sound:

Resolution Rule with Unification

C1 ∪ {P t̄} {¬P s̄} ∪ C2

θC1 ∪ θC2
θ is mgu of t̄ and s̄

Here is an example application:

{Pf(y), Qg(y)} {¬Pf(g(a)), Rby}
{Qg(g(a)), Rbg(a)} mgu {y 7→ g(a)} applied to Pf(y) and Pf(g(a))

It is also possible to use unification to ‘simplify’ individual clauses. If P t̄ and P s̄ (or ¬P t̄
and ¬P s̄) occur in the same clause C, and θ is an mgu of t̄ and s̄, then θC is called a
factor of C. The following inference rules identify literals by means of factorisation:

10.8. RESOLUTION WITH UNIFICATION 10-25

Factorisation Rule (pos)

C1 ∪ {P t̄, P s̄}
θ(C1 ∪ {P t̄})

θ is mgu of t̄ and s̄

Factorisation Rule (neg)

C1 ∪ {¬P t̄,¬P s̄}
θ(C1 ∪ {¬P t̄})

θ is mgu of t̄ and s̄

An example application:

{Px, Pf(y), Qg(y)}
{Pf(y), Qg(y)} mgu {x 7→ f(y)} applied to Px and Pf(y))a

Resolution and factorisation can also be combined, as in the following example:

{Px, Pf(y), Qg(y)}
{Pf(y), Qg(y)} factorisation {¬Pf(g(a)), Rby}

{Qg(g(a)), Rbg(a)} resolution

Computation with first order logic uses these rules, together with a search strategy for
selecting the clauses and literals to which resolution and unification are going to be ap-
plied. A particularly simple strategy is possible if we restrict the format of the clauses in
the clause forms.

It can be proved (although we will not do so here) that resolution and factorisation for
predicate logic form a complete calculus for predicate logic. What this means is that a
clause form F is unsatisfiable if and only if there exists a deduction of the empty clause
[] from F by means of resolution and factorisation.

On the other hand, there is an important difference with the case of propositional logic.
Resolution refutation is a decision method for (un)satisfiability in propositional logic.
In the case of predicate logic, this cannot be the case, for predicate logic has no de-
cision mechanism. Resolution/factorisation refutation does not decide predicate logic.
More precisely, if a predicate logical clause F is unsatisfiable, then there exists a res-
olution/factorisation derivation of [] from F , but if F is satisfiable, then the derivation
process may never stop, as the possibilities of finding ever new instantiations by means of
unification are inexhaustible.

10-26 CHAPTER 10. COMPUTATION

10.9 Prolog

Prolog, which derives its name from programming with logic, is a general purpose pro-
gramming language that is popular in artificial intelligence and computational linguistics,
and that derives its force from a clever search strategy for a particular kind of restricted
clause form for predicate logic.

Alain Colmerauer

The language was conceived in the 1970s by a group around Alain Colmerauer in Mar-
seille. The first Prolog system was developed in 1972 by Alain Colmerauer and Phillipe
Roussel. A well known public domain version of Prolog us SWI-Prolog, developed in
Amsterdam by Jan Wielemaker. See http://www.swi-prolog.org/.

Jan Wielemaker

Definition 10.29 A clause with just one positive literal is called a program clause. A
clause with only negative literals is called a goal clause.

A program clause {¬A1, . . . ,¬An, B} can be viewed as an implication (A1∧· · · , An)→
B. A goal clause {¬A1, . . . ,¬An} can be viewed as a degenerate implication (A1 ∧
· · · , An) → [], where [] is the empty clause (expressing a contradiction). Goal and pro-
gram clauses together constitute what is is called pure Prolog. The computation strategy
of Prolog consists of combining a goal clause with a number of program clauses in an
attempt to derive the empty clause. Look at the goal clause like this:

(A1 ∧ · · · , An)→ [].

10.9. PROLOG 10-27

From this, [] can be derived if we manage to derive each of A1, . . . , An from the Prolog
program clauses. An example will clarify this. In the following example of a pure Prolog
program, we use the actual Prolog notation, where predicates are lower case, variables
are upper case, and implications (A1 ∧ · · · , An) → B are written backwards, as B :
−A1, . . . , An.

plays(heleen,X) :- haskeys(X).
plays(heleen,violin).
plays(hans,cello).
plays(jan,clarinet).

haskeys(piano).
haskeys(accordeon).
haskeys(keyboard).
haskeys(organ).

woodwind(clarinet).
woodwind(recorder).
woodwind(oboe).
woodwind(bassoon).

Each line is a program clause. All clauses except one consist of a single positive literal.
The exception is the clause plays(heleen,X) :- haskeys(X). This is the Pro-
log version of ∀x(H(x)→ P (h, x)). Here is an example of interaction with this database
(read from a file music.pl) in SWI-Prolog:

[jve@pidgeot lia]$ pl
Welcome to SWI-Prolog (Multi-threaded, 64 bits, Version 5.6.64)
Copyright (c) 1990-2008 University of Amsterdam.
SWI-Prolog comes with ABSOLUTELY NO WARRANTY. This is free software,
and you are welcome to redistribute it under certain conditions.
Please visit http://www.swi-prolog.org for details.

For help, use ?- help(Topic). or ?- apropos(Word).

?- [music].
% music compiled 0.00 sec, 3,328 bytes
true.

?- plays(heleen,X).

The last line constitutes the Prolog query. The system now computes a number of answers,
and we can use ; after each answer to prompt for more, until the list of answers is
exhausted. This is what we get:

10-28 CHAPTER 10. COMPUTATION

X = piano ;
X = accordeon ;
X = keyboard ;
X = organ ;
X = violin.

Prolog queries can also be composite:

?- woodwind(X),plays(Y,X).
X = clarinet,
Y = jan ;
false.

?-

The strategy that Prolog uses to compute answers is resolution refutation. Take the first
query as an example. The Prolog system combines the database clauses (the program
clauses in the file music.pl) with the goal clause plays(heleen,X) → [], and
sure enough, the system can derive the empty clause [] from this, in quite a number of
ways. Each derivation involves a unifying substitution, and these substitutions are what
the system computes for us. The exercises to follow invite you to play a bit more with
Prolog programming.

Exercise 10.30 Stefan

Exercise 10.31 Stefan

Exercise 10.32 Stefan

Exercise 10.33 Stefan

Exercise 10.34 Stefan

Summary After having finished this chapter you can check whether you have mastered
the material by answering the following questions:

• What is the definition of clausal form for propositional logic?

• How can formulas of propositional logic be translated into clausal form?

• How does the resolution rule work for propositional logic, and why is it sound?

• What are SAT solvers? How do they work?

• What is the definition of clausal form for predicate logic?

10.9. PROLOG -29

• How can formulas of predicate logic be translated into clausal form?

• How can variable substitutions be represented as finite sets of bindings?

• How are substitutions composed?

• What does it mean that one substitution is more general than another one?

• What is an mgu?

• What is unification? What does the unification algorithm do?

• What is the rule of resolution with unification? Why is it sound?

• What is the rule of factorisation? Why is it sound?

• What are program clauses and goal clauses?

• What is the computation mechanism behind Prolog?

-30 CHAPTER 10. COMPUTATION

Appendices

-31

Appendix A

Sets, Relations and Functions

Summary

This chapter explains the basics of formal set notation, and gives an introduction to rela-
tions and functions. The chapter ends with a short account of the principle of proof by
mathematical induction.

A.1 Sets and Set Notation

Many mathematical notions — some say all mathematical notions — can be defined in
terms of the fundamental concept of a set. This is good reason for starting with some
basic set theory.

A set is a collection of definite, distinct objects. Examples are the set of colours of the
Dutch flag, or the set of letters of the Greek alphabet. Yet another example is the set of
even natural numbers greater than seven. And so on.

The elements of a set are also called its members. To indicate that a is an element of a set
A we write a ∈ A. To deny that a is an element of a set A we write a /∈ A. The symbol
∈ is the symbol for membership.

The elements of a set can be anything: words, colours, people, numbers. The elements of
a set can also themselves be sets. The set consisting of the set of even natural numbers
and the set of odd natural numbers is an example. This set has two elements; each of these
elements has itself an infinite number of elements.

To check whether two sets are the same one has to check that they have the same elements.
The fact that membership is all there is to set identity, or that sets are fully determined by
their members, is called the principle of extensionality. It follows that to check that two
sets A and B are identical, one has to check two things:

A-1

A-2 APPENDIX A. SETS, RELATIONS AND FUNCTIONS

• does it hold that every element a of A is also an element of B, and

• does it hold that every element b of B is also an element of A?

To specify a set, there are several methods: give a list of its members, as in ‘the set having
the numbers 1, 2 and 3 as its only members’, give some kind of semantic description, as
in ‘the set of colours of the Dutch flag’, or separate out a set from a larger set by means of
a suitable restriction. This last method is called the method of set comprehension. Here
is an example: the odd natural numbers are the natural numbers with the property that
division by 2 leaves a remainder of 1. We can express this by means of the pattern 2n+ 1,
as follows:

O = {2n+ 1 | n ∈ N}.

The braces are also used to list the members of a finite set:

D = {red,white, blue}.

Mentioning a set element more than once does not make a difference. The set

{white, blue,white, red}

is identical to the set D, for it has the same members.

Another way of specifying sets is by means of operations on other sets. An example is
the following definition of the odd natural numbers:

E = N−O.

HereN−O is the set of all elements ofN that are not members ofO. Equivalent definitions
are the following:

E = {n ∈ N | n /∈ O}

or
E = {2n | n ∈ N}.

Some important sets have special names. N is an example. Another example is Z, for the
set of integer numbers. Yet another example is the set without any members. Because of
the principle of extensionality there can be only one such set. It is called ∅ or the empty
set.

If every member of a set A is also a member of set B we say that A is a subset of B,
written as A ⊆ B. If A ⊆ B and B ⊆ A then it follows by the principle of extensionality
that A and B are the same set. Conversely, if A = B then it follows by definition that
A ⊆ B and B ⊆ A.

Exercise A.1 Explain why ∅ ⊆ A holds for every set A.

Exercise A.2 Explain the difference between ∅ and {∅}.

A.2. RELATIONS A-3

The complement of a set A, with respect to some fixed universe, or: domain, U with A ⊆
U , is the set consisting of all objects in U that are not elements of A. The complement set
is written as A. It is defined as the set {x | x ∈ U, x /∈ A}. For example, if we take U
to be the set N of natural numbers, then the set of even numbers is the complement of the
set of odd numbers and vice versa.

A.2 Relations

By a relation we mean a meaningful link between people, things, objects, whatever. Usu-
ally, it is quite important what kind of relationship we have in mind.

Formally, we can describe a relation between two sets A and B as a collection of ordered
pairs (a, b) such that a ∈ A and b ∈ B. An ordered pair is, as the name already gives away,
a collection of two distinguishable objects, in which the order plays a role. E.g., we use
(Bill,Hillary) to indicate the ordered pair that has Bill as its first element and Hillary as
its second element. This is different from the pair (Hillary,Bill) where Bill plays second
fiddle.

The notation for the set of all ordered pairs with their first element taken from A and their
second element taken from B is A×B. This is called the Cartesian product of A and B.
A relation between A and B is a subset of A×B.

The Cartesian product of the sets A = {a, b, . . . , h} and B = {1, 2, . . . , 8}, for example,
is the set

A×B = {(a, 1), (a, 2), . . . , (b, 1), (b, 2), . . . , (h, 1), (h, 2), . . . , (h, 8)}.

This is the set of positions on a chess board. And if we multiply the set of chess colours
C = {White,Black} with the set of chess figures,

F = {King,Queen,Knight,Rook,Bishop,Pawn},

we get the set of chess pieces C×F . If we multiply this set with the set of chess positions,
we get the set of piece positions on the board, with (White,King, (e, 1)) indicating that
the white king occupies square e1. To get the set of moves on a chess board, take ((C ×
F)× ((A×B)× (A×B))), and read ((White,King, ((e, 1), (f, 2)) as ‘white king moves
from e1 to f2’, but bear in mind that not all moves in ((C ×F)× ((A×B)× (A×B)))
are legal in the game.

A× A is sometimes also denoted by A2. Similarly for A× A× A and A3, and so on.

As an example of a relation as a set of ordered pairs consider the relation of authorship
between a set A of authors and a set B of books. This relation associates with every
author the book(s) he or she wrote.

Sets of ordered pairs are called binary relations. We can easily generalize this to sets of
triples, to get so-called ternary relations, to sets of quadruples, and so on. An example

A-4 APPENDIX A. SETS, RELATIONS AND FUNCTIONS

of a ternary relation is that of borrowing something from someone. This relation consists
of triples, or: 3-tuples, (a, b, c), where a is the borrower, b is the owner, and c is the
thing borrowed. In general, an n-ary relation is a set of n-tuples (ordered sequences of n
objects). We use An for the set of all n-tuples with all elements taken from A.

Unary relations are called properties. A property can be represented as a set, namely
the set that contains all entities having the property. For example, the property of be-
ing divisible by 3, considered as a property of integer numbers, corresponds to the set
{. . . ,−9,−6,−3, 0, 3, 6, 9, . . .}.
An important operation on binary relations is composition. IfR and S are binary relations
on a set U , i.e. R ⊆ U2 and S ⊆ U2, then the composition of R and S, notation R ◦ S, is
the set of pairs (x, y) such that there is some z with (x, z) ∈ R and (z, y) ∈ S. E.g., the
composition of {(1, 2), (2, 3)} and {(2, 4), (2, 5)} is {(1, 4), (1, 5)}.

Exercise A.3 What is the composition of {(n, n+ 2) | n ∈ N} with itself?

Another operation on binary relations is converse. If R is a binary relation, then its
converse (or: inverse) is the relation given by Rˇ = {(y, x) | (x, y) ∈ R}. The converse
of the relation ‘greater than’ on the natural numbers is the relation ‘smaller than’ on the
natural numbers. If a binary relation has the property that Rˇ ⊆ R then R is called
symmetric. It is also denoted as

∀x∀y(Rxy → Ryx). (A.1)

Exercise A.4 Show that it follows from Ř ⊆ R that R = Ř .

If U is a set, then the relation I = {(x, x) | x ∈ U} is called the identity relation on U . If
a relation R on U has the property that I ⊆ R, i.e. if every element of U stands in relation
R to itself, then R is called reflexive. The relation ≤ (‘less than or equal’) on the natural
numbers is reflexive, the relation < (‘less than’) is not. The relation A2 − I is the set of
all pairs (x, y) ∈ A2 with x 6= y. If A is the set {a, bc}, then A2 − I gives the following
relation:

{(a, b), (a, c), (b, a), (b, c), (c, a)(c, b)}.
A relation R is called transitive if it holds for all x, y, z that if (x, y) ∈ R and (y, z) ∈ R,
then also (x, z) ∈ R. To say that the relation of friendship is transitive boils down to
saying that it holds for anyone that the friends of their friends are their friends.

Exercise A.5 Which of the following relations are transitive?

(1) {(1, 2), (2, 3), (3, 4)}

(2) {(1, 2), (2, 3), (3, 4), (1, 3), (2, 4)}

(3) {(1, 2), (2, 3), (3, 4), (1, 3), (2, 4), (1, 4)}

(4) {(1, 2), (2, 1)}

A.3. BACK AND FORTH BETWEEN SETS AND PICTURES A-5

(5) {(1, 1), (2, 2)}

The next exercise shows that transitivity can be expressed in terms of relational composi-
tion.

Exercise A.6 Check that a relation R is transitive if and only if it holds that R ◦R ⊆ R.

Exercise A.7 Can you give an example of a transitive relation R for which R ◦ R = R does not
hold?

A.3 Back and Forth Between Sets and Pictures

A domain of discourse with a number of 1-place and 2-place predicates on is in fact a set
of entities with certain designated subsets (the 1-place predicates) and designated sets of
pairs of entities (the 2-place predicates).

Relations are sets of pairs, and it is useful to acquire the skill to mentally go back and
forth between sets-of-pairs representation and picture representation. Take the following
simple example of a relation on the set {1, 2, 3}.

{(1, 2), (1, 3), (2, 3)}. (A.2)

Here is the corresponding picture:

1 2 3

Exercise A.8 Give the set of pairs that constitutes the relation of the following picture:

1 2 3

A-6 APPENDIX A. SETS, RELATIONS AND FUNCTIONS

For another example, consider the picture:

1 2 3

No arrowheads are drawn, which indicates that the pictured relation is symmetric. Here
is the representation of the same relation as a set of pairs:

{(1, 2), (2, 1), (1, 3), (3, 1), (2, 3), (3, 2)}.

Exercise A.9 Give the representation of the pictured relation as a set of pairs:

1 2 3

A.4 Relational Properties

Talking about pictures with predicate logic is very useful to develop a clear view of what
relational properties the predicate logical formulas express. Predicate logic is very pre-
cise, and it takes practice to get used to this precision. Consider the following picture.

A relation is transitive if from the facts that there are links from x to y and a link from y
to z it follows that there is a link from x to y. Here is a formula for this:

∀x∀y∀z((Rxy ∧Ryz)→ Rxz). (A.3)

A.4. RELATIONAL PROPERTIES A-7

Let us check whether the link relation in the last picture is transitive. It may seem at first
sight that it is, for what transitivity expresses is that if you can go from x to z by first
taking an R step from x to y and next another R step from y to z, between, then there is
also a direct R step from x to y. This seems indeed to be the case in the picture. But there
is a snag. In reasoning like this, we assume that the three points x, y and z are all different.
But this is not what the formula says. Take any two different points in the picture. Surely
there is a link from the first point to the second. But the linking relation is symmetric: it
goes in both directions. Therefore there also is a link from the second point back to the
first. But this means that the first point has to be R related to itself, and it isn’t. So the
relation in the picture is not transitive after all.

Can we also come up with a picture of three points with a symmetric linking relation,
where the relation is transitive? Yes, there are several possibilities. Here is the first one:

But there is another possibility. Take the following picture:

This is a picture where the link relation is empty. There are no links, so it trivially holds
that if one can get from a point to a point via two links, then one can also get there with a
single link. So the empty relation is transitive.

Exercise A.10 Give all the transitive link relations on a domain consisting of three individuals,
on the assumption that the link relation is symmetric. We have already seen two examples: the
empty relation (no points are linked) and the total relation (all points are linked). What are the
other possibilities? Draw pictures!

The relations in the pictures above were all symmetric: links were the same in both direc-
tions. The following picture with arrows gives a relation that is not symmetric. We need
the arrows, for now the directions of the links matter:

A-8 APPENDIX A. SETS, RELATIONS AND FUNCTIONS

Again we use R to refer to the binary relation in the picture. Again we can ask if the
relation of the picture is transitive. This time the answer is ‘yes’. If we can get from x to
y with two −→ steps, then we can also get from x to y with a single step.

Not only is the relation in the picture not symmetric, but something stronger holds:

∀x∀y(Rxy → ¬Ryx). (A.4)

Formula (A.4) expresses that the relation R is asymmetric.

Exercise A.11 Give an example of a binary relation on a domain of three objects that it is neither
symmetric nor asymmetric.

The relation in the current picture also has another property, called irreflexivity:

∀x¬Rxx. (A.5)

This expresses that the R relation does not have self loops. We say: the relation is ir-
reflexive

The dual to irreflexivity is the property of having all self loops. This is called reflexivity:

∀xRxx. (A.6)

Here is an example of a reflexive relation:

Exercise A.12 Show that any asymmetric relation has to be irreflexive. (Hint: assume that a
relation is asymmetric, and suppose it contains a loop (x, x). Why is this impossible?)

A.5. FUNCTIONS A-9

A binary relation R is called an equivalence relation if R has the following three proper-
ties: (i) R is reflexive, (ii) R is symmetric, (iii) R is transitive.

Exercise A.13 Give all equivalence relations on a domain consisting of three objects. Draw pic-
tures!

Exercise A.14 Consider the three predicate logical sentences (A.1), (A.3) and (A.6), These sen-
tences together express that a certain binary relation R is an equivalence relation: symmetric,
transitive and reflexive. Show that none of these sentences is semantically entailed by the other
ones by choosing for each pair of sentences a model (situation) that makes these two sentences
true but makes the third sentence false. In other words: find three examples of binary relations,
each satisfying just two of the properties in the list (A.1), (A.3) and (A.6). This shows, essentially,
that the definition of being an equivalence cannot be simplified (why?).

Exercise A.15 Consider the following predicate logical formulas:

• ∀x∀y(Rxy → ¬Ryx) (R is asymmetric)

• ∀x∃yRxy (R is serial)

• ∀x∀y∀z((Rxy ∧Ryz)→ Rxz) (R is transitive).

Take any situation with a non-empty domain of discourse, with a binary relation on it. Show: if
the three formulas are true of this situation, then the domain of discourse must be infinite. (Hint:
start with a domain consisting of a single individual d1. Then by seriality there has to be an R-
successor to d1. Suppose we take d1 as its own R-successor. Then this would get us in conflict
with we are in conflict with asymmetry, by Exercise ??. So there has to be a d2 with (d1, d2) in R.
And so on . . .)

Exercise A.16 Consider again the three properties of asymmetry, seriality and transitivity of the
previous exercise.

(1) Give a picture of a finite situation with a relation R that is asymmetric and serial but not
transitive.

(2) Give a picture of a finite situation with a relation R that is serial and transitive but not
asymmetric.

(3) Give a picture of a finite situation with a relation R that is transitive and asymmetric but not
serial.

A.5 Functions

Functions are relations with the following special property: for any (a, b) and (a, c) in the
relation it has to hold that b and c are equal. Thus a function from a set A (called domain)
to a set B (called range) is a relation between A and B such that for each a ∈ A there is

A-10 APPENDIX A. SETS, RELATIONS AND FUNCTIONS

one and only one associated b ∈ B. In other words, a function is a mechanism that maps
an input value to a uniquely determined output value. Looking at the relation author of
from above, it is immediately clear that it is not a function, because the input Michael
Ende is not mapped to a unique output but is related to more than one element from the
set B of books.

Functions are an important kind of relations, because they allow us to express the concept
of dependence. For example, we know that the gravitational potential energy of a wreck-
ing ball depends on its mass and the height we elevated it to, and this dependence is most
easily expressed in a functional relation.

Functions can be viewed from different angles. On the one hand, they can be seen as
sets of data, represented as a collection of pairs of input and output values. This tells us
something about the behaviour of a function, i.e. what input is mapped to which output.

The function converting temperatures from Kelvin to Celsius can be seen as a set of pairs
{(0,−273.15), . . .}, and the function converting temperatures from Celsius to Fahrenheit
as a set {(−273.15,−459.67), . . .}. Determining the output of the function, given some
input, simply corresponds to a table lookup. Any function can be viewed as a – possibly
infinite – database table. This is called the extensional view of functions. Another way
to look at functions is as instructions for computation. This is called the intensional
view of functions. In the case of temperature conversion the intensional view is more
convenient than the extensional view, for the function mapping Kelvin to Celsius can
easily be specified as a simple subtraction

x 7→ x− 273.15

This is read as ‘an input x is mapped to x minus 273.15’. Similarly, the function from
Celsius to Fahrenheit can be given by

x 7→ x× 9

5
+ 32

For example, if we have a temperature of 37 degrees Celsius and want to convert it to
Fahrenheit, we replace x by 37 and compute the outcome by multiplying it with 9

5
and

then adding 32.

37× 9

5
+ 32→ 66.6 + 32→ 98.6

The example shows that the intensional view of functions can be made precise by repre-
senting the function as an expression, and specifying the principles for simplifying (or:
rewriting) such functional expressions. Rewriting functional expressions is a form of sim-
plification where part of an expression is replaced by something simpler, until we arrive
at an expression that cannot be simplified (or: reduced) any further. This rewriting corre-
sponds to the computation of a function. For example, the function converting Celsius to
Fahrenheit applied to the input 37 is the expression 37× 9

5
+ 32. This expression denotes

the output, and at the same time it shows how to arrive at this output: First, 37 × 9
5

is

A.6. RECURSION AND INDUCTION A-11

rewritten to 66.6, according to the rewriting rules for multiplication. The result of this
simplification is 66.6 + 32, which is then rewritten to 98.6, in accordance with the rewrit-
ing rules for addition.

Functions can be composed, as follows. Let g be the function that converts from Kelvin
to Celsius, and let f be the function that converts from Celsius to Fahrenheit. Then f · g
is the function that converts from Kelvin to Fahrenheit, and that works as follows. First
convert from Kelvin to Celsius, then take the result and convert this to Fahrenheit. It
should be clear from this explanation that f · g is defined by

x 7→ f(g(x)),

which corresponds to

x 7→ (x− 273.15)× 9

5
+ 32

Exercise A.17 The successor function s : N→ N on the natural numbers is given by n 7→ n+ 1.
What is the composition of s with itself?

A special function which is simple yet very useful is the characteristic function of a set.
The characteristic function of subset A of some universe (or: domain) U is a function that
maps all members ofA to the truth-value True and all elements of U that are not members
of A to False. E.g. the function representing the property of being divisible by 3, on the
domain of integers, would map the numbers

. . . ,−9,−6,−3, 0, 3, 6, 9, . . .

to True, and all other integers to False. Characteristic functions characterize membership
of a set. Since we specified relations as sets, this means we can represent every relation
as a characteristic function.

Exercise A.18 ≤ is a binary relation on the natural numbers. What is the corresponding charac-
teristic function?

Exercise A.19 Let f : A→ B be a function. Show that the relation R ⊆ A2 given by (x, y) ∈ R
if and only if f(x) = f(y) is an equivalence relation (reflexive, transitive and symmetric) on A.

A.6 Recursion and Induction

A recursive definition is a recipe for constructing objects from a finite number of ingre-
dients in a finite number of ways. An example is the following recursive definition of
natural numbers:

• 0 is a natural number.

A-12 APPENDIX A. SETS, RELATIONS AND FUNCTIONS

• adding 1 to a natural number n gives a new natural number n+ 1.

• nothing else is a natural number.

This recipe gives rise to an important method for proving things: proof by mathematical
induction.

As an example, we prove the fact about natural numbers that the sum of the first n odd
natural numbers equals n2. For example 1 + 3 = 22, 1 + 3 + 5 + 7 = 42, and so on. More
formally and generally, we have for all natural numbers n:

n−1∑
k=0

(2k + 1) = n2.

Here is a proof of this fact by mathematical induction.

Basis. For n = 0, we have Σ0
k=0(2k + 1) = 1 = 12, so for this case the statement holds.

Induction step. We assume the statement holds for some particular natural number n and
we show that it also holds for n+1. So assume

∑n−1
k=0(2k+1) = n2. This is the induction

hypothesis. We have to show:
∑n

k=0(2k + 1) = (n+ 1)2. Indeed,

n∑
k=0

(2k + 1) =
n−1∑
k=0

(2k + 1) + 2n+ 1.

Now use the induction hypothesis to see that this is equal to n2 + 2n + 1, which in turn
equals (n+ 1)2. Therefore we have:

n∑
k=0

(2k + 1) =
n−1∑
k=0

(2k + 1) + 2n+ 1
ih
= n2 + 2n+ 1 = (n+ 1)2.

The equality ih
= is the step where the induction hypothesis was used. We have checked

two cases: the case 0 and the case n + 1. By the recursive definition of natural numbers,
we have covered all cases, for these are the two possible shapes of natural numbers. So
we have proved the statement for all natural numbers n.

The procedure of proof by mathematical induction does not help to find interesting pat-
terns, but once such a pattern is found it is very helpful to check whether the pattern really
holds. So how can one find a pattern like

∑n−1
k=0(2k + 1) = n2 in the first place? By

imagining the following way to build up a square with side n:

A.6. RECURSION AND INDUCTION A-13

Such a picture is what the ancient Greeks called a gnomon (“thing by which one knows”).
The structure of the inductive proof can now be pictured as follows:

Basis

n

nn

+
1

2n+ 1

Induction Step

Exercise A.20 Consider the following gnomon:

A-14 APPENDIX A. SETS, RELATIONS AND FUNCTIONS

What does this suggest for the sum of the first n even numbers? Give a form for
∑n

k=0 2k, and
prove with induction that your form is correct.

Appendix B

Solutions to the Exercises

Solutions to Exercises from Chapter 2

Exercise 2.1 on page 2-7: Consider the case where there are three facts that you are
interested in. You wake up, you open your eyes, and you ask yourself three things: “Have
I overslept?”, “Is it raining?”, “Are there traffic jams on the road to work?”. To find out
about the first question, you have to check your alarm clock, to find about the second
you have to look out of the window, and to find out about the third you have to listen
to the traffic info on the radio. We can represent these possible facts with three basic
propositions, p, q and r, with p expressing “I have overslept”, q expressing “It is raining”,
and r expressing “There are traffic jams.” Suppose you know nothing yet about the truth
of your three facts. What is the space of possibilities?

p q r p q r
p q r p q r
p q r p q r
p q r p q r

Exercise 2.2 on page 2-8: (Continued from previous exercise.) Now you check your
alarm clock, and find out that you have not overslept. What happens to your space of
possibilities?

p q r p q r
p q r p q r
p q r p q r
p q r p q r

¬p
=⇒

{
p q r p q r
p q r p q r

}

B-1

B-2 APPENDIX B. SOLUTIONS TO THE EXERCISES

Exercise 2.3 on page 2-8: You are given the information that p-or-q and (not-p)-or-r. What
is the strongest valid conclusion you can draw?

p q r
p q r
p q r
p q r
p q r
p q r
p q r
p q r

p ∨ q
=⇒

p q r
p q r
p q r
p q r
p q r
p q r

¬p ∨ r

=⇒

p q r
p q r
p q r
p q r

Any valid conclusion has to be true in the set of remaining alternatives

p q r
p q r
p q r
p q r

. If it

is also false in the set of eliminated alternatives

p q r
p q r
p q r
p q r

 then it is among the strongest

ones. For instance p∨ q is a valid conclusion but it is not strong enough because it is also
true, for instance, in p q r. The formula (p∨q)∧(¬p∨r) is among the strongest conclusions
that you can draw from the given information (and so is any formula equivalent to it).

Exercise 2.6 on page 2-12:

• I will only go to school if I get a cookie now:

(p→ q) ∧ (q → p)

where p =“I get a cooky now” and q =“I will go to school”.

• John and Mary are running:
p ∧ q

where p =“John is running” and q =“Mary is running”.

• A foreign national is entitled to social security if he has legal employment or if he
has had such less than three years ago, unless he is currently also employed abroad:

((p ∨ q) ∧ ¬r)→ s

where p =“A foreign national has legal employment”, q =“A foreign national has
had legal employment less then three years ago”, r =“A foreign national is currently
also employed abroad” and s =“A foreign national is entitled to social security”.

B-3

Exercise 2.7 on page 2-12: Only the first one.

Exercise 2.8 on page 2-12: Construct a tree for the following formulae:

(p ∧ q)→ ¬q:

(p ∧ q)→ ¬q

p ∧ q

p q

¬q

q

q ∧ r ∧ s ∧ t (draw all possible trees; and does it matter?)

Two possible trees are depicted below, you should build the remaining ones and check that
the order doesn’t matter in either construction (in the sense that the logical meaning of this
particular formula is invariant under different construction orders). This is not, however,
a general result: sometimes the order in the construction tree changes the logical meaning
(truth value) of composed formulae.

(q ∧ r) ∧ (s ∧ t)

q ∧ r

q r

s ∧ t

s t

q ∧ (r ∧ (s ∧ t))

q r ∧ (s ∧ t)

r s ∧ t

s t

Exercise 2.11 on page 2-17:

(p → q) ∨ (q → p)

0 1 0 1 0 1 0
0 1 1 1 1 0 0
1 0 0 1 0 1 1
1 1 1 1 1 1 1

B-4 APPENDIX B. SOLUTIONS TO THE EXERCISES

((p ∨ ¬ q) ∧ r) ↔ (¬ (p ∧ r) ∨ q)

0 1 1 0 0 0 0 1 0 0 0 1 0
0 1 1 0 1 1 1 1 0 0 1 1 0
0 0 0 1 0 0 0 1 0 0 0 1 1
0 0 0 1 0 1 0 1 0 0 1 1 1
1 1 1 0 0 0 0 1 1 0 0 1 0
1 1 1 0 1 1 0 0 1 1 1 0 0
1 1 0 1 0 0 0 1 1 0 0 1 1
1 1 0 1 1 1 1 0 1 1 1 1 1

Exercise 2.12 on page 2-17:

Here are two non-equivalent readings:

(¬p→ q) ∨ r and ¬(p→ (q ∨ r))

you should also check the remaining possibilities.

Exercise 2.18 on page 2-20:

p q r ¬p ¬q q ∨ r ¬p→ (q ∨ r) p ∧ r p ∨ r
0 0 0 1 1 0 0 0 0
0 0 1 1 1 1 1 0 1
0 1 0 1 0 1 1 0 0
0 1 1 1 0 1 1 0 1
1 0 0 0 1 0 1 0 1
1 0 1 0 1 1 1 1 1
1 1 0 0 0 1 1 0 1
1 1 1 0 0 1 1 1 1

You can check by inspecting the rows of the table that p ∧ r is not a valid consequence
and p ∨ r is.

Exercise 2.19 on page 2-21:

You can check the first item with the following table:

B-5

You might want to use the Truth Tabulator applet to build the truth table for the second
item. The address is:

http://staff.science.uva.nl/˜jaspars/AUC/apps/javascript/proptab

Exercise 2.20 on page 2-21:

(a)
q r
q r
q r
q r

¬(q ∧ r)

=⇒

q r
q r
q r

q

=⇒
{
q r

}

All the valuations making the premises true also make the conclusion true. We can also see that
updating with the conclusion is redundant.

p q r
p q r
p q r
p q r
p q r
p q r
p q r
p q r

¬p ∨ ¬q ∨ r
=⇒

p q r
p q r
p q r
p q r
p q r
p q r
p q r

q ∨ r
=⇒

p q r
p q r
p q r
p q r
p q r

p

=⇒
{
p q r
p q r

}

We can see that updating with the conclusion has no further effect, hence the consequence relation
is valid.

Exercise 2.22 on page 2-21: By comparing the first and the second tables below you can determine
that the equivalence does not hold for item (3) while by comparing the first and the third tables
below you can determine that the equivalence does hold for item (4). The other items are similar.

B-6 APPENDIX B. SOLUTIONS TO THE EXERCISES

¬ (p → q)

0 0 1 0
0 0 1 1
1 1 0 0
0 1 1 1

p ∨ ¬ q

0 1 1 0
0 0 0 1
1 1 1 0
1 1 0 1

p ∧ ¬ q

0 0 1 0
0 0 0 1
1 1 1 0
1 0 0 1

Exercise 2.26 on page 2-27: Disjunction can be defined as:

ϕ ∨ ψ ≡ ¬(¬ϕ ∧ ¬ψ)

Implication can be defined as:
ϕ→ ψ ≡ ¬ϕ ∨ ψ

after which you can use the previous definition for disjunction.

Equivalence can be defined as:

ϕ↔ ψ ≡ (ϕ→ ψ) ∧ (ψ → ϕ)

and then get rid of implication by the previous definition.

Exclusive disjunction can be defined as:

ϕ⊕ ψ ≡ ¬(ϕ↔ ψ)

and then unfold the definition of equivalence.

The Sheffer stroke can be defined as:

ϕ | ψ ≡ ¬(ϕ ∧ ψ)

and you can continue in this way (see also exercise 2.29 on page 2-36).

Exercise 2.29 on page 2-36:

The following table shows how starting from p and q we can obtain new truth functions applying
| to previous combinations.

s1: s2: s3: s4: s5: s6: s7: s8: s9:
p q p | p p | q q | q p | s1 p | s2 q | s1 s1 | s3 s2 | s4 s2 | s7
1 1 0 0 0 1 1 1 1 1 1
1 0 0 1 1 1 0 1 1 0 0
0 1 1 1 0 1 1 0 1 0 0
0 0 1 1 1 1 1 1 0 0 1

Note that there is no unique way these combinations can be obtained, for instance, s8 could have
been obtained also as s2 | s2. Note that ϕ | ϕ defines ¬ϕ. Using this observation, the remaining
five truth functions can be obtained as negations: for instance, s10 = s9 | s9.

Exercise 2.30 on page 2-36: In three ways: (1) yes,no,yes; (2) yes,no,no; (3) no,yes,no.

Exercise 2.31 on page 2-36:

B-7

(1) You have to fill in 11 entries.

(2) In the worst case, you have to fill 88 cells in the truth table, which is eight times the number
of logical symbols.

Solutions to Exercises from Chapter 3

Exercise 3.1 on page 3-5: The middle term is B.

Exercise 3.2 on page 3-15: The syllogistic pattern is not valid because it is possible to build a
counter-example in which the premises are both true but the conclusion is false. This can be seen
in the following diagram, where A = ’philosopher’, B = ’barbarian’ and C = ’greek’:

A B

C

◦

◦ × ×

Exercise 3.3 on page 3-16: The syllogistic pattern is not valid because it is possible to build a
counter-example in which the premises are both true but the conclusion is false. This can be seen
in the following diagram, where A = ’philosopher’, B = ’barbarian’ and C = ’greek’:

A B

C

×

◦ × ×

Exercise 3.4 on page 3-16: The syllogistic pattern is valid because after we update with the infor-
mation given in the premises it is impossible for the conclusion to be false. This can be illustated
by the following diagram, where A = ’philosopher’, B = ’barbarian’ and C = ’greek’:

B-8 APPENDIX B. SOLUTIONS TO THE EXERCISES

A B

C

◦
× ×

Exercise 3.5 on page 3-16: To obtain the required modification of the method for checking syllo-
gistic validity with the all quantifiers read with existential import we have to represent explicitly
the implicit assumption that we are not thinking with empty terms. In this way even universally
quantified sentences, which give empty regions in the diagram, might also implicitly give the in-
formation that another region is not empty (otherwise some of the terms used in the reasoning
will become empty, agains the assumption). To do this in a systematic manner we have to add
three existential sentences to the given premises: one for each of the terms in the syllogism. This
will correspond to putting a ◦ symbol in each circle representing a term while respecting the other
premisses. Only after this step will our method further proceed towards checking the effects of
updating with the information given in the conclusion. In this way, the following example turns
out to be a valid patern of syllogistic reasoning: ‘All men are mortal, all greeks are men, therefore,
some greeks are mortal’. (This syllogistic mode, mnemotechnically called Barbari, was consid-
ered valid by Aristotle as it is the subordinate mode of Barbara.) In general, the inference from
‘All A are B’ to ‘Some A are B’ is valid under existential import.

Exercise 3.6 on page 3-21: (1) The first syllogism is invalid and the second one is valid. (2) The
following diagram illustrates the validity of the right syllogism:

A B

C

×
× ◦

An alternative representation that makes the stages in the update explicit is the following:

A B C
AB AC BC ABC

⇓ ¬pAB ∧ ¬pABC

B-9

A B C
× AB AC BC × ABC

⇓ pBC ∨ pABC

A ◦ B ◦ C
× AB AC ◦ BC × ABC

⇓ pBC ∨ pC

A ◦ B ◦ C
× AB AC ◦ BC × ABC

We can see that updating with the conclusion does not add any new information that was not
already present in the premises, hence the syllogism is valid.

(3) The following diagram ilustrates how a counterexample to the left syllogism can be con-
structed:

A B

C

× ◦
×◦

An alternative way to represent the process of finding a counterexample lists the update at each
stage of the reasoning process:

A B C
AB AC BC ABC

⇓ ¬pAB ∧ ¬pABC

A B C
× AB AC BC × ABC

⇓ pB ∨ pAB

B-10 APPENDIX B. SOLUTIONS TO THE EXERCISES

A ◦ B C
× AB AC BC × ABC

⇓ pABC ∨ pAC

◦ A ◦ B ◦ C
× AB ◦ AC BC × ABC

We can see that updating with the conclusion adds some new information which was not already
contained in the information from the premisses, hence the inference amplifies the infomation and
makes the syllogisatic reasoning invalid.

(4) For the left syllogism we have:

The initial space of valuations is a state of ignorance about the 8 propositional valuations describ-
ing the regions of a Venn diagram, this is a big number: 28 = 256. Using blanks to condense the
set gives us a very simple representation:

p∅ pA pB pC pAB pAC pBC pABC

After the update with the information in the first premise this space of posible valuation is 26 = 64.
This is 4 times smaller than before, but still to large to fit on a A4 page, unless we use abbreviated
notation:

p∅ pA pB pC pAB pAC pBC pABC
0 0

After the update with the second premise the space of valuations is halved, so now we have 25 =
32 possible valuations. Again, it makes sense to abbreviate. Here is the condensed version of the
list of possibilities at this stage:

p∅ pA pB pC pAB pAC pBC pABC
1 0 0

To check whether the conclusion holds we have to check whether pABC ∨ pAC holds in all these
valuations. This is not the case, hence the inference is invalid.

For the right syllogism the initial space of possible valuations is also the state of ignorance about
the 8 propositions describing the regions of a Venn diagram. The condensed version of this list of
valuations is the same as before. After the first update, with ¬pAB ∧ ¬pABC , we get:

p∅ pA pB pC pAB pAC pBC pABC
0 0

B-11

After the second update, with pBC ∨ pABC , we get:

p∅ pA pB pC pAB pAC pBC pABC
0 1 0

All of the valuations represented here make pBC ∨ pC true, hence the argument is valid.

Solutions to Exercises from Chapter 4

Exercise 4.1 on page 4-4: We may consider a situation where both x and y are small, or neither x
nor y is small according to the property “small”. But it is still possible that x is smaller than y or
y is smaller than x, which may not be expressed well by the unary predicate “small” only. Even
with help of the notion context-dependent, such as “small compared to”, it is not adequate either.
For example, within the domain of nature numbers, both 4 and 5 are small compared to 6 but 4 is
smaller than 5. One may argue, it is possible to say that 4 is small compared to 5 but 5 is not small
compared to itself, then we can combine these two statements to express “4 is smaller than 5”.
However, it can be seen that, when presented with two different numbers, we always need to use
the big one as a compared parameter. It seems ad hoc (every expression needs a different context)
and actually shows that “smaller” is fundamentally binary.

Exercise 4.2 on page 4-5: ¬(x < y < z) is an abbreviation of ¬(x < y ∧ y < z). So this works
out as ¬x < y ∨ ¬y < z.

Exercise 4.3 on page 4-6: We use L for “love”, j for “John”, m for “Mary”, and p for “Peter” in
the above context, then we may translate the four sentences into the following first order formulas:
(1) Ljm→ Lmj, (2) Ljm∧Lmj, (3) ¬(Ljm∧Lmj), (4) (Ljm∧Lpm)→ (¬Lpj ∧¬Lmj).

Exercise 4.4 on page 4-6: (x < y ∨ x = y) ∧ (y < z ∨ y = z)

Exercise 4.5 on page 4-6: ¬((x < y ∨ x = y) ∧ (y < z ∨ y = z)) or ¬(x < y ∨ x = y) ∨ ¬(y <
z ∨ y = z)

Exercise 4.6 on page 4-7: ∀x(Bx ∧ Wx) expresses “All x have the B and W properties” or
“Everything is a boy and walks”. ∃x(Bx → Wx) expresses “There is an x such that if he is B
then he has the W property” or “There is something (someone) that walks if it’s a boy”.

Exercise 4.7 on page 4-9: (1) ∀x(Bx→ ¬Cx) or¬∃x(Bx∧Cx) (2) ∃x(Bx∧Cx) (3)¬∀x(Ax→
Bx)

Exercise 4.8 on page 4-12: (1) ∃x¬Lxa, (2) Ral ∧Rla, (3) ∀x(Lxa→ Rlx).

Exercise 4.9 on page 4-12: ∃x(Bx ∧ ¬Fx)

B-12 APPENDIX B. SOLUTIONS TO THE EXERCISES

Exercise 4.10 on page 4-12:

(1) Domain of discourse: all dogs, key: B for “barking”,W for “biting”, translation: ∀x¬(Bx∧
Wx),

(2) Domain of discourse: all inaminate objects, key: G for “glittering”, A for “being gold”,
translation: ∃x(Gx ∧ ¬Ax),

(3) Domain of discourse: all human beings, key: F for “friendship”, m for Michelle, transla-
tion: ∀xy((Fmx ∧ Fxy)→ Fmy),

(4) Domain of discourse: the set of natural numbers N, key: S for “smaller than” , translation:
∃x∀ySxy,

(5) Domain of discourse: the set of natural numbersN, key: P for “being prime”, S for “smaller
than”, translation: ∀x(Px→ ∃y(Py ∧ Sxy)).

Exercise 4.11 on page 4-12:

(1) ∀x(Bx→ Lxm),

(2) ∃x(Gx ∧ ¬Lxx),

(3) ¬∃x((Bx ∨Gx) ∧ Lxp),

(4) ∃x(Gx ∧ Lpx ∧ Lxj).

Exercise 4.12 on page 4-13:

(1)

where solid dots are boys, open dots are girls, the arrow represents the love relation, and
Mary is the right dot.

(2) the same picture as for item (1).

(3) the same picture as for item (1), with Peter the left dot.

(4) the following picture, with John the dot on the right:

Exercise 4.13 on page 4-13:

(1) ∃x∃y(Bx ∧Gy ∧ ¬Lxy),

B-13

(2) ∀x((Bx ∧ ∃y(Gy ∧ Lxy))→ ∃z(Gz ∧ Lzx)),

(3) ∀x((Gx ∧ ∀y(By → Lxy))→ ∃z(Gz ∧ ¬Lxz)),

(4) ∀x∀y(((Gx ∧ ∀v(Bv → ¬Lxv)) ∧ (Gy ∧ ∃z(Bz ∧ Lyz)))→ ¬Lxy).

Exercise 4.14 on page 4-14: (1) ¬∀x¬(Ax ∧Bx) (2) ¬∀x(Ax→ Bx) (3) ∀x(Ax→ ¬Bx)

Exercise 4.15 on page 4-14: (1) ¬∃x(Ax ∧ ¬Bx) (2) ¬∃x(Ax ∧Bx) (3) ¬∃x(Ax ∧Bx)

Exercise 4.18 on page 4-17:

(1) ∀x(Gx→ ∃y(Hy ∧Wxy)

(2) ∀x∀y(Gx ∧Hy →Wxy) or ∃x(Gx ∧ ∀y(Hy →Wxy).

Exercise 4.19 on page 4-20:

(1) Yes,

(2) No,

(3) Yes.

Exercise 4.21 on page 4-20:

(1) No. We may find two different people a, b, with neither a an ancestor of b nor b an ancestor
of a.

(2) No. We may find two different people c, d, with neither c a parent of d nor d a parent of c.

(3) Yes. For any two natural numbers m and n it holds that either m is less than n or n is less
than m, or they are equal.

Exercise 4.22 on page 4-21. Let t represent Tutankhamun. Then the formula has to express that the
parents of Tutankhamun’s mother are also the parents of Tutankhamun’s father. In the following
formula, x, y are father and mother of Tutankhamun, and u, v are grandfather and grandmother.
Tutankhamun has only one grandfather and only one grandmother.

∃x∃y(Mx ∧ ¬My ∧ Pxt ∧ Pyt ∧ ∃u∃v(Mu ∧ ¬Mv ∧ Pux ∧ Puy ∧ Pvx ∧ Pvy)).

Exercise 4.24 on page 4-22: ∃x∃y∃z(Rxy ∧ Ryz) is true in the lefthand picture, but false in the
righthand picture.

B-14 APPENDIX B. SOLUTIONS TO THE EXERCISES

Exercise 4.25 on page 4-23: Just add a single→ loop to the middle point of the graph, meaning
that the middle point has an R relation with itself.

Exercise 4.26 on page 4-23: Let A be a finite set and let R be a relation on A that is reflexive and
connected. Connectedness is expressed as ∀x∀y(Rxy ∨Ryx). A great communicator c is a point
with the following property:

∀x(Rcx ∨ ∃y(Rcy ∧Ryx)).

We show that each finite A has such a c, as follows. If A has just a single point, that point must
be c, by reflexivity. If A has more than one point, then by removing a point x from A we get a
smaller set B. Assume this B has a communicator c. By connectedness, either cRx or xRc. In
the first case, c is a communicator for A. In the second case, if there is an R-successor y of c in B
with yRx, then x can be reached from c in two steps, so again c is a communicator for A. On the
other hand, if no R-successor of c in B has an R link to x, then by connectedness, there must be
an R link from x to every R-successor of c. But this means that x is a communicator for A.

This induction argument shows that the property holds for any finite reflexive and connected set.
The property does not hold for infinite sets. Consider N with R interpreted as ≥. Then R is
reflexive and connected, but there is no great communicator, for a great communicator would be a
number that is at least as large as any other number.

Exercise 4.27 on page 4-27: The occurrences of x in Rxy and Sxyz.

Exercise 4.28 on page 4-27: ∃x binds the occurrences of x in Rxx and ∀x binds the occurrence
of x in Px.

Exercise 4.29 on page 4-27: (1) and (5).

Exercise 4.30 on page 4-28: (2) and (4). They are equivalent to ∀xRxx and ∃yRyy respectively.

Exercise 4.31 on page 4-29: (1) Rcc, (2) Ryy, (3) ∀xRxx, (4)∀yRyy, (5) ∃yRzy.

Exercise 4.32 on page 4-35: (1), (2), (4), (6), (9).

Exercise 4.33 on page 4-36: (1) Holds because we assume nonempty domains, (2) Doesn’t hold:
D = {1, 2}, I(P) = {1}, (3) Holds because we can chose the same object twice, (4) Doesn’t
hold: D = {1, 2}, I(R) = {(1, 2), (2, 1)}, (5) Doesn’t hold: D = {1, 2}, I(R) = {(1, 2)}, (6)
Doesn’t hold: D = {1, 2}, I(R) = {(1, 2), (2, 2)}, (7) Holds because we can reuse the choice for
y in the premise when we chose again in the conclusion, (8) Doesn’t hold: D = {1, 2}, I(R) =
{(1, 2), (2, 1)}, (9) Doesn’t hold: D = {1, 2}, I(R) = {(1, 2)}, (10) see point (3), (11) Holds
because the same object can be chosen for both x and y in the conclusion.

Exercise 4.34 on page 4-37: (1) Holds, (5) Holds, (6) Holds.

Exercise 4.35 on page 4-40: Assume that A = A1, A2, ...An, . . . is an enumeration of the valid

B-15

formulas of the language, and B = B1, B2, ...Bn, . . . is an enumeration of the formulas that are
not valid. Let ϕ be an arbitrary formula of the language. Observe that either ϕ is valid or it is not.
Therefore, either ϕ occurs in the first sequence or it occurs in the second sequence. The following
procedure is a decision method: If ϕ equals A0 then ϕ is valid, if ϕ equals B0 then ϕ is not valid.
And so on: if ϕ equals Ai then ϕ is valid, if ϕ equals Bi then ϕ is not valid. Since ϕ is either valid
or not valid, there must be an i for which ϕ = Ai or ϕ = Bi.

Exercise 4.36 on page 4-43:

∃x∃y∃z (¬x = y ∧ ¬x = z ∧ ¬x = y ∧ ∀v (Pv ↔ (v = y ∨ v = x ∨ v = z)))

Exercise 4.37 on page 4-43: P (x) ↔ ∃!2y(y|x) where x, y ∈ N. When we replace ∃!2 in this
definition by ∃!3 we get numbers that have exactly three divisors. These numbers have to be
squares of primes: if p is a prime number, then p2 has {1, p, p2} as its set of divisors. Conversely,
if n has exactly three divisors, it has to be of this form.

Exercise 4.38 on page 4-43:

(1):

(2) in a model with two elements one of which is A but not B and the other is B but not A the
formulas have a different truth value: ∃!x (Ax ∨Bx) is false and ∃!xAx ∨ ∃!xBx is true.

Exercise 4.39 on page 4-48:

∃y y + y + y = x. (x is a threefold)

Exercise 4.40 on page 4-50: Consider what the function would do for input 4. This input satisfies
the precondition, so according to the contract the result should be ld(4) = 2. But this is not what
we get. The procedure starts by assigning 2 to d. Next, the check d**2 < n is performed. This
check fails, for d2 = 22 = 4. Therefore, the while loop will not be executed, and the function
returns the value of n, i.e., the function returns 4.

Exercise 4.16 on page 4-15: ∃ distributes over ∨, but it does not hold for ∧. Lets confine our
domain in the set of natural numbers. We may consider a situation in which ∃xEx∧∃xOx holds,
(say that there exists an even number and there exists an odd number) but ∃x(Ex ∧Ox) does not
necessarily hold (there is no natural number which is both even and odd).

Exercise 4.17 on page 4-16: You may see other possible implications between repeated quantifiers
as follows

(1) ∃x∃yϕ→ ∃y∃xϕ, valid

B-16 APPENDIX B. SOLUTIONS TO THE EXERCISES

(2) ∃x∀yϕ→ ∀y∀xϕ, not valid

(3) ∀x∀yϕ→ ∃y∀xϕ, not valid

(4) ∀x∀yϕ→ ∃y∃xϕ, not valid

(5) ∀x∀yϕ→ ∀y∃xϕ, not valid

(6) ∀x∃yϕ→ ∃y∃xϕ, not valid

If we assume that domains are non-empty, then the last four implications (but not their converses)
will become valid.

Solutions to Exercises from Chapter 5

Exercise 5.2 on page 5-3: For players in a soccer match, they can observe what’s going on, com-
municate with each other mainly in their self team, make inferences by themselves, and etcetera.
The observation channel may be restricted by players from enemy team attempted and by players
from self team unconsciously. For the details of those main three channels, you may see the fol-
lowing explanation: A system to play soccer consists of 22 agents, the players. A soccer player
can only observe the players in his range of vision. This determines what they know and believe,
and how they can obtain more information. Player a assumes that opponent b is behind him, be-
cause in the previous stage of the game, before a received the ball, this was indeed the case. This
is therefore a reasonable assumption, and a also knows that such an assumption can very well have
become false. It turns out to be false: b is by now somewhere else on the playing ground, but a
could not have seen that. The state of the game where b is behind a, is just as conceivable for a as
the state of the game where b is not behind a. Player a also sees player c right in front of himself.
Player c is in his own team; a passes the ball to c to prevent b from intercepting it. Now, what?
The targeted player indeed gets the ball, only it was player d instead of c, fortunately of the same
team, who received the ball. Player a believed player d to be c, but must now revise the previous
assumption he made. In yet another scenario c fails to capture the ball, because a and c do not
have eye-contact at the moment of a’s pass: they do not have common knowledge of the situation
leading to this pass.

Exercise 5.8 on page 5-8: You uploaded a message p in your website. Then I logged on (visited)
your website with my registered account and see the message p. I also found my visiting trace
appeared in your website and you logged on as well after that, and I know that you can figure out
the identities of visitors by account names according to the registered information. Then we may
say, I know that you know that I know p.

Exercise 5.14 on page 5-12: For example, teachers often know answers but they may ask students
questions in order to improve learning efficiency for students. As in the card example, if 2 has a
blue card and asks 1 “do you have the blue card?”, then 1 answers “No” truthfully. After that, 3
knows the distribution of cards and knows that 2 asked 1 a misleading question. 1 is not certain if
the blue card is in 2 or 3 for she cannot decide whether 2 has asked her a misleading question. 2

B-17

knows that she asked 1 a misleading question but she still cannot figure out the actual distribution
of cards from the answer of 1. However 2 does know that 3 knows the distribution of cards and
she asked a misleading question.

Exercise 5.17 on page 5-13: We may have the following correct formulas by putting in brackets at
appropriate places.

(¬2ip)→ q,¬(2ip→ q),¬2i(p→ q)

Their corresponding analysis trees are as follows

(¬2ip)→ q

q ¬2ip

2ip

p

¬(2ip→ q)

(2ip→ q)

q 2ip

p

¬2i(p→ q)

2i(p→ q)

p→ q

p q

Exercise 5.19 on page 5-14: In classes, teachers often know the answer of a question they ask
students, and they don’t expect that every student of answerers may know the answer.

Exercise 5.20 on page 5-14: We use p, j, m, to represent ‘it is raining’, John, and Marry respec-
tively.

(1) 2j¬p

(2) 2j(2mp ∨2m¬p)

B-18 APPENDIX B. SOLUTIONS TO THE EXERCISES

(3) 2j((2mp ∨2m¬p) ∨ ((¬2mp) ∧ (¬2m¬p)))

Exercise 5.21 on page 5-15:

(1) 1 knows that if p is the case, then 2 does not know q.

(2) If 1 knows that 2 knows that p, then 2 knows that 1 knows that p.

Exercise 5.28 on page 5-19: First we check that (p→ 2ap)∧ (¬p→ 2a¬p) is true at all states of
the model. It is clear that (p→ 2ap) is true in s0 and s2 for p is false in those two states. And in
s1 and s3, it is easy to see that 2ap is true. So we have (p → 2ap) is true in all those four states
of the model. Similarly, ¬p → 2a¬p) is true in s1 and s3 since p is true there. And it’s easy to
see that 2a¬p is true in s0 and s2. So the right conjunct of the original formula is also true in all
those four states of model. Then we can conclude that the conjunction is true in all the states of
the model. Similarly we can check the second formula that express ‘b knows its own state q’ is
also valid in all the states of the model as well.

Exercise 5.29 on page 5-20: Let s be an arbitrary state of the model and suppose 3a2bϕ is true
there. Then there exists a state t which is accessible from s via process a and 2bϕ holds in t.
But if state t has a b-path leading to a state called u, then ϕ is true there. By the structure of the
model, there is also a state which connects u via the process a, noted as w. Then we have mKaϕ
holds in w. But w is just the state which is accessible from the state s via the process b by the
construction of the model. And there is only one state which can be accessed by s via process b.
Hence, 2b3aϕ holds in state s and so does 3a2bϕ → 2b3aϕ. Since s is arbitrary, this formula
is true in all states of the model.

Exercise 5.30 on page 5-20:

(1) 3t is true at w6 and w8,

(2) 32t is true in w3, w5, w6, w7 and w8,

(3) 3p is true in w2, w3, w4 and w5,

(4) 23p is true in w1 and w2.

Next, for each world, we may find an respective epistemic formula which is only true at that state.

(1) w9: 2p ∧2t ∧ t,

(2) w8: 2¬p ∧2t,

(3) w7: 22¬p ∧22t,

(4) w6: 2¬p ∧2t ∧ p,

(5) w5: 3p ∧22t ∧3¬p,

B-19

(6) w4: 322¬p ∧322t),

(7) w3: 2p ∧22t ∧ ¬t,

(8) w2: 3p ∧33p ∧322t

(9) w1: 3(322¬p ∧322t) ∧3(3p ∧33p ∧322t).

Exercise 5.31 on page 5-20:

(1) For the world w: 22p ∧21p ∧2122p ∧ ¬2221p

(2) For the world v: 22p ∧ ¬21p ∧ ¬21¬p

(3) For the world u: 21p ∧22p ∧2122p ∧2221p

(4) For the world s: 22¬p ∧ ¬21p ∧ ¬21¬p

Exercise 5.32 on page 5-21: We know the final model is as follows:

◦•• •◦•

Let p, q, r represent ‘1 owns red card’, ‘2 owns white card’, ‘3 owns blue card’ respectively. In
the actual situation and actually all the situations of the final model , we can verify that 21(p ∧
q ∧ r) ∧ 22(p ∧ q ∧ r) (1 and 2 know what the deal is), and ¬23p ∧ ¬23q ∧ 23r (3 does not
know what the deal is), but 23(21(p ∧ q ∧ r) ∧ 22(p ∧ q ∧ r)) (3 does know that 1 and 2 know
the distribution of the cards).

Exercise 5.36 on page 5-24:

w : p v : p

u : p

Note that in the actual world of the model ¬2p is true but 2¬2p is false since 2p is true in the
world v which is accesible from actual world w. Thus, the formula of negative introspection does
not hold in the model.

Exercise 5.37 on page 5-24: Suppose a, b, c are arbitrary worlds satisfying aRb and aRc. Since
R is symmetric, we have bRa. Then combined with aRc, it is easy to get bRc (as required) by the
transitivity of R.

B-20 APPENDIX B. SOLUTIONS TO THE EXERCISES

Exercise 5.38 on page 5-24: Suppose that a, b are arbitrary worlds satisfying aRb. We need to
show bRa. Since R is reflexive, it’s easy to have aRa. From aRb and aRa, we can conclude bRa
by the Euclidic property of R.

Exercise 5.39 on page 5-24: The first one is valid. Suppose 3122ϕ is true in an arbitrary world
w of a model with equivalence relations. Then there exists a world u such that wR1u and 22ϕ is
true in u. Since R2 is reflexive (by equivalence relations), we get ϕ is also true in u. It’s then easy
to have ‘31ϕ is true in w’ since wR1u. And wR2w (by reflexivity), so we conclude ‘3231ϕ is
true in w’, as required. The second is not valid. Please see the following counter-example:

w : p v : p

The line between w and v represents 1’s equivalence relation only, and other reflexive circles are
omitted. It’s easy to see that 22p is true in u. Then we have 3122p is true in w since wR1u. But
mK221p does not hold in w since ¬p holds there (actually 21p is false in both worlds).

Exercise 5.40 on page 5-25: Suppose we have an arbitrary information model with an accessibility
relation R that satisfies ∀x∀y∀z((Rxy∧Rxz)→ Ryz). Let w be an arbitrary world of the model
and ¬2ϕ be true in w. We need to show that 2¬2ϕ is also true in the same world. It’s clear to
have that 3¬ϕ is true in w first, and then, we can get ‘there exists a world u which is accessible
from w and ¬ϕ is true in u’ by the semantics of 3. If w has no other accessible worlds (besides
u), by wRu and the property of R, we have uRu. It shows that 3¬ϕ is true in u as well. This
means 23¬ϕ is true inw, as required. For the interesting case whenw has other accessible worlds
different from u, just consider the arbitrary one, say, v, we can conclude that uRv and vRu plus
uRu and vRv. Then 3¬ϕ is also true in v (and u). Since v is arbitrary, it follows that 23¬ϕ is
true in w, as required.

Exercise 5.46 on page 5-28:

Proof.

(1) ` (¬ψ ∧ (¬ψ → ¬ϕ))→ ¬ϕ propositional logic

(2) ` 2(¬ψ ∧ (¬ψ → ¬ϕ))→ 2¬ϕ distribution rule on 1

(3) ` 2¬ψ ∧2(¬ψ → ¬ϕ)→ 2¬ϕ example refBoxConjConjBoxes, 2

(4) ` 2¬ψ → (2(¬ψ → ¬ϕ)→ 2¬ϕ) propositional logic, 3

(5) ` 2¬ψ → (2¬ϕ ∨3¬(¬ψ → ¬ϕ)) propositional logic and definition of 3, 4

(6) ` ¬(2¬ϕ ∨3¬(¬ψ → ¬ϕ)→ ¬2¬ψ propositional logic, 5

(7) ` (¬2¬ϕ ∧ ¬3¬(ϕ→ ψ))→ ¬2¬ψ propositional logic, 6

(8) ` 3ϕ ∧2(ϕ→ ψ))→ 3ψ definition of 3, 7

B-21

Exercise 5.51 on page 5-30: The second is invalid. We may see the following counterexample:

w : p, q v : p, q

u : p, q

It’s easy to check that 3 → 3q is true in world w but 2(p → q) is not. The first implication is
valid. Suppose in an arbitrary world w of a model, K(p→ q) and 3p are both true. Then p→ q
is true in every world u which is accessible from w. And there exists a world v which is accessible
from w such that p is true in v. But p→ q must be true in v. Then, by Modus Ponens, we have q
is true in v as well. This shows 3q is true in w, as required. The formal proof in logic K is easy
since we have proved Exercise 5.46. Then 2(p → q) ∧3p → q is just an instance of the proved
theorem which is equivalent to 2(p→ q)→ (3p→ 3q).

Exercise 5.52 on page 5-30:

(1) ` 2(¬p→ q)→ (2¬p→ 2q) distribution axiom

(2) ` 2(p ∨ q)→ (¬2¬p ∨2q) prop logic, 1

(3) ` 2(p ∨ q)→ (3p ∨2q) definition of 3 from , 2

Exercise 5.56 on page 5-33: Please see the following example model:

v : p

w : p

u : p

s : p

If this model is called M , then M |3p will be a submodel of M with world u (and relevant
relations) deleted, (M |3p)|3p will exclude world s as well. And after updating with 3p three
times (((M |3p)|3p)|3p), there will be only one world w with its reflexive arrow left.

B-22 APPENDIX B. SOLUTIONS TO THE EXERCISES

Exercise 5.58 on page 5-35: If player 2 is not treated as informative, then it means that she may
have the blue card. Nothing can be updated upon the original model just after player 2’s question.
But then, after player 1’s truthful answering ‘No’, all the states where player 1 has the blue card
will be eliminated. We may see the following updated model:

◦•• •◦•

◦•• ••◦

In the actual state of this new model, only player 2 knows what the card distribution is. Player 1
is still unclear about who owns the blue card. Player 3 cannot distinguish the actual state from the
one where player 2 has the red card.

Exercise 5.59 on page 5-35: For the first round, 1 answers “I don’t know” and then 2 says the
same answer. But child 3 knows that she is dirty after hearing kid 2’s answer, so she says “I
know”. Next, for the second round, child 1 says “I still don’t know” and then child 2 answer “I
don’t know either”. The original model and updated model after father’s announcement is the
same as in the original puzzle. The following diagram is the updated model after child 1 says “I
don’t know”:

◦ • ◦◦ ◦ •

• • ◦◦ • •• ◦ •

• • •

After 2’s answer “I don’t know”, the above model is becoming smaller as

B-23

◦ ◦ •

◦ • •• ◦ •

• • •

And then child 3 says “I know”, but this will not change the current model. The further announce-
ments of child 1 and 2 in turn will not update the model either. It means that child 1 and 2 cannot
figure out whether they are dirty or not.

Exercise 5.60 on page 5-35: Child 1 sees two dirty children. With their father’s public announce-
ment, she can conclude that she is clean, so she answers “yes” in the first round. But the two dirty
children do not know in the first round whether they are clean or not because each of them sees a
clean and a dirty face of other two children. However, after child 1’s answer, the two dirty children
know that they are not clean. For each of them would think: if I were clean, the first child couldn’t
know that she was clean, so I must be dirty. Please see the following update sequence:

◦ ◦ ◦

• ◦ ◦◦ • ◦◦ ◦ •

• • ◦◦ • •• ◦ •

• • •

B-24 APPENDIX B. SOLUTIONS TO THE EXERCISES

After father’s announcement “At least one of you is clean”, the initial model becomes as

◦ ◦ ◦

• ◦ ◦◦ • ◦◦ ◦ •

• • ◦◦ • •• ◦ •

Then child 1 says that she knows. The above model is further updated to the following final model
with only one actual state:

◦ • •

Then child 2 and 3 know they are dirty, but these announcements have no further update effect on
the above model.

Exercise 5.61 on page 5-36: The top person’s announcement is true, actually his color is white.
After top person’s announcement, the middle person knows his color of hat (red) as well. Then,
the bottom person knows that his color is different from that of middle person although he still
does not know what the actual color is. Please see the update diagrams:

• ◦ ◦ ◦ • ◦

◦ ◦ ◦ ◦ ◦ •

Here the real, dashed and dotted lines represent epistemic relations of top, middle and bottom men
respectively. After the announcement from the person at the top that he knows the color of his hat,
the original model becomes as

B-25

◦ • ◦

◦ ◦ •

And then the middle person says that he knows the color of his hat. If he tells the bottom person
what his actual color is, then the bottom person can also know the color of his hat.

Exercise 5.66 on page 5-38: Find a pointed model (M, s) where M |¬2p |= ¬2p, and a pointed
model (N, t) where N |¬2p |= 2p. We may see the following model M :

s : p v : ¬p

u : p

The real lines represent equivalence relation. It’s easy to see that after the update with ¬2p, ¬2p
will be valid in the new model. For the second case, we may have the following model N :

w : p v : p

u : ¬p

There is only one direction arrow from world t to world u and no reflexive arrow in u. We know
after the update with ¬2p, u and v will be eliminated since 2p is true in those worlds of the
original model. So 2p is valid in the updated new model.

Exercise 5.74 on page 5-42:

(1) 〈!ϕ〉p& ↔ & ϕ ∧ p

B-26 APPENDIX B. SOLUTIONS TO THE EXERCISES

(2) 〈!ϕ〉¬ψ& ↔ & ϕ ∧ ¬〈!ϕ〉ψ

(3) 〈!ϕ〉(ψ ∨ χ)& ↔ & 〈!ϕ〉ψ ∨ 〈!ϕ〉χ

(4) 〈!ϕ〉3iψ& ↔ & ϕ ∧3i(ϕ ∧ 〈!ϕ〉ψ)

Solutions to Exercises from Chapter 6

Exercise 6.1 on page 6-10: b̌ ; ǎ .

Exercise 6.5 on page 6-14: maternal grandfather.

Exercise 6.7 on page 6-14: ⊇.

Exercise 6.8 on page 6-14: R1 ◦R2 = {(s, s′) | there is some s0 ∈ S : (s, s0) ∈ R1and (s0, s
′) ∈

R2}. (R1 ◦R2)̌ = {(s′, s) | there is some s0 ∈ S : (s, s0) ∈ R1and (s0, s
′) ∈ R2} = R2̌ ◦R1̌ .

Exercise 6.10 on page 6-15: R1 = {(1, 2), (3, 4)};R2 = {(1, 3)};R3 = {(3, 1)}

Exercise 6.11 on page 6-15: R1 ◦ (R2 ∪ R3) = {(s, s′) | there is some s0 ∈ S : (s, s0) ∈
R1and (s0, s

′) ∈ R2 ∪ R3}. (s0, s
′) ∈ R2 ∪ R3 means that (s0, s

′) ∈ R2 or (s0, s
′) ∈ R3. This

means R1 ◦R2 or R1 ◦R3, that is exactly (R1 ◦R2) ∪ (R1 ◦R3).

Exercise 6.12 on page 6-15: Řˇ = {(x, y) ∈ S2 | (y, x) ∈ Ř } = {(x, y) ∈ S2 | (x, y) ∈ R} =
R

Exercise 6.13 on page 6-15: (R1 ∪ R2)̌ = {(x, y) ∈ S2 | (y, x) ∈ (R1 ∪ R2)} = {(x, y) ∈ S2 |
(y, x) ∈ R1 or (y, x) ∈ ∪R2)} = R1̌ ∪R2̌ .

Exercise 6.15 on page 6-16: The relation (R ∪ S)∗ allow you to choose between R and S any
number of times so, for example, R ◦ S ◦ R is allowed. The relation R∗ ◦ S∗ tells you to apply
R any number of times, and then apply S any number of times, so R ◦ S ◦ R is not allowed. The
following model is a counter-example:

1 2 3 4
R S R

We have (1, 4) ∈ (R ∪ S)∗, but (1, 4) /∈ R∗ ◦ S∗.

Exercise 6.16 on page 6-17: R = {(1, 3)};S = {(3, 1), (1, 2)}. We can see that (1, 2) ∈ R∗ ◦
S∗but /∈ (R ◦ S)∗.

B-27

Exercise 6.17 on page 6-17: loop ‘repeat a until ϕ’ is interpreted as:

(R?¬ϕ ◦Ra ◦Ra)∗ ◦R?ϕ.

Exercise 6.19 on page 6-19: α0 :=?> and αn := αn−1;α, for any n > 0.

Exercise 6.21 on page 6-21: For the state 0 of both models,

(1) 〈a; d〉
√

. True in the second model

(2) [a; d]
√

. True in both models

(3) [a](〈b〉> ∧ 〈c〉>). True in both models

(4) [a]〈d〉
√

. True in the second model

Exercise 6.22 on page 6-22: [a]〈b〉
√

. This formula is true in state 0 of the left graph, but false in
state 0 of the right one.

Exercise 6.23 on page 6-23: The answer is ‘no’. First it is clear that state 1 in the left graph satisfy
the same set of PDL formulas as state 2 and state 3 in the right graph since they satisfy the same
atomic sentences and there is no action relations from each of them.

Next we can verify that the root state in the left graph satisfies the same formulas as the state 1 in
the right graph, since they satisfy the same Boolean formulas and have the same action relationRb
with the terminated states 1 and 2 respectively after possible execution of b. But we know state 1
in the left graph satisfies the same PDL formulas as state 2 in the right graph. This guarantees that
any PDL formula in the form 〈b〉ϕ has the same truth values in state 0 of the left and state 1 in the
right.

Now we can show the root state in the left satisfies the same set of PDL formulas as the root state
in the right. It’s clear to check Boolean cases. The crucial cases are action modal formulas. As
for the form of 〈a〉ϕ, suppose it is true in the root of the left. Then ϕ must be true in the same
root as well. It can be guaranteed that ϕ is also true in state 1 of the right by the result we have
just verified. So 〈a〉ϕ is satisfied in the root of the right. As for the form of 〈b〉ϕ, suppose it is
true in the root of the left. Then ϕ must be true in state 1 of the same graph. But we have just
showed state 1 in the left satisfies the same formulas of state 3 of the right. This guarantees ϕ is
also true in 3 of the right. So we get 〈b〉ϕ is satisfied in the root of the right. For the converse, we
can similarly verify that every true action modal formula in the root of the right is also satisfied in
the root of the left.

Exercise 6.27 on page 6-24: M |=w 〈a; b〉> is equivalent to w ∈ J〈a; b〉>KM. From the semantic
definition we have: J〈a; b〉>KM = {w ∈ WM | ∃v ∈ WM : (w, v) ∈ J(a; b)KM and v ∈
J>KM} = {w ∈ WM | ∃v ∈ WM : (w, v) ∈ JaKM ◦ JbKM} = {w ∈ WM | ∃v ∈ WM :

(w, v) ∈ {(x, y) ∈ W 2
M | ∃z ∈ WM((x, z) ∈ a→M ∧(z, y) ∈ b→M)}} = {w ∈ WM | ∃v ∈

WM : (w, v) ∈ {(x, y) ∈ W 2
M | ∃z ∈ WM((x, z) ∈ a→M ∧(z, y) ∈ b→M)}} = {w ∈ WM |

B-28 APPENDIX B. SOLUTIONS TO THE EXERCISES

∃v ∈ WM : (w, v) ∈ a→M and v ∈ {u ∈ WM | (v, u)
b→M and u ∈ WM}} = {w ∈ WM |

∃v ∈ WM : (w, v) ∈ a→M and v ∈ J〈b〉>KM} = J〈a〉〈b〉>KM. J〈a〉〈b〉>KM is equivalent to
M |=w 〈a〉〈b〉>.

Exercise 6.28 on page 6-24:

(1) [[?p]] = {(1, 1), (2, 2)}

(2) [[?(p ∨ q)]] = {(1, 1), (2, 2), (4, 4)}

(3) [[a; b]] = {(1, 4)}

(4) [[b; a]] = {(1, 4)}

Exercise 6.29 on page 6-25:

(1) List the states where the following formulas are true:

a. ¬p is true in state 1 and 3

b. 〈b〉q is true in state 2

c. [a](p→ 〈b〉q) is true in state 2, 3 and 4

(2) Give a formula that is true only at state 4.

(p ∧ ¬q) ∧ [b]⊥

(3) Give all the elements of the relations defined by the following action expressions:

a. b; b: {(2, 4)}

b. a ∪ b: {(1, 2), (1, 4), (2, 2), (4, 4), (2, 3), (3, 4)}

c. a∗: {(1, 1), (2, 2), (3, 3), (4, 4), (1, 2), (1, 4)}

(4) Give a PDL action expression that defines the relation {(1, 3)} in the graph.

?(¬p ∨ ¬q); a; ?p; b

Exercise 6.30 on page 6-25: [[β ;̌ α̌]]M = [[β]̌]M ◦ [[α̌]]M = {(s, t) | ∃u ∈ SM((s, u) ∈ [[β]̌]M ∧
(u, t) ∈ [[α̌]]M} = {(s, t) | ∃u ∈ SM((u, s) ∈ [[β]]M ∧ (t, u) ∈ [[α]]M} = {(s, t) | (t, s) ∈
[[α]]M ◦ [[β]]M} = {(s, t) | (t, s) ∈ [[α;β]]M} = [[(α;β)̌]]M

[[βˇ∪ α̌]]M = [[β]̌]M ∪ [[α̌]]M = [[β]̌]M ∪ [[α̌]]M = {(s, t) | (t, s) ∈ [[α]]M} ∪ {(s, t) | (t, s) ∈
[[β]]M} = {(s, t) | (t, s) ∈ [[β]]M ∪ [[α]]M} = [[(β ∪ α)̌]]M

[[(α∗)̌]]M = {(s, t) | (t, s) ∈ [[α∗]]M} = {(s, t) | (t, s) ∈ ([[α]]M)∗} = {(s, t) | (t, s) ∈⋃
n∈N([[α]]M)n} =

⋃
n∈N([[α̌]]M)n = ([[α̌]]M)∗

B-29

Exercise 6.31 on page 6-25: α̌ =

βˇ∪ γˇ if α = (β ∪ γ)̌
β ;̌ γˇ if α = (β; γ)̌
?ϕ if α =?ϕ̌

(β)̌∗ if α = (β∗)̌
β if α = βˇ̌

{(t, s) | (s, t) ∈ a} if α = a

Exercise 6.37 on page 6-29: ` 〈α∗〉ϕ↔ ϕ ∨ 〈α〉〈α∗〉ϕ.

Exercise 6.39 on page 6-30: Let w be an arbitrary state in an arbitrary LTS. Assume ϕ is true
in w. If w is an a-isolated state then the consequent is true. If not then take an arbitrary v such
that (w, v) ∈ a then (v, w) ∈ ǎ hence 〈ǎ 〉ϕ must be true at v. As v was arbitrary [a]〈ǎ 〉ϕ must
be true at w. Let w be an arbitrary state in an arbitrary LTS. Assume ϕ is true in w. If w is an
a-isolated state then the consequent is true. If not, then take an arbitrary v such that (w, v) ∈ ǎ
then (v, w) ∈ a hence 〈a〉ϕ must be true at v. As v was arbitrary [ǎ]〈a〉ϕ must be true at w.

Exercise 6.40 on page 6-32: JiKs = i, JvKs = s(v), Ja1 + a2Ks = Ja1Ks + Ja2Ks, Ja1 ∗ a2Ks =
Ja1Ks ∗ Ja2Ks, Ja1 − a2Ks = Ja1Ks − Ja2Ks.

Exercise 6.41 on page 6-33: There are three possible procedure stages: (1) both drawn pebbles are
black (2) both drawn pebbles are white (3) there have been drawn a white and a black pebble. For
(1) the number of white pebbles remains unchanged, for (2) the number of white pebbles remains
odd (n′ = n − 2), for (3) the number of white pebbels remains unchanged (n′ = n − 1 + 1).
Hence the “oddness” property of the number of white pebbels is invariant during any number of
executions of the drawing procedure. Therefore, if there is only one pebble left it must be white.

Exercise 6.46 on page 6-38: Actually we can prove that the root 0 of the left graph is bisimilar
with the the root 0 in the right. Let Z = {(0, 0), (0, 1), (1, 2), (1, 3)} between states of two
models. First these two root states satisfy the same atomic sentences. With the help of the detailed
solution in Exercise 6.23, the zigzag relation Z completes the square and satisfies the definition of
bisimulation between those two models.

Exercise 6.47 on page 6-39: We show it by induction on the structure of ϕ. Let s and t be states
in the two models M and N respectively. For the base case, it is clear that s and t satisfy the
same atomic sentences since these two states are bisimilar. Proofs for Boolean cases are routine.
We only consider crucial case (the modal case, i.e., ϕ = 〈a〉ψ) here. For one direction, suppose
that 〈a〉ψ is true in s. Then there is a state s1 satisfying s a→ s1 ∈ RM in the one model and ψ
is true in state s1. By the forth (Zig) condition of ‘bisimulation’, we get that there exist a zigzag
relation Z between two models and a state t1 in the other model, satisfying t a→ t1 ∈ RN and
s1Zt1. Then psi is also true in state t1 by induction hypothesis. This means ϕ is satisfied in
state t, as required. For the other direction, suppose that 〈a〉ψ is true in t. Then there is a state t′

satisfying t a→ t′ ∈ RN in the other model and ψ is true in state t′. By the back (Zag) condition
of ‘bisimulation’, we have that there exist a state s′ in the one model such that s a→ s′ ∈ RM and
s′Zt′. Similarly by the induction hypothesis we can get psi is true in state s′. This means ϕ is true
as well in state s, as required.

B-30 APPENDIX B. SOLUTIONS TO THE EXERCISES

Exercise 6.48 on page 6-39: We show it by using induction on the structure of α. For the base case,
that α is an atomic program, such as a. Let s, t be states of model M and N respectively with sCt
(C is a bisimulation relation between M and N). It’s clear to see that a is safe for bisimulation:
just let αM = αN =

a→. If α has the form of β; γ. Then αM = βM ◦ γM , and αN = βN ◦ γN .
Next we show β; γ satisfies the Zig condition of safety. Suppose sαMs′ for some s′ ∈ SM . We
have sβM ◦ γMs′, implying that there exists an state w ∈ SM satisfying sβMw and wγMs′. By
induction hypothesis, it follows that β and γ are both safe for bisimulation. This means there exist
some u and t′ in SN with tβNu, uγN t′ and wCu, s′Ct′. But it is just tβN ◦ γN t′ = tαN t′ with
s′Ct′, as required. Similarly we can prove that β; γ satisfies the converse (Zag) condition of safety.
And proof for the case α = β ∪ γ is also routine. Details of checking are omitted. Now we check
the ‘test’ case, that is, α =?ϕ. We know that s and t satisfy the same set of formulas since they
are bisimilar. It means that if s?ϕMs′ for some s′ ∈ SM (s′ is just s since the program is ‘test’),
then there must have t?ϕN t. It is clear that sCt. It shows that the Zig condition of the safety is
satisfied. It is similar and easy to have the Zag condition satisfied in ‘test’ case. This completes
the proof.

Solutions to Exercises from Chapter 7

Exercise 7.5 on page 7-7:

Please see the proof in the solution for Exercise 4.26. Now consider the strategy for Verifier:
Falsifier tries to find that every object in a finite network which cannot reach some node in at
most 2 steps. It’s enough for Verifier to find just one node that can reach every node in at most 2
steps. Verifier may do this inductively on the number of nodes since it is finite. For the 1 and 2
node cases, it is easy to see that there is a ‘Great Communicator’ since the network is reflexive and
connected. Now consider the n+1 node case. Verifier knows that there is a ‘Great Communicator’
in the subgraph of every n nodes and by induction hypothesis she can pick out that ‘Great node’
in n node subgraph. If the ‘Great node’ has a link into the (n + 1)th node, just pick out it as a
‘Great Communicator’ for the whole n + 1 node network. If the ‘Great node’ has no link into
the (n + 1)th node, then by connectedness, the latter must have a link into the ‘Great node’ of
the n node subgraph. Since the ‘Great node’ of n node subgraph can reach every other node in at
most two steps and the network is transitive, the (n + 1)th node can reach every node in n node
subgraph including the ‘great node’ (in one step). Then Verifier should pick out the (n+1)th node
as a ‘Great Communicator’ for the whole n+ 1 node network.

Exercise 7.7 on page 7-7:

Proof. We prove this lemma by induction on the construction of formulas. For the base case, that
is, ϕ is an atom such as Pd. If Pd is true in (M, s), then Verifier has a winning strategy by the
definition of evaluation games. If Pd is false in (M, s), then Falsifier has a winning strategy in
game(ϕ,M, s). Boolean cases are easy to demonstrate, we just choose disjunction as an example
here. If ϕ = ψ ∨ χ is true in (M, s), then ψ or χ is true in (M, s). By induction hypothesis,
we know that Verifier has a winning strategy in game(ψ,M, s) or in game(χ,M, s). Now it’s
turn for Verifier to proceed since ϕ is a disjunction formula. Verifier just chooses a subgame

B-31

game(ψ,M, s) or game(χ,M, s) which is winning strategy for her to continue. It shows that
Verifier has a winning strategy in the game(ϕ,M, s). If ϕ = ψ ∨ χ is false in (M, s), then
ψ and χ are both false in (M, s). By induction hypothesis, Falsifier has a winning strategy in
both game(ψ,M, s) and game(χ,M, s). It shows that Verifier will lose in game(ϕ,M, s) since
whatever she chooses to continue, Falsifier has a winning strategy in each subgame. This means
Falsifier has a winning strategy in game(ϕ,M, s). Next we consider the crucial case that ϕ is
a quantifier formula such as ∃xψ(x). If it is true in (M, s), then there exists an object d in the
domain ofM such that ψ(d) is true in (M, s). By induction hypothesis, we know that Verifier
has a winning strategy in game(ψ(d),M, s). Now for the game(ϕ,M, s), it’s turn for Verifier
to choose an object to play to continue. It’s safe for her to choose the object d to guarantee
winning the game since she has a winning strategy in game(ψ(d),M, s). If ∃xψ(x) is false
in (M, s), then for every object f in the domain of M such that ψ(f) is false in (M, s). By
induction hypothesis, Falsifier has a winning strategy in game(ψ(f),M, s) for every f . Then for
the game(∃xψ(x),M, s), whatever object Verifier chooses, Falsifier can always win, as required.

Exercise 7.8 on page 7-7: For the predicate logical formulas, we can define them in terms of
evaluation games by induction of their constructions. For atomic formulas such as Px, players
should pick some object d according to the assignment s of model M as a value for variable x
and test the atom Pd for truth or falsity. If it is true then Verifier wins, if it is false then Falsifier
wins. Disjunctions such as ϕ ∨ ψ can be looked as a choice with a turn by Verifier between two
games, game(ϕ,M, s) and game(ψ,M, s) and then continue to play the game that Verifier chose.
Conjunctions such as ϕ∧ψ can be defined as a game of choice as well with a turn by Falsifier: she
selects one game of game(ϕ,M, s) and game(ψ,M, s) to continue. For the quantifier formulas
such as ∃xϕ(x), it can be looked as a “sequential composition” game with a turn by Verifier to pick
some object such as f , and then they continue to play with game(ϕ(f),M, s). If it is a formula
with universal quantifiers such as ∀xϕ(x), then we can think it as a “sequential composition”
game with a turn by Falsifier to pick an object such as g in the domain of modelM, and then they
continue to play with game(ϕ(g),M, s). Conversely, we can give an evaluation game similarly
that corresponds to a logical formula but that is not a predicate-logical formula, for example, a
modal formula 2ϕ. It can be looked as a “sequential composition” game with a turn by Falsifier
who is going to pick some object t in the domain of modelM that is accessible from s (or we say
sRt), and then continue to play game(ϕ,M, t).

Exercise 7.10 on page 7-9 All the left nodes are cloloured black, please see the following diagram:

B-32 APPENDIX B. SOLUTIONS TO THE EXERCISES

II•

I• II•

◦ • • I•

• ◦

Exercise 7.12 on page 7-10: Let player X be player I and O player II. Then we may have the
following coloured diagram.

o · x
o · x
· x o◦

o x x
o · x
· x o

◦

o x x
o o x
· x o

◦

o x x
o · x
o x o

◦

o · x
o x x
· x o

◦

o o x
o x x
· x o

•

o o x
o x x
x x o

•

o · x
o x x
o x o

◦

o · x
o · x
x x o

◦

o o x
o · x
x x o

•

o o x
o x x
x x o

•

o · x
o o x
x x o

◦

Exercise 7.13 on page 7-11: Suppose we have two players 1 and 2. Predicates of bottom states,
having a winning strategy for 1 and 2 are denoted as B, Win1 and Win2, and binary predicates
for moves of 1 and 2 are denoted as R1 and R2 respectively. In each bottom state of the above
game tree x, we have Win1(x) or Win2(x). In each state y before the last moves, if the next
move was made by player 1 and she can reach a bottom state x where she wins, then Win1(y); if

B-33

the next move was made by player 1 and she cannot reach a bottom state x where she wins, then
Win2(y); if the next move was made by player 2 and she can reach a bottom state x where she
wins, then Win2(y); if the next move was made by player 2 and she cannot reach a bottom state
x where she wins, then Win1(y). Hence in each state before the last moves, it can be determined
that from that state on, player 1 can win or player 2 can win. Similarly it can be decided in each
state before the last two moves and the root of the game. We may express this in the conjunction
of the following first-order formulas:

(1) ∀x(B(x)→Win1(x) ∨Win2(x))

(2) ∀x∃y(R1xy ∧Win1(y)→Win1(x)

(3) ∀x∀y(R1xy ∧Win2(y)→Win2(x)

(4) ∀x∃y(R2xy ∧Win2(y)→Win2(x)

(5) ∀x∀y(R2xy ∧Win1(y)→Win1(x)

From those formulas we can conclude that in the root r (actually in every state) of the game,
Win1(r) ∨Win2(r) is true.

Exercise 7.14 on page 7-11: Let player II has no winning strategy at some stage s of the game and
suppose for reductio that I has no strategies for achieving a set of runs from s during all of which
II never has a winning strategy for the remaining game from then on. This means from s, II has a
chance to reach a winning strategy state in the remaining game from then on.

Exercise 7.15 on page 7-11: The natural moves of defense and attack in the epistemic evaluation
game will be indicated henceforth as

game(ϕ,M, s)

The moves of evaluation games follow the inductive construction of formulas. They involve some
typical actions that occur in games, such as choice, switch, and continuation, coming in dual pairs
with both players V (Verifier) and F (Falsifier) allowed the initiative once:

Atomic sentences p, q, . . .
V wins if the atomic sentence is true in s, F if it is false

Disjunction ϕ ∨ ψ:
V chooses which disjunct to play

Conjunction ϕ ∧ ψ:
F chooses which conjunct to play

Negation ¬ϕ:
Role switch between the players, play continues with respect to ϕ.

Next, the knowledge operators make players look at the states which are successors (epistemically
accessible from) of the current state s:

B-34 APPENDIX B. SOLUTIONS TO THE EXERCISES

Diamond 3ϕ:
V moves to a state t which is a successor of s, and then play continues with respect to
game(ϕ,M, t).

Box 2ϕ:
The same, but now for F.

The game ends at atomic sentences: Verifier wins if it is true, Falsifier wins if it is false.

Exercise 7.17 on page 7-13: Blocker has the winning strategy in this new scenario. Here is one: he
first cuts the link between Haarlem and Sloterdijk. Then Runner can only go to Leiden. Blocker
cuts the link between Haarlem and Leiden next. After that, there are only two possible places left
for Runner to go, Sloterdijk and Amsterdam.

(1) If Runner goes to Amsterdam, Blocker cuts a link between Leiden and Sloterdijk to see
the next response of Runner. There are two possible subcases. (a) If Runner goes back
to Leiden, Blocker should cut the other link between Leiden and Sloterdijk. Then Runner
must go to Amsterdam. Blocker cuts a link between Amsterdam and Sloterdijk to see the
Runner’s following choice: if Runner goes to Sloterdijk, he should cut the link between
Leiden and Amsterdam. Runner must move to Amsterdam and then Blocker cuts the sec-
ond link between Amsterdam and Sloterdijk. So Runner cannot go to any other places. (b)
If Runner goes to Sloterdijk, Blocker cuts the second link between Leiden and Sloterdijk.
Then Runner can go only to Amsterdam. Blocker cuts the link between Leiden and Ams-
terdam next, forcing Runner to move to Sloterdijk. But then Blocker cuts a link between
Amsterdam and Sloterdijk, making Runner move to Amsterdam. Blocker cuts the second
link between Amsterdam and Sloterdijk, and Runner is forced to stay in Amsterdam.

(2) If Runner goes to Sloterdijk. Blocker cuts a link between Leiden and Sloterdijk. Next if
Runner goes to Leiden, Blocker just cuts the second link between Leiden and Sloterdijk,
forcing him to go to Amsterdam after that. This exaclty the situation in subcase (a) of
case (1). If Runner goes to Amsterdam, Blocker should cut the link between Leiden and
Amsterdam. As Runner must move to Sloterdijk next, then Blocker cuts the second link
between Leiden and Sloterdijk. Now Runner is forced to move between Amsterdam and
Sloterdijk. Blocker should wait for Runner to reach Sloterdijk, then removes a link between
Amsterdam and Sloterdijk. After Runner goes back to Amsterdam, Blocker should remove
the last existing link, leaving Amsterdam isolated and making Runner stay there.

Exercise 7.18 on page 7-13: Runner has a winning strategy. Runner should go to 2 first. Next if
Blocker cuts a link between 3 and 4, Runner should go to 4. In order to prevent Runner visiting
3, Blocker will cut the second link between 3 and 4, then Runner should go back to 2. Now it’s
too late for Blocker to prevent Runner reaching 3. And if Blocker cuts the link between 2 and 4
just after the first move of Runner, Runner should go from 2 to 3. Then it’s too late for Blocker to
prevent Runner visiting 4.

Exercise 7.23 on page 7-15: S has a winning strategy. First he picks j in N , and then takes l in

B-35

the next round. No such pattern occurs inM, as {(j, 2), (l, 3)} is not a partial isomorphism. So D
is bound to lose.

Exercise 7.33 on page 7-21: We know that formula [a]〈b〉
√

is true in state 0 of the left graph, but
false in state 0 of the right one. So S can have the following winning strategy: he first chooses 0 and
then 1 in the left graph. D should response to choose 0 and 2 in the right graph, but {(0, 0), (1, 2)}
is not a bisimulation relation since 0 has an Rb successor 1 in the left model but 0 has no Rb
successors in the right model.

Exercise 7.43 on page 7-28: We know, in the last round, there has two possible combinations for
voting: A versus B or B versus C, and the respective results are that B wins or C wins. Then
consider the first round vote, it is impossible for A (which 1 likes best) to win at last. If A wins in
the first round then B will win at last. 1 knows all of the above, so it will not vote for A since he
will lose at the end and it’s rational for party 1 to vote for C which it prefers to outcome B. As for
the party 2, it will try to make C win in the first round since C is its best choice and C can win at
last if he wins in the first round. As for the party 3, obvious it prefers B to win in the last round,
but C is a threat. So it will vote for A in the first round. Now we can conclude the result of this
voting: C wins in the first and last round.

Exercise 7.49 on page 7-32: The formula of PDL is

[σ∗](end→ ϕ)→ [movei]〈σ∗〉(end ∧ ϕ)

Exercise 7.61 on page 7-38: Suppose that player I plays a particular action such as choosing to
show the head with probability p > 1

2 , then the probability of his playing to show the tail q < 1
2 .

Player II can exploit this by playing an action to just show the tail always. So the probability of
gain for player II is larger than 1

2 but the probability of lost is smaller than 1
2 . It is obvious that

player II can benefit from this. If player I plays an action to show the tail with probability p > 1
2 ,

player II can just always play an action to show the head. For the same reason, he has advantages
to benefit from the game. Similarly if player II plays a particular action with probability p > 1

2 ,
player I can also exploit this by playing to show always head or always tail. This shows that the
resulting pair of strategies is not Nash.

Exercise 7.68 on page 7-41: For the pure strategy Nash equilibria, pairs of (H, d) and (D,h) with
utilities (3, 1) and (1, 3) are two Nash equilibria for the game Hawk versus Dove. In (H, d), for the
player who plays Hawk, if he switches to play Dove, the outcome will be (2, 2). It’s smaller than
the original 3 he gets. So it’s not rational for Hawk to switch the current role. As for the player
who plays Dove, if he switches into Hawk, the resulting outcome will be (0, 0). It is obvious not
good for him compared with the original 1. So Dove has no motivation to switch the role either.
Similarly the situation (D,h) can be analyzed.

Exercise 7.76 on page 7-47: The situation can be represented by the following strategic game:

B-36 APPENDIX B. SOLUTIONS TO THE EXERCISES

!¬p !>
!¬q 2, 2 3, 0
!> 0, 3 1, 1

For player II (actually who knows q), if he receives information that ¬q from player I, it is not
useful him since he has already know that q. But if he keeps silent in the case of player I saying
¬q, then it is equivalent to telling player I that he knows q. A better choice for player II is to tell
player I that ¬p. The strategy for player I is similar when he receives information that ¬p from
player II. So the only equilibrium there is (!¬p, !¬q).

Solutions to Exercises from Chapter 8

Exercise 8.1 on page 8-8:

tL ϕ t ψ ◦

ϕ ◦ ψ ψ ◦ ϕ

tR ◦ϕ t ψ

◦ϕ,ψ ϕ, ψ ◦

Exercise 8.2 on page 8-8: Here you have the left-to-right direction:

¬(ϕ t ψ) ◦ ¬ϕ t ψ

¬L

◦ϕ t ψ,¬ϕ t ψ

tR

ϕ,ψ ◦ ¬ϕ t ψ

tR

ϕ,ψ,¬ϕ,ψ◦

¬L

ϕ,ψ, ψ • ϕ

ϕ,ψ • ¬ϕ,ψ

◦ϕ,ψ,¬ϕ t ψ

tR

¬ϕ,ψ • ϕ,ψ ◦ ¬ϕ,ψ, ϕ, ψ

¬R

ϕ • ψ,ϕ, ψ

You can check that the right-to-left direction also holds.

Exercise 8.3 on page 8-9: Here you have the table for point (1):

B-37

p ∨ (q ∧ r) ◦ (p ∨ q) ∧ (p ∨ r)

∧R

p ∨ (q ∧ r) ◦ p ∨ q

∨L

p ◦ p ∨ q

∨R

p • p, q

q ∧ r ◦ p ∨ q

∧L/∨R

q, r • p, q

p ∨ (q ∧ r) ◦ p ∨ r

∨L

p ◦ p ∨ r

∨R

p • p, r

q ∧ r ◦ p ∨ r

∧L/∨R

q, r • p, r

You can check that point (2) also tests positively for validity.

Exercise 8.4 on page 8-9: Here you have the table for point (2), now with implicit rules:

p ∨ q,¬(p→ q), (p ∧ q)↔ p ◦

p ∨ q, (p ∧ q)↔ p ◦ p→ q

p ∨ q, (p ∧ q)↔ p, p ◦ q

(p ∧ q)↔ p, p, q • q (p ∧ q)↔ p, p, p ◦ q

p, p • p, q, p ∧ q p ∧ q, p, p, p ◦ q

p, q, p, p, p • q

You can check that point (1) is not satisfiable either.

Exercise 8.5 on page 8-9: Here we may first check that (1) is a tautology.

◦(p→ q) ∨ (q → p)

◦p→ q, q → p

p ◦ q, q → p

p, q • q, p

You can check that point (2) is not a tautology.

B-38 APPENDIX B. SOLUTIONS TO THE EXERCISES

Exercise 8.6 on page 8-11: We may show it in the following table

∃x(Px ∧Qx) ◦ ∃xPx ∧ ∃Qx

∧R

∃x(Px ∧Qx) ◦ ∃xPx

∃L

Pd ∧Qd ◦ ∃xPx

∃R

Pd ∧Qd ◦ Pd

Pd,Qd • Pd

∃x(Px ∧Qx) ◦ ∃xQx

∃L

Pd ∧Qd ◦ ∃xQx

∃R

Pd ∧Qd ◦Qd

Pd,Qd •Qd

All branches in the table are closed. This means ∃x(Px ∧Qx) |= ∃xPx ∧ ∃Qx.

Exercise 8.7 on page 8-12:

∃xPx ∧ ∃xQx ◦ ∃x(Px ∧Qx)

∃xPx,∃xQx ◦ ∃x(Px ∧Qx)

∃L

Pd1,∃xQx ◦ ∃x(Px ∧Qx)

∃L

Pd1, Qd2 ◦ ∃x(Px ∧Qx)

∃R

Pd1, Qd2 ◦ Pd1 ∧Qd1, Pd2 ∧Qd2

Pd1, Qd2 ◦ Pd1 ∧Qd1

Pd1, Qd2 • Pd1 Pd1, Qd2 �Qd1

Pd1, Qd2 ◦ Pd2 ∧Qd2

Pd1, Qd2 � Pd2 Pd1, Qd2 •Qd2

There are two open branches in the table, one of them shows that we can find two objects d1 and
d2 in a model such that d1 is P and d2 is Q but d1 is not Q.

Exercise 8.8 on page 8-12:

B-39

∀x(Px ∨Qx) ◦ ∀xPx ∨ ∃Qx

∀x(Px ∨Qx) ◦ ∀xPx,∃Qx

∀R

∀x(Px ∨Qx) ◦ Pd,∃Qx

∀L

Pd ∨Qd ◦ Pd,∃Qx

∃R

Pd ∨Qd ◦ Pd,Qd

Pd • Pd,Qd Qd • Pd,Qd

Exercise 8.9 on page 8-16: First for (1)

∀x(Ax→ Bx),∃x(Ax ∧ Cx) ◦ ∃x(Cx ∧Bx)

∃L

∀x(Ax→ Bx), Ad ∧ Cd +◦ ∃x(Cx ∧Bx)

∃R

∀x(Ax→ Bx), Ad ∧ Cd ◦ Cd ∧Bd

∀L

Ad→ Bd,Ad ∧ Cd ◦ Cd ∧Bd

Ad→ Bd,Ad,Cd ◦ Cd ∧Bd

Ad→ Bd,Ad,Cd • Cd Ad→ Bd,Ad,Cd ◦Bd

Bd,Ad,Cd •Bd Ad,Cd •Bd,Ad

Next for (2):

B-40 APPENDIX B. SOLUTIONS TO THE EXERCISES

∀x(Ax→ Bx),∃x(Ax ∧ ¬Cx) ◦ ∃x(Cx ∧ ¬Bx)

∃L

∀x(Ax→ Bx), Ad ∧ ¬Cd +◦ ∃x(Cx ∧ ¬Bx)

∃R

∀x(Ax→ Bx), Ad ∧ ¬Cd ◦ Cd ∧ ¬Bd

∀L

Ad→ Bd,Ad ∧ ¬Cd ◦ Cd ∧ ¬Bd

Ad→ Bd,Ad,¬Cd ◦ Cd ∧ ¬Bd

Ad→ Bd,Ad ◦ Cd ∧ ¬Bd,Cd

Ad→ Bd,Ad ◦ Cd,Cd

Bd,Ad� Cd,Cd Ad •Ad,Cd,Cd

Ad→ Bd,Ad ◦ ¬Bd,Cd

Bd,Ad ◦ ¬Bd,Cd

Bd,Ad,Bd� Cd

Ad • ¬Bd,Cd,Ad

Now for (3):

¬∃x(Ax ∧Bx),∀x(Bx→ Cx) ◦ ¬∃x(Cx ∧Ax)

∃x(Cx ∧Ax),∀x(Bx→ Cx) ◦ ∃x(Ax ∧Bx)

∃L

Cd ∧Ad,∀x(Bx→ Cx)
+◦ ∃x(Ax ∧Bx)

∃R

Cd ∧Ad,∀x(Bx→ Cx) ◦Ad ∧Bd

∀L

Cd ∧Ad,Bd→ Cd ◦Ad ∧Bd

Cd,Ad,Bd→ Cd ◦Ad ∧Bd

Cd,Ad,Bd→ Cd •Ad Cd,Ad,Bd→ Cd ◦Bd

Cd,Ad,Cd�Bd Cd,Ad�Bd,Bd

It can be seen from the above tables that (1) is valid, but (2) and (3) are not.

Exercise 8.10 on page 8-17: First please see (1) in the following table.

B-41

∀x(Ax→ Bx) ∨ ∀x(Bx→ Ax) ◦ ∀x∀y((Ax ∧ By)→ (Bx ∨ Ay))

∀R

∀x(Ax→ Bx) ∨ ∀x(Bx→ Ax)
+
◦ ∀y((Ad1 ∧ By)→ (Bd1 ∨ Ay))

∀R

∀x(Ax→ Bx) ∨ ∀x(Bx→ Ax)
+
◦ Ad1 ∧ Bd2 → Bd1 ∨ Ad2

∀x(Ax→ Bx) ◦ Ad1 ∧ Bd2 → Bd1 ∨ Ad2

∀L

Ad1 → Bd1, Ad2 → Bd2 ◦ Ad1 ∧ Bd2 → Bd1 ∨ Ad2

Ad1 → Bd1, Ad2 → Bd2, Ad1 ∧ Bd2 ◦ Bd1 ∨ Ad2

Ad1 → Bd1, Ad2 → Bd2, Ad1, Bd2 ◦ Bd1, Ad2

Bd1, Ad2 → Bd2, Ad1, Bd2 • Bd1, Ad2 Ad2 → Bd2, Ad1, Bd2 • Ad1, Bd1, Ad2

∀y(By → Ay) ◦ Ad1 ∧ Bd2 → Bd1 ∨ Ad2

∀L

Bd1 → Ad1, Bd2 → Ad2 ◦ Ad1 ∧ Bd2 → Bd1 ∨ Ad2

Bd1 → Ad1, Bd2 → Ad2, Ad1 ∧ Bd2 ◦ Bd1 ∨ Ad2

Bd1 → Ad1, Bd2 → Ad2, Ad1, Bd2 ◦ Bd1, Ad2

Ad2, Bd1 → Ad1, Ad1, Bd2 • Bd1, Ad2 Bd1 → Ad1, Ad1, Bd2 • Bd2, Bd1, Ad2

Similarly we can check that (2) also holds.

Exercise 8.11 on page 8-19: We choose for the regular branch after the second step in the text as
a starting point.

∀x∃yRxy,Rd1d2 ◦ ∃y∀xRxy

∀L

∃yRd2y,Rd1d2 ◦ ∃y∀xRxy

∃L+d1

Rd2d1, Rd1d2 ◦ ∃y∀xRxy

∃R

Rd2d1, Rd1d2 ◦ ∀xRxd1,∀xRxd2

∀R+d1

Rd2d1, Rd1d2 ◦Rd1d1,∀xRxd2

∀R+d2

Rd2d1, Rd1d2 �Rd1d1, Rd2d2∀x∃y Rxy,Rd2d1, Rd1d2
+◦ Rd1d1, Rd4d2, ∃y∀xRxy

∀x∃y Rxy,Rd2d3, Rd1d2
+◦ Rd3d1,∀xRxd2,∃y∀xRxy

∀x∃y Rxy,Rd2d1, Rd1d2
+◦ ∃y∀xRxy

Now we get a simple counter model with two objects who are mutually related but are not related
to themselves.

B-42 APPENDIX B. SOLUTIONS TO THE EXERCISES

Exercise 8.12 on page 8-19: We only check (1) in the following table. It is similar to check (2)
with try out method to get a simple counter model for it.

∀x∃yRxy ◦ ∀x∃yRyx

∀R

∀x∃yRxy +◦ ∃yRyd1

∃R

∀x∃yRxy ◦Rd1d1

∀L

∃yRd1y ◦Rd1d1

∃L

∀x∃yRxy,Rd1d2
+◦ Rd1d1∀x∃yRyx

∀L

∃yRd2y,Rd1d2 ◦Rd1d1∀x∃yRyx

∃L+d2

Rd2d2, Rd1d2 ◦Rd1d1,∀x∃yRyx

∀R+d1

Rd2d2, Rd1d2 ◦Rd1d1, ∃yRyd1

∃R

Rd2d2, Rd1d2 �Rd1d1, Rd1d1, Rd2d1

∀x∃yRxy,Rd2d2, Rd1d2
+◦ Rd1d1∃yRyd3

∀x∃yRxy,Rd2d3, Rd1d2
+◦ Rd1d1∀x∃yRyx

Similarly we may get a simple open branch d1d2, d1d1 � d2d2, d2d1 for ∃x∀y Rxy/∃x∀y Ryx,
showing that it is not valid.

Exercise 8.13 on page 8-19: Since the number of objects in a model is finite, suppose it is n, we
can list all the objects d1, ..., dn. Then the try out method in the following tableau process must
stop (for any natural number i, j, l ≤ n).

B-43

∀x∃yRxy,Rdidj ∧ Rdjdl → Rdidl ◦ Rdidj ∧ Rdjdi

∀L

∃yRdiy, ∃yRdjy,Rdidj ∧ Rdjdl → Rdidl ◦ Rdidj ∧ Rdjdi

∃yRdiy, ∃yRdjy,Rdidj ∧ Rdjdl → Rdidl ◦ Rdidj

∃yRdiy, ∃yRdjy ◦ Rdidj , Rdidj ∧ Rdjdl

∃yRdiy, ∃yRdjy ◦ Rdidj , Rdidj ∃yRdiy, ∃yRdjy ◦ Rdidj , Rdjdl

∃yRdiy, ∃yRdjy,Rdidl ◦ Rdidj

∃yRdiy, ∃yRdjy,Rdidj ∧ Rdjdl → Rdidl ◦ Rdjdi

∃yRdiy, ∃yRdjy ◦ Rdjdi, Rdidj ∧ Rdjdl

∃yRdiy, ∃yRdjy ◦ Rdjdi, Rdidj∃yRdiy, ∃yRdjy ◦ Rdjdi, Rdidl

∃yRdiy, ∃yRdjy,Rdidl ◦ Rdjdi

Now we only consider a branch ∃yRdiy,∃yRdjy ◦ Rdidj , Rdjdl in the above without loss of
generality. For any number k ≤ n y get, there is an counterpart Rdidk in the right side since j
is an arbitrary number that is less than or equal to n. Hence this branch of the above tableau is
closed. Similarly we can also decide that any other branches in the tableau are closed, validating
the original conclusion.

Exercise 8.14 on page 8-21:

∃x∀y (Ryx↔ ¬Ryy)◦

∃L

∀y (Ryd1 ↔ ¬Ryy)
+◦

∀L

Rd1d1 ↔ ¬Rd1d1◦

Rd1d1,¬Rd1d1◦

Rd1d1 •Rd1d1

◦Rd1d1,¬Rd1d1

Rd1d1 •Rd1d1

Exercise 8.15 on page 8-27:

B-44 APPENDIX B. SOLUTIONS TO THE EXERCISES

Kp ∨Kq ◦K(p ∨ q)

∨L

Kp ◦K(p ∨ q)

KR

Kp ◦
+◦ p ∨ q

KL

Kp ◦
p ◦ p ∨ q

∨R

Kp ◦
p • p, q

kq ◦ k(p ∨ q)

KR

Kq ◦
+◦ p ∨ q

KL

Kq ◦
q ◦ p ∨ q

∨R

Kq ◦
q • p, q

The closed tableau shows that Kp ∨Kq |= K(p ∨ q) holds.

Now we show the converse does not hold:

B-45

K(p ∨ q) ◦Kp ∨Kq

∨R

K(p ∨ q) ◦Kp,Kq

KR

K(p ∨ q) ◦ Kq
+◦ p

KL

(p ∨ q) ◦ Kq
(p ∨ q) ◦ p

∨L

p ∨ q ◦ Kq
p • p

p ∨ q ◦ Kq
q ◦ p

∨R

p ∨ q ◦
q ◦ p

K(p ∨ q) +◦ q

KL

p ∨ q ◦
q ◦ p

p ∨ q ◦ q

∨L

p ◦
q ◦ p

p ∨ q ◦ q

∨L

p ◦
q ◦ p
p ◦ q

p ◦
q ◦ p
q • q

q ◦
q ◦ p

p ∨ q ◦ q

∨L

q ◦
q ◦ p
p ◦ q

q ◦
q ◦ p
q • q

B-46 APPENDIX B. SOLUTIONS TO THE EXERCISES

We can find two open branches in the right side, showing that K(p ∨ q) |= Kp ∨ Kq does not
hold.

Exercise 8.16 on page 8-28: For Kp |= p, we have the following simple table:

Kp ◦ p

KL

p • p

For p 6|= Kp, we have a simple open table:

p ◦Kp

KR

p ◦
+◦ p

Exercise 8.17 on page 8-28:

Kp ◦KKp

KR

Kp ◦
+◦ Kp

KR

Kp ◦
◦
+◦ Kp

KL

p ◦
p ◦
p • p

Exercise 8.18 on page 8-28:

B-47

K(Kp ∨ q) ◦Kp ∨Kq

K(Kp ∨ q) ◦Kp,Kq

KR

K(Kp ∨ q) ◦ Kq
+◦ p

KR

K(Kp ∨ q) ◦
◦ p
+◦ q

KL

Kp ∨ q ◦
Kp ∨ q ◦ p
Kp ∨ q ◦ q

∨L

Kp ∨ q ◦
Kp ◦ p

Kp ∨ q ◦ q

KL

Kp ∨ q, p ◦
p • p

Kp ∨ q, p ◦ q

Kp ∨ q ◦
q ◦ p

Kp ∨ q ◦ q

∨L

Kp ∨ q ◦
q ◦ p

Kp ◦ q

KL

Kp ∨ q ◦
p, q • p
p ◦ q

Kp ∨ q ◦
Kp ◦ p
q • q

Exercise 8.19 on page 8-29:

B-48 APPENDIX B. SOLUTIONS TO THE EXERCISES

K¬K¬p ◦ ¬K¬Kp
¬R

K¬K¬p,K¬Kp ◦

KL

K¬K¬p,¬Kp ◦
¬L

K¬K¬p ◦Kp

K+
R

K¬K¬p ◦ p

KL

¬K¬p ◦ p
¬L

◦K¬p, p

KR

K¬K¬p,K¬Kp ◦ p
◦ ¬p

KL

¬K¬p,K¬Kp ◦ p
¬K¬p ◦ ¬p

¬L (2×)

K¬Kp ◦K¬p, p
◦K¬p,¬p

K+
R

K¬Kp ◦ p
◦ ¬p,¬p

KL

¬L (2×)

K+
R

◦ p, p
◦ ¬p,¬p

K¬K¬p,K¬Kp ◦ p
◦ ¬p,¬p

+◦ p

K¬K¬p,K¬Kp ◦ p
◦K¬p,¬p

+◦ ¬p

K¬K¬p,K¬Kp ◦
+◦ p

B-49

Exercise 8.20 on page 8-30:

¬K¬Kp ◦K¬K¬p

◦K¬Kp,K¬K¬p

KR

◦ K¬K¬p
+◦ ¬Kp

◦ K¬K¬p
Kp ◦

KL

p ◦ K¬K¬p
p ◦

KR

p ◦
p ◦

Kp
+◦ ¬K¬p

p ◦
p ◦

Kp,K¬p ◦

KL

p ◦
p ◦

p,¬p ◦

p ◦
p ◦
p • p

Solutions to Exercises from Chapter 9

Exercise 9.1 on page 9-3 First consider the direction from left to right. Suppose we have Σ, ϕ |= ψ
and v(Σ)=1. If v(ϕ)=1, then it is obvious that v(ψ)=1 by the supposition, meaning that v(ϕ →
ψ)=1, as required. If v(ϕ)=0, then we also have v(ϕ → ψ)=1. Next we prove the direction from

B-50 APPENDIX B. SOLUTIONS TO THE EXERCISES

right to left. Suppose that Σ, ϕ 6|= ψ. Then we have v(Σ)=1, v(ϕ)=1 and v(ψ)=0. It follows that
v(ϕ→ ψ)=0. Hence Σ 6|= ϕ→ ψ.

Exercise 9.2 on page 9-3 It is not difficult to check that other connectives cannot have both the
modus ponens and deduction property. Here we only show ↔ as an example, other connectives
can be done similarly. Now let c© be ↔ and it is possible that ϕ is false and ψ true in some
valuation v. Then we have ϕ |= ψ but 6|= ϕ ↔ ψ, showing that the deduction property is not
satisfied.

Exercise 9.3 on page 9-5

ϕ→ (ψ → χ)

ψ
ϕ

ψ → χ MP

ψ Rep

χ MP

ϕ→ χ Ded

ψ → (ϕ→ χ) Ded

(ϕ→ (ψ → χ))→ (ψ → (ϕ→ χ)) Ded

(B.1)

Exercise 9.4 on page 9-6 Please see the following possible proof.

¬ϕ→ ¬ψ

¬ψ → ⊥
¬ϕ

¬ψ MP

⊥ MP

¬ϕ→ ⊥ Ded

(¬ψ → ⊥)→ (¬ϕ→ ⊥) Ded

(¬ϕ→ ¬ψ)→ ((¬ψ → ⊥)→ (¬ϕ→ ⊥)) Ded

(B.2)

We can get (¬ϕ→ ¬ψ)→ (¬¬ψ → ¬¬ϕ) if we abbreviate ϕ→ ⊥ as ¬ϕ. The double negations
of ¬¬ψ and ¬¬ϕ cannot be eliminated if we only apply modus ponens and deduction rule only.

B-51

Exercise 9.5 on page 9-7

(ϕ→ ψ)→ ϕ

¬ϕ

¬ϕ

ϕ
¬ψ

¬ϕ Rep

ϕ Rep

⊥ MP

ψ new rule

ϕ→ ψ Ded

¬ϕ→ (ϕ→ ψ) Ded

ϕ→ ψ MP

ϕ MP

⊥ MP

ϕ new rule

((ϕ→ ψ)→ ϕ)→ ϕ Ded

(B.3)

Exercise 9.6 on page 9-7 First we prove ϕ→ ¬¬ϕ.

ϕ[¬ϕ(ϕ→ ⊥)

⊥ MP

]
¬ϕ→ ⊥ Ded

¬¬ϕ

ϕ→ ¬¬ϕ Ded

(B.4)

Next we prove ¬¬ϕ→ ϕ.

¬¬ϕ
¬ϕ

¬ϕ→ ⊥ Rep

⊥ MP

ϕ New Rule

¬¬ϕ→ ϕ Ded

(B.5)

B-52 APPENDIX B. SOLUTIONS TO THE EXERCISES

It’s clear we have applied the new rule in proving the second.

Exercise 9.7 on page 9-10 First we show that the conclusion holds from left to right. Suppose
that Σ, ϕ ∨ ψ |= χ and for an arbitrary valuation v which satisfies Σ and ϕ. It is clear that v
also satisfies ϕ ∨ ψ. Then by supposition, we have v satisfies χ as well. That means Σ, ϕ |= χ.
Similarly we can get Σ, ψ |= χ. Next we show the conclusion holds from right to left. Suppose
Σ, ϕ |= χ and Σ, ψ |= χ. Consider each valuation v that satisfies Σ and ϕ ∨ ψ, we need to show
that v also satisfies χ. Since v(ϕ ∨ ψ)=1, we have v(ϕ)=1 or v(ψ)=1. In either case, we can get
v(χ)=1 by supposition. Hence, we conclude that v satisfies χ as well, as required.

Exercise 9.8 on page 9-11 You may consider a scenario of “checkout procedure” in a place where
only chipknip and maestro are accepted. Suppose you are buying something in that place and
now are to be ready for checkout (the checkout machines in the place are working properly). The
goods you selected are probably worth 10 Euros. And you have a Dutch bank debit card (activated
and valid) with the amount of checking account more than one thousand Euros, and maestro and
chipknip services are provided as well in the bank card, but you are not clear about what is the
actual chipknip amount of the bank card. Now you are going to check out first with chipknip. If
you have enough amount in the chipknip account for paying the goods, then the machine will show
“U HEEFT BETAALD”(You have paid) information meaning that you have successfully checked
out. If your chipknip amount is not enough for paying the goods, then you can make checkout
via maestro. Commonly you need to input your pin numbers and you know that. It’s clearly no
problem for you to be successfully check out in that case. Hence, in any case, you will safe for
checking out your goods in the place. Here is the deductive representation of the above reasoning:

Use chipknip ∨ Use maestro
Use chipknip.

The amount of chipknip account can pay for the goods.

You’ll be successfully checked out.

Use maestro

You need to correctly input pin numbers.

You’ll be successfully checked out.

You’ll be successfully checked out.

(B.6)

B-53

Exercise 9.9 on page 9-12

1. ¬ϕ ∨ ψ

2. ¬ϕ
3. ϕ

4. ⊥
5. ψ E⊥ 4

6. ϕ→ ψ Ded

[

7. ψ

8. ϕ→ ψ I→ 7

]
9. ϕ→ ψ E∨ 1,2-6,7-8

(B.7)

Exercise 9.10 on page 9-12

1. ¬ϕ ∨ ¬ψ

2. ¬ϕ
3. ϕ ∧ ψ

4. ϕ E∧

5. ⊥ E¬

6. ¬(ϕ ∧ ψ) E⊥

7. ¬ψ
8. ϕ ∧ ψ

9. ψ E∧

10. ⊥ E¬

11. ¬(ϕ ∧ ψ) E⊥

12. ¬(ϕ ∧ ψ) E∨ 1,2-6,7-11

(B.8)

B-54 APPENDIX B. SOLUTIONS TO THE EXERCISES

Exercise 9.11 on page 9-12

1. ϕ ∨ (ψ ∧ χ)
2. ϕ

3. ϕ ∨ ψ
4. ϕ ∨ χ
5. (ϕ ∨ ψ) ∧ (ϕ ∨ χ) I∧

6. ψ ∧ χ

7. ψ

8. ϕ ∨ ψ
9. χ

10. ϕ ∨ χ
11. (ϕ ∨ ψ) ∧ (ϕ ∨ χ)I∧

12. (ϕ ∨ ψ) ∧ (ϕ ∨ χ) E∨ 1,2-5,6-11

(B.9)

Exercise 9.12 on page 9-12

¬((ϕ→ ψ) ∨ (ψ → ϕ))
ϕ

ψ → ϕ I→

(ϕ→ ψ) ∨ (ψ → ϕ) I∨

⊥

¬ϕ

¬ϕ ∨ ψ I∨

ϕ→ ψ Ex.9.9

(ϕ→ ψ) ∨ (ψ → ϕ) I∨

⊥

⊥ E∨

(ϕ→ ψ) ∨ (ψ → ϕ) E¬

(B.10)

B-55

Exercise 9.13 on page 9-13

1. ¬(ϕ ∧ ψ)

2. ¬(¬ϕ ∨ ¬ψ)
3. ¬ϕ

4. ¬ϕ ∨ ¬ψ I∨ 3

5. ⊥ MP 2,4

6. ϕ E¬ 3-5

7. ¬ψ

8. ¬ϕ ∨ ¬ψ I∨ 7

9. ⊥ MP 2,8

10. ψ E¬ 7-9

11. ϕ ∧ ψ I∧ 6,10

12. ⊥ MP 1,11

13. ¬ϕ ∨ ¬ψ E¬ 2-12

(B.11)

Exercise 9.14 on page 9-13

1. ϕ→ ψ)

2. ¬(¬ϕ ∨ ψ)
3. ¬ϕ

4. ¬ϕ ∨ ψ I∨ 3

5. ⊥ MP 2,4

6. ϕ E¬ 3-5

7. ψ MP 1,6

8. ¬ϕ ∨ ψ I∨ 7

9. ⊥ MP 2,8

10. ¬ϕ ∨ ψ E¬ 2-9

(B.12)

B-56 APPENDIX B. SOLUTIONS TO THE EXERCISES

Exercise 9.15 on page 9-17

1. ¬∃xPx Ass

2. c
3. P c

4. ∃xPx I∃ 3

5. ⊥ MP 1,4

6. ¬Pc E⊥ 3-5

7. ∀x¬Px I∀ 2-6

(B.13)

Exercise 9.16 on page 9-17

1. ∃x (Px ∧Qx) Ass

2. P c ∧Qc c

3. P c

4. Qc

5. ∃xPx I∃ 3

6. ∃xQx I∃ 4

7. ∃xPx ∧ ∃xQx

8. ∃xPx ∧ ∃xQx E∃ 2-7

(B.14)

Exercise 9.17 on page 9-17

1. ¬∀xPx Ass

2. ¬∃x¬Px

3. c
4. ¬Pc

5. ∃x¬Px I∃ 4

6. ⊥ MP 2,4

7. P c E⊥ 4-6

8. ∀xPx I∀ 3-79. ⊥ MP 1,8

10. ∃x¬Px E⊥ 2-9

(B.15)

B-57

Exercise 9.18 on page 9-17 First we prove that ∃x (Px ∨Qx) follows from ∃xPx ∨ ∃xQx.

1. ∃xPx ∨ ∃xQx Ass

2. ∃xPx
3. P c c

4. P c ∨Qc I∨ 3

5. ∃x (Px ∨Qx) I∃

6. ∃x (Px ∨Qx) E∃ 2-5

7. ∃xQx
8. Qd d

9. Pd ∨Qd I∨ 8

10. ∃x (Px ∨Qx) I∃

11. ∃x (Px ∨Qx) E∃ 7-10

12. ∃x (Px ∨Qx) E∨ 1-11

(B.16)

Next we prove the other way around.

1. ∃x (Px ∨Qx) Ass

2. P c ∨Qc c
3. P c

4. ∃xPx
5. ∃xPx ∨ ∃xQx

6. Qc

7. ∃xQx
8. ∃xPx ∨ ∃xQx

9. ∃xPx ∨ ∃xQx E∨ 2-8

10. ∃xPx ∨ ∃xQx E∃ 1-9

(B.17)

B-58 APPENDIX B. SOLUTIONS TO THE EXERCISES

Exercise 9.19 on page 9-18

1. ¬∃x (Px→ ∀xPx)

2. ∀x¬(Px→ ∀xPx) Ex9.15

3. ∀x (Px ∧ ¬∀xPx)

4. ∀x (Px ∧ ∃x¬Px) Ex9.17
5. c

6. P c ∧ ∃¬Px E∀

7. P c E∧

8. ∀xPx I∀ 5-7

9. P c ∧ ∃¬Px E∀

10. ∃¬Px E∧[
11. ¬Pd d

12. ¬Pd

]
13. ¬Pd E∃ 10-12

14. Pd E∀ 8

15. ⊥ MP 13,14

16. ∃x (Px→ ∀xPx) E⊥ 1-15

(B.18)

Exercise 9.20 on page 9-21

1. ∀x(x · s0 = x · 0 + x) E∀ P4

2. ∀x(x · 0) = 0 P3

3. ∀x(x · s0 = 0 + x) E= 1,2

4. ∀x(0 + x = 0) Ex9.33

5. ∀(x · s0 = 0) E= 3,4

(B.19)

Exercise 9.21 on page 9-21

1. ∀x(x · 0) = 0 P3

2. 0 · 0 = 0 E∀ 1

3. 0 · c = 0c

4. 0 · sc = 0 · c+ 0 E∀ P4

5. 0 · sc = 0 + 0 E= 3,4

6. 0 + 0 = 0 E∀ P1

7. 0 · sc = 0 E= 5,6

8. ∀x(0 · x = 0) Ind 2-7

(B.20)

B-59

Exercise 9.22 on page 9-22

1. c

2. 0 + c = c E∀ 9.33

3. c+ 0 = c E∀ P1

4. c+ 0 = 0 + c E= 2,3

5. c+ d = d+ c d

6. d+ sc = sd+ c E∀ 9.34

7. c+ sd = s(c+ d) E∀ P2

8. c+ sd = s(d+ c) E= 5,7

9. d+ sc = s(d+ c) E∀ P2

10. c+ sd = d+ sc E= 8,9

11. c+ sd = sd+ c E= 6,10

12. ∀y (c+ y = y + c) Ind 4,5-11

13. ∀x∀y (x+ y = y + x) I∀ 1-12

(B.21)

Exercise 9.23 on page 9-22

1. ∀x(x · ss0 = x · s0 + x) E∀ P4

2. ∀x(x · s0 = x Ex9.20

3. ∀(x · ss0 = x+ x) E= 1,2

(B.22)

Exercise 9.24 on page 9-22 In order to prove the result ∀x∀y(x · y = y · x), we first prove two
helpful lemmas as (1) ∀x(s0 ·x = x) and (2) ∀x∀y∀z((x+ y) · z = x · z+ y · z). For (1) we have
the following proof:

1. s0 · 0 = 0 E∀ P3

2. s0 · c = c

3. s0 · sc = s0 · c+ s0 E∀ P4

4. s0 · sc = c+ s0 E= 2,3

5. c+ s0 = sc E∀ 9.32

6. s0 · sc = sc E= 4,5

7. ∀x(s0 · x = x) I∀ 1-6

(B.23)

Next for (2), we may need Ex9.25 (it can be proved independently without Ex9.24) to help proving

B-60 APPENDIX B. SOLUTIONS TO THE EXERCISES

this lemma:

1. ∀x∀y((x+ y) · 0 = 0) E∀ P3

2. ∀x(x · 0 = 0) P3

3. ∀y(y · 0 = 0) P3

4. 0 + 0 = 0 E∀ P1

5. ∀x∀y((x+ y) · 0 = x · 0 + y · 0) E= 1-4

6. ∀x∀y((x+ y) · c = x · c+ y · c) c

7. ∀x∀y((x+ y) · sc = (x+ y) · c+ (x+ y)) E∀ P4

8. ∀x∀y((x+ y) · sc = x · c+ y · c+ (x+ y)) E= 6,7

9. ∀x∀y((x+ y) · sc = (x · c+ x) + (y · c+ y)) E=∀ Ex9.25 twice

10. ∀x∀y((x · c+ x) + (y · c+ y) = x · sc+ y · sc) E∀ P4 twice

11. ∀x∀y((x+ y) · sc = x · sc+ y · sc) E= 9,10

12. ∀x∀y∀z((x+ y) · z = x · z + y · z) I∀ 5-11

(B.24)

Now we can prove the final result:

1. c

2. c · 0 = 0 E∀ P3

3. 0 · c = 0 E∀ Ex9.21

4. c · 0 = 0 · c E= 2,3

5. c · d = d · c d

6. c · sd = c · d+ c E∀ P4

7. c · sd = d · c+ c E= 5,6

8. s0 · c = c E∀ Lemma(1)

9. c · sd = d · c+ s0 · c E= 7,8

10. (d+ s0) · c = d · c+ s0 · c E∀ Lemma(2)

11. c · sd = (d+ s0) · c E= 9,10

12. d+ s0 = sd E∀ 9.32

13. c · sd = sd · c E= 11,12

14. ∀y(c · y = y · c) I∀ 4-13

15. ∀x∀y(x · y = y · x) I∀ 1-14

(B.25)

B-61

Exercise 9.25 on page 9-22

1. ∀x∀y((x+ y) + 0 = x+ y) E∀ P1

2. ∀y(y + 0 = y) P1

3. ∀x∀y(x+ y = x+ y) =

4. ∀x∀y(x+ (y + 0) = x+ y) E= 2,3

5. ∀x∀y(x+ (y + 0) = (x+ y) + 0) E= 1,4

6. ∀x∀y(x+ (y + c) = (x+ y) + c) c

7. ∀y(y + sc = s(y + c)) E∀ P2

8. ∀x∀y(x+ (y + sc) = x+ (y + sc)) =

9. ∀x∀y(x+ (y + sc) = x+ s(y + c)) E= 7,8

10. ∀x∀y(x+ s(y + c) = s(x+ (y + c))) P2

11. ∀x∀y(x+ s(y + c) = s((x+ y) + c)) = 6,10

12. ∀x∀y(s((x+ y) + c) = (x+ y) + sc) P2

13. ∀x∀y(x+ s(y + c) = (x+ y) + sc) = 11,12

14. ∀x∀y(x+ (y + sc) = (x+ y) + sc) = 9,13

15. ∀x∀y∀z(x+ (y + z) = (x+ y) + z) I∀ 5-14

(B.26)

Solutions to Exercises from Chapter 10

Exercise 10.1 on page 10-4:

AF (p↔ (q ↔ r)) =

= AF ((¬p ∨ (q ↔ r)) ∧ (p ∨ ¬(q ↔ r)))

= (AF (¬p ∨ (q ↔ r))) ∧ (AF (p ∨ ¬(q ↔ r)))

= (AF (¬p) ∨AF (q ↔ r)) ∧ (AF (p) ∨AF (¬(q ↔ r)))

= (¬p ∨AF ((¬q ∨ r) ∧ (q ∨ ¬r))) ∧ (p ∨ ¬AF ((¬q ∨ r) ∧ (q ∨ ¬r)))
= (¬p ∨ (AF (¬q ∨ r) ∧AF (q ∨ ¬r))) ∧ (p ∨ ¬(AF (¬q ∨ r) ∧AF (q ∨ ¬r)))
= (¬p ∨ ((AF (¬q) ∨AF (r)) ∧ (AF (q) ∨AF (¬r)))) ∧ (p ∨ ¬((AF (¬q) ∨AF (r)) ∧ (AF (q) ∨AF (¬r))))
= (¬p ∨ ((¬q ∨ r) ∧ (q ∨ ¬r))) ∧ (p ∨ ¬((¬q ∨ r) ∧ (q ∨ ¬r)))

Exercise 10.2 on page 10-5:

NNF (¬(p ∨ ¬(q ∧ r))) = NNF (¬p) ∧NNF (¬¬(q ∧ r))
= ¬p ∧NNF (q ∧ r)
= ¬p ∧ (NNF (q) ∧NNF (r))

= ¬p ∧ q ∧ r

B-62 APPENDIX B. SOLUTIONS TO THE EXERCISES

Exercise 10.3 on page 10-7:

CNF ((p ∨ ¬q) ∧ (q ∨ r)) = CNF (p ∨ ¬q) ∧ CNF (q ∨ r)
= DIST (CNF (p), CNF (¬q)) ∧DIST (CNF (q), CNF (r))

= DIST (p,¬q) ∧DIST (q, r)

= (p ∨ ¬q) ∧ (q ∨ r)

Exercise 10.4 on page 10-7:

CNF ((p ∧ q) ∨ (p ∧ r) ∨ (q ∧ r)) =

= DIST (CNF (p ∧ q), CNF ((p ∧ r) ∨ (q ∧ r)))
= DIST ((CNF (p) ∧ CNF (q)), DIST (CNF (p ∧ r), CNF (q ∧ r)))
= DIST ((p ∧ q), DIST ((CNF (p) ∧ CNF (r)), (CNF (q) ∧ CNF (r))))

= DIST ((p ∧ q), DIST ((p ∧ r), (q ∧ r)))
= DIST ((p ∧ q), (DIST (p, (q ∧ r)) ∧DIST (r, (q ∧ r))))
= DIST ((p ∧ q), (DIST (p, q) ∧DIST (p, r)) ∧ (DIST (r, q) ∧DIST (r, r)))

= DIST ((p ∧ q), ((p ∨ q) ∧ (p ∨ r)) ∧ ((r ∨ q) ∧ (r ∨ r)))
= DIST (p, ((p ∨ q) ∧ (p ∨ r)) ∧ ((r ∨ q) ∧ (r ∨ r))) ∧

∧DIST (q, ((p ∨ q) ∧ (p ∨ r)) ∧ ((r ∨ q) ∧ (r ∨ r)))
= (DIST (p, ((p ∨ q) ∧ (p ∨ r))) ∧DIST (p, ((r ∨ q) ∧ (r ∨ r)))) ∧

∧(DIST (q, ((p ∨ q) ∧ (p ∨ r))) ∧DIST (q, ((r ∨ q) ∧ (r ∨ r))))
= (DIST (p, (p ∨ q)) ∧DIST (p, (p ∨ r))) ∧ (DIST (p, (r ∨ q)) ∧DIST (p, (r ∨ r)))) ∧

∧(DIST (q, (p ∨ q)) ∧DIST (q, (p ∨ r))) ∧ (DIST (q, (r ∨ q)) ∧DIST (q, (r ∨ r))))
= (p ∨ p ∨ q) ∧ (p ∨ p ∨ r) ∧ (p ∨ r ∨ q) ∧ (p ∨ r ∨ r) ∧ (q ∨ p ∨ q) ∧ (q ∨ p ∨ r) ∧ (q ∨ r ∨ q) ∧ (q ∨ r ∨ r)

Exercise 10.5 on page 10-8:

Assume the premisse is true. Then, because the premise is a clause formC1, . . . , Ci, . . . , Cn, every
conjunct Ck for k ∈ {1, ..., n} is true. Therefore every Ck for k ∈ {1, . . . , i− 1, i+ 1, . . . , n} is
true. Hence the conclusion is true and the inference rule is sound.

Exercise 10.6 on page 10-9:

Test the validity of the following inferences using resolution:

(1) ((p ∨ q) ∧ ¬q)→ r, q ↔ ¬p |= r

(2) (p ∨ q)→ r,¬q,¬q ↔ p |= r

(1) First we translate the inferences in a corresponding clause form as follows:

{{¬p, q, r}, {¬p,¬q}, {q, p}, {¬r}}

B-63

next, we apply resolution, to the first and second clauses:

{{¬p, r}, {q, p}, {¬r}}

we apply resolution again, to the first and second clauses:

{{r, q}, {¬r}}

we apply resolution one more time, to the first and second clauses:

{{q}}

The clause form containing the premises and the conclusion negated is satisfiable, therefore
the inference is not valid.

(2) First we translate the inferences in a corresponding clause form as follows:

{{¬p, r}, {¬q, r}, {¬q}, {¬p,¬q}, {q, p}, {¬r}}

next, we apply resolution, to the first and fifth clauses:

{{r, q}, {¬q, r}, {¬q}, {¬p,¬q}, {¬r}}

we apply resolution again, to the first and second clauses:

{{r}, {¬q}, {¬p,¬q}, {¬r}}

we apply resolution one more time, to the first and last clauses:

{[], {¬q}, {¬p,¬q}}

The clause form containing the premises and the conclusion negated is not satisfiable, there-
fore the inference is valid.

Exercise 10.7 on page 10-9:

Determine which of the following clause forms are satisfiable:

(1) {{¬p, q}, {¬q}, {p,¬r}, {¬s}, {¬t, s}, {t, r}}

(2) {{p,¬q, r}, {q, r}, {q}, {¬r, q}, {¬p, r}}

Give a satisfying valuation for the satisfyable case(s).

(1) We start with the clause form:

{{¬p, q}, {¬q}, {p,¬r}, {¬s}, {¬t, s}, {t, r}}.

Applying resolution for ¬q, q to the first two clauses gives:

{{¬p}, {p,¬r}, {¬s}, {¬t, s}, {t, r}}.

B-64 APPENDIX B. SOLUTIONS TO THE EXERCISES

Applying resolution for ¬p, p to the first two clauses gives:

{{¬r}, {¬s}, {¬t, s}, {t, r}}.

Applying resolution for ¬r, r to the first and last clauses gives:

{{¬s}, {¬t, s}, {t}}.

Applying resolution for ¬s, s to the first two clauses gives:

{{¬t}, {t}}.

Applying resolution for ¬t, t to the first two clauses gives:

{[]}.

We have derived a clause form containing the empty clause. We have tried to construct a
situation where all clauses are true but this attempt has led us to a contradiction. Hence the
clause form is not satisfiable.

(2) We start with the clause form:

{{p,¬q, r}, {q, r}, {q}, {¬r, q}, {¬p, r}}

Applying resolution for ¬q, q to the first two clauses gives:

{{p, r}, {r}, {q}, {¬r, q}, {¬p, r}}

Applying resolution for r,¬r to the second and fourth clauses gives:

{{p, r}, {q}, {q}, {¬p, r}}

Applying resolution for p,¬p to the first and last clauses gives:

{{r}, {q}, {q}, {r}}

The clause form is satisfiable, and a valuation that satisfy it is the one in which all proposi-
tional atoms p, q and r are true.

Exercise 10.8 on page 10-10:

First we express the constraints as logical formulas, as follows:

• a ∨ b

• (a ∧ e ∧ ¬f) ∨ (a ∧ ¬e ∧ f) ∨ (¬a ∧ e ∧ f)

• b↔ c

• a↔ ¬d

B-65

• c↔ ¬d

• ¬d→ ¬r

Next we translate each formula in conjunctive normal form, as follows:

• a ∨ b

• (a ∨ e) ∧ (a ∨ f) ∧ (e ∨ f) ∧ (¬a ∨ ¬e ∨ ¬f)

• (¬b ∨ c) ∧ (b ∨ ¬c)

• (¬a ∨ ¬d) ∧ (a ∨ d)

• (¬c ∨ ¬d) ∧ (c ∨ d)

• d ∨ ¬e

From this we can construct the following clause form:

{{a, b}, {a, e}, {a, f}, {e, f}, {¬a,¬e,¬f}, {¬b, c}, {b,¬c}, {¬a,¬d}, {a, d}, {¬c,¬d}, {c, d}, {d,¬e}}

Exercise 10.9 on page 10-10:

{{a, b}, {a, e}, {a, f}, {e, f}, {¬a,¬e,¬f}, {¬b, c}, {b,¬c}, {¬a,¬d}, {a, d}, {¬c,¬d}, {c, d}, {d,¬e}}

We can apply resolution and find out the satisfying valuation in the following way:

B-66 APPENDIX B. SOLUTIONS TO THE EXERCISES

{a, b} {a, e, f} {a, e} {e, f} {a, f} {b, c} {b, c} {a, d} {a, d} {c, d} {c, d} {d, e}

{b, d}{a, c} {a, e}{a, c}

{a, b}{a, d} {a, f}{c, d}

{b, d}{a, e}{d, e, f}

{b, c}{e, f}

{a, e}

{a} {b} {c} {d} {e} {f}

Exercise 10.10 on page 10-12:

(1) {(1, 2), (2, 3), (3, 4), (1, 3), (1, 4), (2, 4)},

(2) {(1, 2), (2, 3), (3, 4), (1, 3), (1, 4), (2, 4)},

(3) {(1, 2), (2, 3), (3, 4), (1, 3), (1, 4), (2, 4)},

(4) {(1, 2), (2, 1), (1, 1), (2, 2)},

(5) {(1, 1), (2, 2)}.

Exercise 10.11 on page 10-14: (∀x∀y∀z((Rxy ∧ Ryz) → Rxz) ∧ ∀x∀y∀z((Sxy ∧ Syz) →
Sxz))→ (∀x∀y∀z((R ◦ Sxy ∧R ◦ Syz)→ R ◦ Sxz))

Exercise 10.12 on page 10-15:

R ◦ S = {(0, 2), (2, 1), (1, 1)},
(R ◦ S)+ = {(0, 2), (2, 1), (1, 1), (0, 1)}.

B-67

Solutions to Exercises from Chapter A

Exercise A.1 on page A-2: If every member of a set A is also a member of set B we say that A is
a subset of B. But there is no element which is a member of ∅, the precondition of the definition
is false, so the conditional in whole holds vacuously. That is, for every set A, ∅ ⊆ A.

Exercise A.2 on page A-2: Set {∅} is a set with a member ∅, but ∅ is a set containing no member.

Exercise A.3 on page A-4: It is {(n, n+ 4) | n ∈ N}.

Exercise A.4 on page A-4: We need to show R ⊆ Ř . For every x, y, (x, y) ∈ R, (y, x) ∈ Ř .
Then (y, x) ∈ R since Ř ⊆ R. It follows that (x, y) ∈ Ř , as required.

Exercise A.5 on page A-4: (3) and (5).

Exercise A.6 on page A-5: First check the direction from left to right. Suppose R is transitive
and for arbitrary x, y, (x, y) ∈ R ◦ R. It means that there exists some z such that (x, z) ∈ R and
(z, y) ∈ R. Since R is transitive, we can have that (x, y) ∈ R as well. Next check the direction
from right to left. Suppose R ◦ R ⊆ R and for arbitrary x, y, z, (x, y) ∈ R and (y, z) ∈ R. Then
(x, z) ∈ R ◦R. It follows that (x, z) ∈ R since R ◦R ⊆ R, as required.

Exercise A.7 on page A-5: Yes. Please see the relation < on N. It is clear that this relation is
transitive but < ◦ <=< (over N) does not hold.

Exercise A.8 on page A-5:

{(1, 1), (2, 2), (3, 3), (1, 2), (1, 3), (2, 3)}

Exercise A.9 on page A-6:

{(1, 1), (2, 2), (3, 3), (1, 2), (1, 3), (2, 3), (2, 1), (3, 1), (3, 2)}

Exercise A.10 on page A-7: Besides the empty and the universal relations we also have the identity
relation:

and also the following, each one with a version in which the isolated point can be not reflexive:

B-68 APPENDIX B. SOLUTIONS TO THE EXERCISES

Exercise A.11: Please see the following example.

Exercise A.12: Assume that a relation R is asymmetric, and suppose it contains a loop (x, x). But
by the definition of asymmetric, for every x, y, (x, y) ∈ R → (y, x) /∈ R. It follows (x, x) /∈ R
since (x, x) ∈ R, a contradiction. So any asymmetric has to be irreflexive.

Exercise A.13 on page A-9: These are the same as the ones given in the solution to exercise A.10,
except the empty relation.

Exercise A.14 on page A-9:

6RTS = {(2, 1), (1, 2)};

R6TS = {(1, 1), (2, 2), (3, 3), (1, 2), (2, 1), (2, 3), (3, 2)};

RT6S = {(1, 1), (2, 2), (1, 2)}.

What these examples show is that reflexivity does not follow from transitivity and symmetry, that
transitivity does not follow from reflexivity and symmetry, and that symmetry does not follow
from reflexivity and transitivity.

Exercise A.15 on page A-9: Base case: Proved in the text. Induction Hypothesis: If |M | < n
then ∃x∃y(Rxy ∧ Ryx) or ∃x∀y¬Rxy or ∃x∃y∃z(Rxy ∧ Ryx ∧ ¬Rxz). Induction step: take

B-69

an arbitrary model such that |M | = n− 1 and build M ′ with dom(M ′) = dom(M) ∪ {a}, such
that R′ = R ∪ Ra where Ra ⊆ RA with RA = {(x, y) | x ∈ dom(M), y = a} ∪ {(x, y) |
y ∈ dom(M), x = a} ∪ {(x, y) | x = a, y = a}. If ∃x∃y∃z(Rxy ∧ Ryx ∧ ¬Rxz) then
∃x∃y∃z(R′xy∧R′yx∧¬R′xz) and we are done. If ∃x∃y(Rxy∧Ryx) then ∃x∃y(R′xy∧R′yx)
and we are done. If ¬∃x∃y(Rxy ∧ Ryx) and ¬∃x∃y∃z(Rxy ∧ Ryx ∧ ¬Rxz) and ∃x∀y¬Rxy
then if for some x ∈ M that has no successor we have ¬R′xa we are done. Suppose that for all
x ∈ M that have no successors we have R′xa, then in order for M ′ to be serial we need to have
R′ay for some y ∈ M ′. If Raa then asymmetry is violated and we are done. Take an arbitrary
z ∈ M ′ such that R′za and z 6= a then if we have R′az, asymmetry is again violated and we are
done. If, for arbitrary z, y ∈ M ′ we have R′za, R′ay and y 6= z we have to consider two cases.
If ¬Ryz then transitivity is violated and we are done. In case Ryz then we have R′ay, R′yz,
and R′za. If we satisfy transitivity of R′ then we must also have R′aa which in turn violates the
asymmetry condition.

Exercise A.16 on page A-9: (1)

(2)

(3)

Exercise A.17 on page A-11: n 7→ n+ 2

Exercise A.18 on page A-11: The corresponding characteristic function is f : N2 → {True,False}.
For every pair (m,n) ∈ N2, if m ≤ n then f((m,n)) = True, otherwise, f((m,n)) = false.

Exercise A.19 on page A-11: Let f : A → B be a function. Show that the relation R ⊆ A2

given by (x, y) ∈ R if and only if f(x) = f(y) is an equivalence relation (reflexive, transitive and
symmetric) on A. Suppose relation R ⊆ A2 given by (x, y) ∈ R if and only if f(x) = f(y). We
need to show that R is an equivalence relation. First check reflexivity: for every x ∈ A, we have

B-70 APPENDIX B. SOLUTIONS TO THE EXERCISES

f(x) = f(x) since f is a function. It follows that (x, x) ∈ R, as required. Next check symmetry:
for every pair (x, y) ∈ R, we have x, y ∈ A and then f(x) = f(y). It’s clear f(y) = f(x)
meaning that (y, x) ∈ R. Similarly we can check transitivity: for every x, y, zA, (x, y) ∈ R
and (y, z) ∈ R, it follows that f(x) = f(y) and f(y) = f(z) by the premise. Then we have
f(x) = f(z). It follows by the same reason that (x, z) ∈ R, as required.

Exercise A.20 on page A-13: We prove that for all natural numbers n:

n∑
k=0

2k = n(n+ 1).

Basis. For n = 0, we have
∑0

k=0 2k = 0 = 0 · 1, so for this case the statement holds.

Induction step. We assume the statement holds for some particular natural number n and we show
that it also holds for n + 1. So assume

∑n
k=0 2k = n(n + 1). This is the induction hypothesis.

We have to show:
∑n+1

k=0 2k = (n+ 1)(n+ 2).

We have:
n+1∑
k=0

2k =
n∑
k=0

2k + 2(n+ 1).

Now use the induction hypothesis:

n+1∑
k=0

2k =

n∑
k=0

2k + 2(n+ 1)
ih
= n(n+ 1) + 2(n+ 1) = n2 + 3n+ 2 = (n+ 1)(n+ 2).

This settles the induction step. It follows that for all natural numbers n,
∑n

k=0 2k = n(n+ 1).

Bibliography

[Ari89] Aristotle. Prior Analytics. Hackett Publishing, Indianapolis IN, 1989. Translated by
Robin Smith.

[Axe84] Robert Axelrod. The Evolution of Cooperation. Basic Books, New York, 1984.

[BCM+02] F. Baader, D. Calvanese, D.L. McGuinness, D. Nardi, and P.F. Patel-Schneider, edi-
tors. The Description Logic Handbook. Cambridge University Press, 2002.

[Bin92] K. Binmore. Fun and Games. D.C. Heath, Lexington MA, 1992.

[BN02] F. Baader and W. Nutt. Basic description logics. In F. Baader, D. Calvanese, D.L.
McGuinness, D. Nardi, and P.F. Patel-Schneider, editors, The Description Logic
Handbook, pages 47–100. Cambridge University Press, 2002.

[Boo54] G. Boole. An investigation of the laws of thought, on which are founded the mathe-
matical theories of logic and probabilities. Dover, dover (reprint) edition, 1854.

[Bur98] Stanley N. Burris. Logic for Mathematics and Computer Science. Prentice Hall,
1998.

[Cal88] Italo Calvino. Six Memos for the Next Millennium. Harvard University Press, 1988.

[Car65] Lewis Carroll. Alice’s Adventures in Wonderland. MacMillan and Co, 1865.

[CH07] Ian Chiswell and Wilfrid Hodges. Mathematical Logic. Oxford Texts in Logic.
Oxford University Press, 2007.

[Cla12] Robin Clark. Meaningful Games: Exploring Language with Game Theory. MIT
Press, Cambridge, Mass and London, England, 2012.

[CSI08] Dan Cryan, Sharron Shatil, and Bill Mayblin (Illustrator). Logic: A Graphic Guide.
Icon Books., 2008.

[DA28] Hilbert D. and W. Ackermann. Grundzügen der theoretischen Logik. Springer, 1928.

[DA50] Hilbert D. and W. Ackermann. Principles of Mathematical Logic. American Math-
ematical Society, translation of the 1928 german edition edition, 1950.

[Dav67] D. Davidson. The logical form of action sentences. In N. Rescher, editor, The Logic
of Decision and Action, pages 81–95. The University Press, Pittsburgh, 1967.

B-71

B-72 BIBLIOGRAPHY

[DH04] with Yishai Feldman D. Harel. Algorithmics: The Spirit of Computing. Pearson
Education, third edition edition, 2004.

[DP09] Apostolos Doxiadis and Christos Papadimitriou. Logicomix: An Epic Search For
Truth. Bloomsbury Publishing, 2009.

[DvdHK06] H.P. van Ditmarsch, W. van der Hoek, and B. Kooi. Dynamic Epistemic Logic,
volume 337 of Synthese Library. Springer, 2006.

[DvE04] K. Doets and J. van Eijck. The Haskell Road to Logic, Maths and Programming,
volume 4 of Texts in Computing. College Publications, London, 2004.

[EV09] J. van Eijck and R. Verbrugge, editors. Discourses on Social Software, volume 5 of
Texts in Logic and Games. Amsterdam University Press, Amsterdam, 2009.

[Fag97] Ronald Fagin. Easier ways to win logical games. In In Proceedings of the DIMACS
Workshop on Finite Models and Descriptive Complexity. American Mathematical
Society, pages 1–32. American Mathematical Society, 1997.

[FHMV95] R. Fagin, J.Y. Halpern, Y. Moses, and M.Y. Vardi. Reasoning about Knowledge. MIT
Press, 1995.

[Fre76] Gottlob Frege. Begriffsschrift, a formula language, modeled upon that of arithmetic,
for pure thought, volume in: From Frege to Gödel (1967), edited by Jean van Hei-
jenoort. Harvard University Press, 1876.

[Fre79] G. Frege. Begriffsschrift, eine der arithmetischen nachgebildete Formelprache des
reinen Denkens. Verlag Nebert, Halle, 1879.

[Fre67] G. Frege. Begriffsschrift, a formula language, modeled upon that of arithmetic, of
pure thought. In J. van Heijenoord, editor, From Frege to Gödel, pages 1–82. Harvard
University Press, 1967.

[Gam91] L.T.F. Gamut. Language, Logic and Meaning, Part 1. Chicago University Press,
Chicago, 1991.

[GH09] Steven Givant and Paul Halmos. Introduction to Boolean Algebras. Undergraduate
Texts in Mathematics. Springer, 2009.

[Har68] Garrett Hardin. The tragedy of the commons. Science, 162:1243–48, 1968.

[Hei67] J. van Heijenoort, editor. From Frege to Gödel: A Source Book in Mathematical
Logic, 1879–1931. Harvard University Press, 19967.

[Hin62] J. Hintikka. Knowledge and Belief: An Introduction to the Logic of the Two Notions.
Cornell University Press, Ithaca N.Y., 1962.

[HKT00] D. Harel, D. Kozen, and J. Tiuryn. Dynamic Logic. Foundations of Computing. MIT
Press, Cambridge, Massachusetts, 2000.

[Hoa69] C.A.R. Hoare. An axiomatic basis for computer programming. Communications of
the ACM, 12(10):567–580, 583, 1969.

BIBLIOGRAPHY B-73

[Hod01] Wilfrid Hodges. Logic. Penguin, second edition edition, 2001.

[HR04] M. Huth and M. Ryan. Logic in Computer Science: Modelling and Reasoning about
Systems. Cambridge University Press, 2004. Second Edition.

[Jac00] Daniel Jackson. Automating first-order relational logic. ACM SIGSOFT Software
Engineering Notes, 25(6):130–139, 2000.

[Jac06] Daniel Jackson. Software Abstractions; Logic, Language and Analysis. MIT Press,
2006.

[KP81] D. Kozen and R. Parikh. An elementary proof of the completeness of PDL. Theoret-
ical Computer Science, 14:113–118, 1981.

[Łuk51] Jan Łukasiewicz. Aristotle’s Syllogistic from the Standpoint of Modern Formal Logic.
Clarendon Press, Oxford, 1951.

[Mat73] Benson Mates. Stoic Logic. University of California Press, first edition 1953 edition,
1973.

[Mos08] Lawrence S. Moss. Completeness theorems for syllogistic fragments. In Fritz Hamm
and Stephan Kepser, editors, Logics for Linguistic Structures, pages 143–174. Mou-
ton de Gruyter, Berlin, New York, 2008.

[MvdH95] J.J.Ch. Meyer and W. van der Hoek. Epistemic Logic for AI and Computer Science.
Cambridge University Press, 1995.

[NB02] D. Nardi and R. J. Brachman. An introduction to description logics. In F. Baader,
D. Calvanese, D.L. McGuinness, D. Nardi, and P.F. Patel-Schneider, editors, The
Description Logic Handbook, pages 5–44. Cambridge University Press, 2002.

[NM44] John von Neumann and Oscar Morgenstern. Theory of Games and Economic Behav-
ior. Princeton University Press, 1944.

[Osb04] Martin J. Osborne. An Introduction to Game Theory. Oxford University Press, New
York, Oxford, 2004.

[PH91] William Thomas Parry and Edward A. Hacker. Aristotelean Logic. State University
of New York Press, 1991.

[PH04] I. Pratt-Hartmann. Fragments of language. Journal of Logic, Language and Infor-
mation, 13(2):207–223, 2004.

[Pra78] V. Pratt. A practical decision method for propositional dynamic logic. In Proceedings
10th Symposium Theory of Computation, pages 326–337. ACM, 1978.

[Pra80] V. Pratt. Application of modal logic to programming. Studia Logica, 39:257–274,
1980.

[Smu09] Raymond M. Smullyan. The Lady or the Tiger?: and Other Logic Puzzles. Dover,
2009. First edition: 1982.

B-74 BIBLIOGRAPHY

[Smu11] Raymond M. Smullyan. What is the name of this book? Dover, first edition 1990
edition, 2011.

[Str93] Philip D. Straffin. Game Theory and Strategy. The Mathematical Association of
America, New Mathematical Library, 1993. Fourth printing: 2002.

[V1̈1] Jouko Väänänen. Models and Games. Number 132 in Cambridge Studies in Ad-
vanced Mathematics. Cambridge University Press, 2011.

[vB11] J. van Benthem. Logical Dynamics of Information and Interaction. Cambridge
University Press, 2011.

